Dietary Recommendations for Cyclists during Altitude Training
Abstract
:1. Altitude and Hypoxic Training
2. Body Composition during Altitude Training
3. Hydration during Altitude Training
4. Dietary Carbohydrate Intake Recommendations
5. Antioxidants
6. Iron Storage
7. Vitamin D
8. Alkalizing Agents
9. Conclusions and Recommendations
Acknowledgments
Conflicts of Interest
References
- Gore, C.J.; Hahn, A.G.; Aughey, R.J.; Martin, D.T.; Ashenden, M.J.; Clark, S.A.; Garnham, A.P.; Roberts, A.D.; Slater, G.J.; McKenna, M.J. Live high: train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol. Scand. 2001, 173, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Green, H.J.; Roy, B.; Grant, S. Increases in submaximal cycling efficiency mediated by altitude acclimatization. J. Appl. Physiol. 2000, 89, 1189–1197. [Google Scholar] [PubMed]
- Czuba, M.; Waskiewicz, Z.; Zajac, A.; Poprzecki, S.; Cholewa, J.; Roczniok, R. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J. Sports Sci. Med. 2011, 10, 175–183. [Google Scholar] [PubMed]
- Péronnet, F.; Thibault, G.; Cousineau, D.L. A theoretical analysis of the effect of altitude on running performance. J. Appl. Physiol. 1991, 70, 399–404. [Google Scholar] [PubMed]
- Amann, M.; Eldridge, M.W.; Lovering, A.T.; Stickland, M.K.; Pegelow, D.F.; Dempsey, J.A. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J. Physiol. 2006, 575, 937–952. [Google Scholar] [CrossRef] [PubMed]
- Peltonen, J.E.; Rusko, H.K.; Rantamaki, J.; Sweins, K.; Nittymaki, S.; Vitasalo, J.T. Effects of oxygen fraction in inspired air on force production and electromyogram activity during ergometer rowing. Eur. J. Appl. Physiol. 1997, 76, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, J.A.; Wagner, P.D. Exercise-induced arterial hypoxemia. J. Appl. Physiol. 1999, 87, 1997–2006. [Google Scholar] [PubMed]
- Adams, R.P.; Welch, H.G. Oxygen uptake, acid-base status, and performance with varied inspired oxygen fractions. J. Appl. Physiol. 1980, 49, 863–868. [Google Scholar] [PubMed]
- Hogan, M.C.; Richardson, R.S.; Haseler, L.J. Human muscle performance and PCr hydrolysis with varied inspired oxygen fraction: A 31P-MRS study. J. Appl. Physiol. 1999, 86, 1367–1373. [Google Scholar] [PubMed]
- Levine, B.D.; Stray-Gundersen, J. “Living high-training low”: Effect of moderate-altitude acclimatization with low-altitude training on performance. J. Appl. Physiol. 1997, 83, 102–112. [Google Scholar] [PubMed]
- Wilber, R.L.; Stray-Gundersen, J.; Levine, B.D. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med. Sci. Sports Exerc. 2007, 39, 1590–1599. [Google Scholar] [CrossRef] [PubMed]
- Bunn, H.F.; Poyton, R.O. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 1996, 76, 839–885. [Google Scholar] [PubMed]
- Czuba, M.; Maszczyk, A.; Gerasimuk, D.; Roczniok, R.; Fidos-Czuba, O.; Zając, A.; Gołaś, A.; Mostowik, A.; Langfort, J. The effects of hypobaric hypoxia on erythropoiesis, maximal oxygen uptake and energy cost of exercise in normoxia in elite biathletes. J. Sports Sci. Med. 2014, 13, 912–920. [Google Scholar] [PubMed]
- Ferretti, G.; Kayser, B.; Schena, F.; Turner, D.L.; Hoppeler, H. Regulation of perfusive O2 transport during exercise in humans: Effects of changes in haemoglobin concentration. J. Physiol. 1992, 455, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Hochachka, P.W.; Stanley, C.; Matheson, G.O.; McKenzie, D.C.; Allen, P.S.; Parkhouse, W.S. Metabolic and work efficiencies during exercise in Andean natives. J. Appl. Physiol. 1991, 70, 1720–1730. [Google Scholar] [PubMed]
- Ponsot, E.; Dufour, S.P.; Zoll, J.; Doutrelau, S.; N’Guessan, B.; Geny, B.; Hoppeler, H.; Lampert, E.; Mettauer, B.; Ventura-Clapier, R.; et al. Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J. Appl. Physiol. 2006, 100, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Mattila, V.; Rusko, H. Effect of living high and training low on sea level performance in cyclists. Med. Sci. Sports Exerc. 1996, 28, 157. [Google Scholar] [CrossRef]
- Roberts, A.D.; Clark, S.A.; Townsend, N.E.; Anderson, M.E.; Gore, C.; Hahn, A.G. Changes in performance, maximal oxygen uptake and maximal accumulated oxygen deficit after 5, 10 and 15 days of live high: train low altitude exposure. Eur. J. Appl. Physiol. 2003, 88, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Ashenden, M.J.; Gore, C.J.; Dobson, G.P.; Hahn, A.G. Simulated moderate altitude elevates serum erythropoietin but does not increase reticulocyte production in well-trained runners. Eur. J. Appl. Physiol. 2000, 81, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Hinckson, E.A.; Hopkins, W.G. Changes in running endurance performance following intermittent altitude exposure simulated with tents. Eur. J Sport Sci. 2005, 5, 15–24. [Google Scholar] [CrossRef]
- Czuba, M.; Zając, A.; Maszczyk, A.; Roczniok, R.; Poprzęcki, S.; Garbaciak, W.; Zając, T. The effects of high intensity interval training in normobaric hypoxia on aerobic capacity in basketball players. J. Hum. Kinet. 2012, 39, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Dufour, S.P.; Ponsot, E.; Zoll, J.; Doutreleau, S.; Lonsdorfer-Wolf, E.; Geny, B.; Lampert, E.; Flück, M.; Hoppeler, H.; Billat, V.; et al. Exercise training in normobaric hypoxia in endurance runners. I. Improvements in aerobic performance capacity. J. Appl. Physiol. 2006, 100, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Zoll, J.; Ponsot, E.; Dufour, S.; Doutreleau, S.; Ventura-Clapier, R.; Vogt, M.; Hoppeler, H.; Richard, R.; Flück, M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J. Appl. Physiol. 2006, 100, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Desplanches, D.; Hoppeler, H. Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. Pflügers Arch. Eur. J. Physiol. 1993, 425, 263–267. [Google Scholar] [CrossRef]
- Vogt, M.; Puntschart, A.; Geiser, J.; Zuleger, C.; Billeter, R.; Hoppeler, H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J. Appl. Physiol. 2001, 91, 173–182. [Google Scholar] [PubMed]
- Kayser, B. Nutrition and energetics of exercise at altitude. Theory and possible practical implications. Sports Med. 1994, 17, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Stray-Gundersen, J.; Alexander, C.; Hochstein, A.; deLomos, D.; Levine, B.D. Failure of red cell volume to increase to altitude exposure in iron deficient runners. Med. Sci. Sports Exerc. 1992, 24, 90–98. [Google Scholar] [CrossRef]
- Askew, E.W. Environmental and physical stress and nutrient requirements. Am. J. Clin. Nutr. 1995, 61, 631–637. [Google Scholar]
- Clark, S.A.; Aughey, R.J.; Gore, C.J.; Hahn, A.G.; Townsend, N.E.; Kinsman, T.A. Effects of live high, train low hypoxic exposure on lactate metabolism in trained humans. J. Appl. Physiol. 2004, 96, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, M.; Armellini, F.; Turcato, E.; Robbi, R.; Micciolo, R.; Todesco, T.; Mandragona, R.; Angelini, G.; Bosello, O. Effect of altitude on body composition during mountaineering expeditions: Interrelationships with changes in dietary habits. Ann. Nutr. Metab. 1996, 40, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.D.; Lickteig, J.A.; Howard, M.P.; Deuster, P.A. Intakes of high fat and high carbohydrate foods by humans increased with exposure to increasing altitude during an expedition to Mt. Everest. J. Nutr. 1998, 128, 50–55. [Google Scholar] [PubMed]
- Praz, C.; Granges, M.; Burtin, C.; Kayser, B. Nutritional behaviour and beliefs of ski-mountaineers: A semi-quantitative and qualitative study. J. Int. Soc. Sports Nutr. 2015, 9, 12–46. [Google Scholar] [CrossRef] [PubMed]
- Saris, W.H.; van Erp-Baart, M.A.; Brouns, F.; Westerterp, K.R.; Ten Hoor, F. Study on food intake and energy expenditure during extreme sustained exercise: The tour de France. Int. J. Sports Med. 1989, 10 (Suppl. 1), 26–31. [Google Scholar] [CrossRef] [PubMed]
- Rehrer, N.J.; Hellemans, I.J.; Rolleston, A.K.; Rush, E.; Miller, B.F. Energy intake and expenditure during a 6-day cycling stage race. Scand. J. Med. Sci. Sports 2010, 20, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.H.; Oliver, S.J.; Hillyer, K.; Sanders, S.; Smith, Z.; Williams, C.; Yates, D.; Ginnever, H.; Scanlon, E.; Roberts, E.; et al. Body composition at high altitude: A randomized placebo-controlled trial of dietary carbohydrate supplementation. Am. J. Clin. Nutr. 2009, 90, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Hoppeler, H.; Kleinert, E.; Schlegel, C.; Claassen, H.; Howald, H.; Kayar, S.R.; Cerretelli, P. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int. J. Sports Med. 1990, 11, 3–9. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, J.D.; Green, H.J.; Sutton, J.R.; Coates, G.; Cymerman, A.; Young, P.; Houston, C.S. Operation Everest II: Structural adaptations in skeletal muscle in response to extreme simulated altitude. Acta Physiol. Scand. 1991, 142, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, H.; Prasad, J.; Pramanik, S.N.; Krishnani, S.; Zachariah, T.; Chaudhary, K.L.; Sridharan, K.; Srivastava, K.K. Effect of prolonged exposure to high altitude on skeletal muscle of Indian soldiers. Def. Sci. J. 2000, 50, 167–176. [Google Scholar] [CrossRef]
- Butterfield, G.E.; Gates, J.; Fleming, S.; Brooks, G.A.; Sutton, J.R.; Reeves, J.T. Increased energy intake minimizes weight loss in men at high altitude. J. Appl. Physiol. 1992, 72, 1741–1748. [Google Scholar] [PubMed]
- Kayser, B. Nutrition and high altitude exposure. Int. J. Sports Med. 1992, 13, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Svedenhag, J.; Saltin, B.; Johansson, C.; Kaijser, L. Aerobic and anaerobic exercise capacities of elite middle-distance runners after two weeks of training at moderate altitude. Scand. J. Med. Sci. Sports 1991, 1, 205–214. [Google Scholar] [CrossRef]
- Gore, C.J.; Hahn, A.; Rice, A.; Bourdon, P.; Lawrence, S.; Walsh, C.; Stanef, T.; Barnes, P.; Parisotto, R.; Martin, D.; et al. Altitude training at 2690 m does not increase total Haemoglobin mass or sea level V̇O2max in world champion track cyclists. J. Sci. Med. Sport 1998, 1, 156–170. [Google Scholar] [CrossRef]
- Etheridge, T.; Atherton, P.J.; Wilkinson, D.; Selby, A.; Rankin, D.; Webborn, N.; Smith, K.; Watt, P.W. Effects of hypoxia on muscle protein synthesis and anabolic signaling at rest and in response to acute resistance exercise. Am. J. Physiol. Endocrinol. Metab. 2011, 301, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Koumenis, C.; Wouters, B.G. “Translating” tumor hypoxia: Unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol. Cancer Res. 2006, 4, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cash, T.P.; Jones, R.G.; Keith, B.; Thompson, C.B.; Simon, M.C. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell 2006, 21, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Hogan, R.P.; Kotchen, T.A.; Boyd, A.E.; Hartley, L.H. Effect of altitude on renin-aldosterone system and metabolism of water and electrolytes. J. Appl. Physiol. 1973, 35, 385–390. [Google Scholar] [PubMed]
- Mawson, J.T.; Braun, B.; Rock, P.; Moore, L.G.; Mazzeo, R.S.; Butterfield, G.E. Women at altitude: Energy requirement at 4300 m. J. Appl. Physiol. 2000, 88, 272–281. [Google Scholar] [PubMed]
- Butterfield, G.E. Maintenance of body weight at altitude: In search of 500 kcal/day. In Nutritional Needs in Cold and High-Altitude Environments: Applications for Personnel in Field Operations; Marriott, B.M., Carlson, S.J., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 357–378. [Google Scholar]
- Brouns, F.; Saris, W.H.; Stroecken, J.; Beckers, E.; Thijssen, R.; Rehrer, N.J.; ten Hoor, F. Eating, drinking, and cycling. A controlled Tour de France simulation study, Part I. Int. J. Sports Med. 1989, 10 (Suppl. 1), 32–40. [Google Scholar] [CrossRef] [PubMed]
- Gore, C.J.; Clark, S.A.; Saunders, P.U. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med. Sci. Sports Exerc. 2007, 39, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Hoppeler, H.; Vogt, M. Muscle tissue adaptations to hypoxia. J. Exp. Biol. 2001, 204, 3133–3139. [Google Scholar] [PubMed]
- Hoppeler, H.; Vogt, M.; Weibel, E.R.; Flück, M. Response of skeletal muscle mitochondria to hypoxia. Exp. Physiol. 2003, 88, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Lundby, C.; Pilegaard, H.; Andersen, J.L.; van Hall, G.; Sander, M.; Calbet, J.A. Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle. J. Exp. Biol. 2004, 207, 3865–3671. [Google Scholar] [CrossRef] [PubMed]
- Praz, C.; Léger, B.; Kayser, B. Energy expenditure of extreme competitive mountaineering skiing. Eur. J. Appl. Physiol. 2014, 114, 2201–2211. [Google Scholar] [CrossRef] [PubMed]
- Duc, S.; Cassirame, J.; Durand, F. Physiology of ski mountaineering racing. Int. J. Sports Med. 2011, 32, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Worme, J.D.; Lickteig, J.A.; Reynolds, R.D.; Deuster, P.A. Consumption of a dehydrated ration for 31 days at moderate altitudes: Energy intakes and physical performance. J. Am. Diet. Assoc. 1991, 91, 1543–1549. [Google Scholar] [PubMed]
- Fulco, C.S.; Cymerman, A.; Pimental, N.A.; Young, A.J.; Maher, J.T. Anthropometric changes at high altitude. Aviat. Space Environ. Med. 1985, 56, 220–224. [Google Scholar] [PubMed]
- Golja, P.; Flander, P.; Klemenc, M.; Maver, J.; Princi, T. Carbohydrate ingestion improves oxygen delivery in acute hypoxia. High Alt. Med. Biol. 2008, 9, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Moses, F.M.; Deuster, P.A. Chronic multivitamin-mineral supplementation does not enhance physical performance. Med. Sci. Sports Exerc. 1992, 24, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C. Vitamin and mineral status: Effects on physical performance. Nutrition 2004, 20, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Fry, A.C.; Bloomer, R.J.; Falvo, M.J.; Moore, C.A.; Schilling, B.K.; Weiss, L.W. Effect of a liquid multivitamin/mineral supplement on anaerobic exercise performance. Res. Sports Med. 2006, 14, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; McLaughlin, J. Carbohydrate ingestion during exercise: Effects on performance, training adaptations and trainability of the gut. In Sports Nutrition: More Than Just Calories—Triggers for Adaptation; Maughan, R.J., Burke, L.M., Eds.; Karger AG: Basel, Switzerland, 2011; Volume 69, pp. 1–17. [Google Scholar]
- Jeukendrup, A. A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Med. 2014, 44, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Stellingwerff, T.; Cox, G.R. Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl. Physiol. Nutr. Metab. 2014, 39, 998–1011. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, M.A. Exercise at Climatic Extremes, in Nutrition in Sport; Blackwell Science Ltd.: Oxford, UK, 2000. [Google Scholar]
- Stellingwerff, T.; Maughan, R.J.; Burke, L.M. Nutrition for power sports: Middle-distance running, track cycling, rowing, canoeing/kayaking, and swimming. J. Sports Sci. 2011, 29, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Jentjens, R.L.; Moseley, L. Nutritional considerations in triathlon. Sports Med. 2005, 35, 163–181. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Wilborn, C.D.; Taylor, L.; Campbell, B.; Almada, A.L.; Collins, R.; Cooke, M.; Earnest, C.P.; Greenwood, M.; Kalman, D.S.; et al. ISSN exercise & sport nutrition review: Research & recommendations. J. Int. Soc. Sports Nutr. 2010, 7, 1–43. [Google Scholar]
- Sherman, W.M.; Doyle, J.A.; Lamb, D.R.; Strauss, R.H. Dietary carbohydrate, muscle glycogen, and exercise performance during 7 day of training. Am. J. Clin. Nutr. 1993, 57, 27–31. [Google Scholar] [PubMed]
- Wright, D.A.; Sherman, W.M.; Dernbach, A.R. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J. Appl. Physiol. 1991, 71, 1082–1088. [Google Scholar] [PubMed]
- Hill, N.E.; Stacey, M.J.; Woods, D.R. Energy at high altitude. J. R. Army Med. Corps 2011, 157, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Brouns, F.; Beckers, E. Is the gut an athletic organ? Digestion, absorption and exercise. Sports Med. 1993, 15, 242–257. [Google Scholar] [CrossRef] [PubMed]
- Beelen, M.; Burke, L.M.; Gibala, M.J.; van Loon, L.J.C. Nutritional strategies to promote postexercise recovery. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 515–532. [Google Scholar] [PubMed]
- Peeling, P.; Blee, T.; Goodman, C.; Dawson, B.; Claydon, G.; Beilby, J.; Prins, A. Effect of iron injections on aerobic-exercise performance of iron-depleted female athletes. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 221–231. [Google Scholar] [PubMed]
- Sridharan, K.; Ranganathan, S.; Mukherjee, A.K.; Kumria, M.L.; Vats, P. Vitamin status of high altitude (3660 m) acclimatized human subjects during consumption of tinned rations. Wilderness Environ. Med. 2004, 15, 95–101. [Google Scholar] [CrossRef]
- Tauler, P.; Aguiló, A.; Gimeno, I.; Fuentespina, E.; Tur, J.A.; Pons, A. Response of blood cell antioxidant enzyme defences to antioxidant diet supplementation and to intense exercise. Eur. J. Nutr. 2006, 45, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cabrera, M.C.; Domenech, E.; Romagnoli, M.; Arduini, A.; Borras, C.; Pallardo, F.V.; Sastre, J.; Viña, J. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am. J. Clin. Nutr. 2008, 87, 142–149. [Google Scholar] [PubMed]
- Fisher-Wellman, K.; Bloomer, R.J. Acute exercise and oxidative stress: A 30 years history. Dyn. Med. 2009, 13, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, A.H.; McKenzie, M.J.; Bloomer, R.J. Gender comparisons of exercise-induced oxidative stress: Influence of antioxidant supplementation. Appl. Physiol. Nutr. Metab. 2007, 32, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, V.H.; Valente, H.F.; Casal, S.I.; Marques, A.F.; Moreira, P.A. Antioxidants do not prevent postexercise peroxidation and may delay muscle recovery. Med. Sci. Sports Exerc. 2009, 41, 1752–1760. [Google Scholar] [CrossRef] [PubMed]
- Peternelj, T.T.; Coombes, J.S. Antioxidant supplementation during exercise training: Beneficial or detrimental? Sports Med. 2011, 41, 1043–1069. [Google Scholar] [CrossRef] [PubMed]
- Ristow, M.; Zarse, K.; Oberbach, A.; Klöting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Blüher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8665–8670. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, P.M.; Thompson, H.S. Antioxidants: What role do they play in physical activity and health? Am. J. Clin. Nutr. 2000, 72, 637–646. [Google Scholar]
- Pialoux, V.; Mounier, R.; Rock, E.; Mazur, A.; Schmitt, L.; Richalet, J.P.; Robach, P.; Brugniaux, J.; Coudert, J.; Fellmann, N. Effects of the ‘live high-train low’ method on prooxidant/antioxidant balance on elite athletes. Eur. J. Clin. Nutr. 2009, 63, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Pialoux, V.; Brugniaux, J.V.; Rock, E.; Mazur, A.; Schmitt, L.; Richalet, J.P.; Robach, P.; Clottes, E.; Coudert, J.; Fellmann, N.; et al. Antioxidant status of elite athletes remains impaired 2 weeks after a simulated altitude training camp. Eur. J. Nutr. 2010, 49, 285–292. [Google Scholar] [CrossRef] [PubMed]
- García-Flores, L.A.; Medina, S.; Cejuela, R.; Martínez-Sanz, J.M.; Oger, C.; Galano, J.M.; Durand, T.; Casas-Pina, T.; Martínez-Hernández, P.; Ferreres, F.; et al. Assessment oxidative stress biomarkers—Neuroprostanes and dihomo-isoprostanes—In elite triathletes urine after two weeks of moderate altitude training. Free Radic. Res. 2015, 27, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pingitore, A.; Lima, G.P.; Mastorci, F.; Quinones, A.; Iervasi, G.; Vassalle, C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition 2015, 31, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Vollaard, N.B.; Shearman, J.P.; Cooper, C.E. Exercise-induced oxidative stress: Myths, realities and physiological relevance. Sports Med. 2005, 35, 1045–1062. [Google Scholar] [CrossRef] [PubMed]
- Boveris, A.; Oshino, N.; Chance, B. The cellular production of hydrogen peroxide. Biochem. J. 1972, 128, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; DeRuisseau, K.C.; Quindry, J.; Hamilton, K.L. Dietary antioxidants and exercise. J. Sports Sci. 2004, 22, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, M.; Poprzęcki, S.; Czuba, M.; Zydek, G.; Jagsz, S.; Sadowska-Krępa, E.; Zając, A. Blood antioxidant status in road cyclists during progressive (VO2max) and constant cyclist intensity test (MLSS). J. Sports Med. Phys. Fit. 2015, 55, 855–864. [Google Scholar]
- Sacheck, J.M.; Milbury, P.E.; Cannon, J.G.; Roubenoff, R.; Blumberg, J.B. Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radic. Biol. Med. 2003, 34, 1575–1588. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Goldfarb, A.H.; McKenzie, M.J. Oxidative stress response to aerobic exercise: Comparison of antioxidant supplements. Med. Sci. Sports Exerc. 2006, 38, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Nakhostin-Roohi, B.; Babaei, P.; Rahmani-Nia, F.; Bohlooli, S. Effect of vitamin C supplementation on lipid peroxidation, muscle damage and inflammation after 30-min exercise at 75% VO2max. J. Sports Med. Phys. Fit. 2008, 48, 217–224. [Google Scholar]
- Rokitzki, L.; Logemann, E.; Sagredos, A.N.; Murphy, M.; Wetzel-Roth, W.; Keul, J. Lipid peroxidation and antioxidative vitamins under extreme endurance stress. Acta Physiol. Scand. 1994, 151, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S.R.; Jakeman, P.; Thomason, H.; Leguen, C.; Thorpe, G.H. Changes in plasma antioxidant status during eccentric exercise and the effect of vitamin supplementation. Free Radic. Res. Commun. 1993, 19, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.J.; Ryder, J.; Martino, P.; Kim, J.; Craig, B.W. Effects of vitamin E and C supplementation either alone or in combination on exercise-induced lipid peroxidation in trained cyclists. J. Strength Cond. Res. 2003, 17, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, S.S.; Sharma, R.P.; Ilavazhagan, G.; Sridharan, K.; Ranganathan, S.; Selvamurthy, W. Effect of vitamin C and E in modulating peripheral vascular response to local cold stimulus in man at high altitude. Jpn. J. Physiol. 1999, 49, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, A.W.; Jacobs, K.A.; Hagobian, T.A.; Fattor, J.A.; Fulco, C.S.; Muza, S.R.; Rock, P.B.; Hoffman, A.R.; Cymerman, A.; Friedlander, A.L. Antioxidant supplementation does not attenuate oxidative stress at high altitude. Aviat. Space Environ. Med. 2004, 75, 881–888. [Google Scholar] [PubMed]
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K. Antioxidants in exercise nutrition. Sports Med. 2001, 31, 891–908. [Google Scholar] [CrossRef] [PubMed]
- Bentley, D.J.; Dank, S.; Coupland, R.; Midgley, A.; Spence, I. Acute antioxidant supplementation improves endurance performance in trained athletes. Res. Sports Med. 2012, 20, 1–12. [Google Scholar] [PubMed]
- Nieman, D.C.; Williams, A.S.; Shanely, R.A.; Jin, F.; McAnulty, S.R.; Triplett, N.T.; Austin, M.D.; Henson, D.A. Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Med. Sci. Sports Exerc. 2010, 42, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Dawson, B.; Henry, G.J.; Goodman, C.; Gillam, I.; Beilby, J.R.; Ching, S.; Fabian, V.; Dasig, D.; Morling, P.; Kakulus, B.A. Effect of vitamin C and E supplementation on biochemical and ultrastructural indices of muscle damage after a 21 km run. Int. J. Sports Med. 2002, 23, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Chun, O.K.; Kim, D.O.; Smith, N.L.; Schroeder, D.; Han, J.T.; Lee, C.Y. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food Agric. 2005, 85, 1715–1724. [Google Scholar] [CrossRef]
- Mangels, A.; Holden, J.; Beecher, G.; Forman, M.; Lanza, E. Carotenoid content of fruits and vegetables: An evaluation of analytic data. J. Am. Diet. Assoc. 1993, 93, 284–296. [Google Scholar] [CrossRef]
- Gahler, S.; Otto, K.; Böhm, V. Alterations of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to different products. J. Agric. Food Chem. 2003, 51, 7962–7968. [Google Scholar] [CrossRef] [PubMed]
- Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506. [Google Scholar] [CrossRef] [PubMed]
- George, T.W.; Waroonphan, S.; Niwat, C.; Gordon, M.H.; Lovegrove, J.A. Effects of acute consumption of a fruit and vegetable purée-based drink on vasodilation and oxidative status. Br. J. Nutr. 2013, 109, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Pialoux, V.; Mounier, R.; Ponsot, E.; Rock, E.; Mazur, A.; Dufour, S.; Richard, R.; Richalet, J.P.; Coudert, J.; Fellmann, N. Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance. Eur. J. Clin. Nutr. 2006, 60, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture. Agricultural Research Service. Database for the Flavonoid Content of Selected Foods; USDA: Washington, DC, USA, 2003.
- Palazzetti, S.; Rousseau, A.S.; Richard, M.J.; Favier, A.; Margaritis, I. Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br. J. Nutr. 2004, 91, 91–100. [Google Scholar] [CrossRef] [PubMed]
- McAnulty, L.S.; Nieman, D.C.; Dumke, C.L.; Shooter, L.A.; Henson, D.A.; Utter, A.C.; Milne, G.; McAnulty, S.R. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl. Physiol. Nutr. Metab. 2011, 36, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Bowtell, J.L.; Sumners, D.P.; Dyer, A.; Fox, P.; Mileva, K.N. Montgomery cherry juice reduces muscle damage caused by intensive strength exercise. Med. Sci. Sports Exerc. 2010, 43, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Lotito, S.B.; Frei, B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Radic. Biol. Med. 2006, 41, 1727–1746. [Google Scholar] [CrossRef] [PubMed]
- Pauls, D.W.; van Duijnhoven, H.; Stray-Gundersen, J. Iron insufficient erythropoiesis at altitude-speed skating. Med. Sci. Sports Exerc. 2002, 34, 252S. [Google Scholar] [CrossRef]
- Roberts, D.; Smith, D.J. Training at moderate altitude: Iron status of elite male swimmers. J. Lab. Clin. Med. 1992, 120, 387–391. [Google Scholar] [PubMed]
- Daniels, J.; Oldridge, N. The effects of alternate exposure to altitude and sea level on world-class middle distance runners. Med. Sci. Sports 1970, 2, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Adams, W.C.; Bernauer, E.M.; Dill, D.B.; Bomar, J.B. Effects of equivalent sea level and altitude training on VO2max and running performance. J. Appl. Physiol. 1975, 39, 262–266. [Google Scholar] [PubMed]
- Dill, D.B.; Adams, W. Maximal oxygen uptake at sea level and at 3090-m altitude in high school champion runners. J. Appl. Physiol. 1971, 3, 854–859. [Google Scholar]
- Terrados, N.; Melichna, J.; Sylvén, C.; Jansson, E.; Kaijser, L. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur. J. Appl. Physiol. 1988, 57, 203–209. [Google Scholar] [CrossRef]
- Walters, M.R.; Wicker, D.C; Riggle, P.C. 1,25-Dihydroxyvitamin D3 receptors identified in the rat heart. J. Mol. Cell Cardiol. 1986, 18, 67–72. [Google Scholar] [CrossRef]
- Merke, J.; Hofmann, W.; Goldschmidt, D.; Ritz, E. Demonstration of 1,25(OH)2 vitamin D3 receptors and actions in vascular smooth muscle cells in vitro. Calcif. Tissue Int. 1987, 41, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Hellsten, Y.; Nyberg, M. Cardiovascular adaptations to exercise training. Compr. Physiol. 2015, 6, 1–32. [Google Scholar] [PubMed]
- Wacker, M.; Holick, M.F. Vitamin D—Effect on skeletal and extra skeletal health and the need for supplementation. Nutrients 2013, 5, 111–148. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Qiao, G.; Uskokovic, M.; Xiang, W.; Zheng, W.; Kong, J. Vitamin D: A negative endocrine regulation of the renin-angniotensis system and blood pressure. J. Steroid Biochem. Mol. Biol. 2004, 89–90, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Bolland, M.J. Role of vitamin D deficiency in cardiovascular disease. Heart 2012, 98, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Polly, P.; Tan, T.C. The role of vitamin D in skeletal and cardiac muscle function. Front. Physiol. 2014, 16, 145. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, J.; Ascensao, A.; Soares, J.M.; Ferreira, R.; Neuparth, M.J.; Marques, F.; Duarte, J.A. Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle. J. Appl. Physiol. 2005, 99, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.; Heuberger, R. Outcoms of vitamin D supplementation in adults who are deficient on critically III: A review of the literature. Am. J. Ther. 2015. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, Z.; Śliwocka, E.; Henning, K.; Pilaczyńska-Szczesniak, Ł.; Huta-Osiecka, A.; Nowak, A. Vitamin D, Iron metabolism, and diet in alpinists during a 2-week high-altitude climb. High Alt. Med. Biol. 2015, 16, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, H.; Kurokawa, K. Metabolism and sites of action of vitamin D in the kidney. Kidney Int. 1986, 29, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Juel, C.; Bro-Rasmussen, T.; Mygind, E.; Schibye, B.; Rasmussen, B.; Saltin, B. Limb skeletal muscle adaptation in athletes after training at altitude. J. Appl. Physiol. 1990, 68, 496–502. [Google Scholar] [PubMed]
- Nummela, A.; Rusko, H. Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. J. Sports Sci. 2000, 18, 411–419. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalczyk, M.; Czuba, M.; Zydek, G.; Zając, A.; Langfort, J. Dietary Recommendations for Cyclists during Altitude Training. Nutrients 2016, 8, 377. https://doi.org/10.3390/nu8060377
Michalczyk M, Czuba M, Zydek G, Zając A, Langfort J. Dietary Recommendations for Cyclists during Altitude Training. Nutrients. 2016; 8(6):377. https://doi.org/10.3390/nu8060377
Chicago/Turabian StyleMichalczyk, Małgorzata, Miłosz Czuba, Grzegorz Zydek, Adam Zając, and Józef Langfort. 2016. "Dietary Recommendations for Cyclists during Altitude Training" Nutrients 8, no. 6: 377. https://doi.org/10.3390/nu8060377
APA StyleMichalczyk, M., Czuba, M., Zydek, G., Zając, A., & Langfort, J. (2016). Dietary Recommendations for Cyclists during Altitude Training. Nutrients, 8(6), 377. https://doi.org/10.3390/nu8060377