Association of Vitamin B12 with Pro-Inflammatory Cytokines and Biochemical Markers Related to Cardiometabolic Risk in Saudi Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Experimental Design
2.2. Anthropometric Measurements
2.3. Blood Collection and Biochemical Measurements
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mahalle, N.; Kulkarni, M.V.; Garg, M.K.; Naik, S.S. Vitamin B12 deficiency and hyperhomocysteinemia as correlates of cardiovascular risk factors in Indian subjects with coronary artery disease. J. Cardiol. 2013, 61, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Oh, R.; Brown, D.L. Vitamin B12 deficiency. Am. Fam. Physician 2003, 67, 979–986. [Google Scholar] [PubMed]
- Guéant, J.-L.; Alpers, D.H. Vitamin B12, a fascinating micronutrient, which influences human health in the very early and later stages of life. Biochimie 2013, 95, 967–969. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, S.; Fallahi, F.; Salarifar, M.; Davoodi, G.; Mahmoodian, M.; Fallah, N.; Darvish, N.; Karimi, S.; Tehran Heart Center. Homocysteine, vitamin B12 and folate levels in premature coronary artery disease. BMC Cardiovas. Disord. 2006, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Battaglia-Hsu, S.F.; Akchiche, N.; Noel, N.; Alberto, J.M.; Jeannesson, E.; Orozco-Barrios, C.E.; Martinez-Fong, D.; Daval, J.L.; Gueant, J.L. Vitamin B12 deficiency reduces proliferation and promotes differentiation of neuroblastoma cells and up-regulates PP2A, proNGF, and TACE. Proc. Natl. Acad. Sci. USA 2009, 106, 21930–21935. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R. Is vitamin B12 deficiency a risk factor for cardiovascular disease in vegatarians? Am. J. Prev. Med. 2015, 48, e11–e26. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.K.; Kan, M.Y. Homocysteine-induced endothelial dysfunction. Ann. Nutr. Metab. 2015, 67, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fratoni, V.; Brandi, M.L. B vitamins, homocysteine and bone health. Nutrients 2015, 7, 2176–2192. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.M.; Woudstra, P.; Utzschneider, K.M.; Tong, J.; Gerchman, F.; Faulenbach, M.; Carr, D.B.; Aston-Mourney, K.; Chait, A.; Knopp, R.H.; et al. Adipocytokines as features of the metabolic syndrome determined using confirmatory factor analysis. Ann. Epidemiol. 2013, 23, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Piya, M.K.; McTernan, P.G.; Kumar, S. Adipokine inflammation and insulin resistance: The role of glucose, lipids and endotoxin. J. Endocrinol. 2013, 216, T1–T15. [Google Scholar] [CrossRef] [PubMed]
- Ardawi, M.S.; Rouzi, A.A.; Qari, M.H.; Dahlawi, F.M.; Al-Raddadi, R.M. Influence of age, sex, folate and vitamin B12 status on plasma homocysteine in Saudis. Saudi Med. J. 2002, 23, 959–968. [Google Scholar] [PubMed]
- Abdulle, A.M.; Pathan, J.Y.; Moussa, N.; Gariballa, S. Association between homocysteine and endothelial dysfunction markers in stroke disease. Nutr. Neursci. 2010, 13, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Popa, C.; Netea, M.G.; van Riel, P.L.; van der Meer, J.W.; Stalenhoef, A.F. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 2007, 48, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Andresen, B.T.; Hill, M.; Zhang, J.; Booth, F.; Zhang, C. Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction. Curr. Hypertens Rev. 2008, 4, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Weiss, N. Mechanisms of increased vascular oxidant stress in hyperhomocys-teinemia and its impact on endothelial function. Curr. Drug Metab. 2005, 6, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Lawrence de Koning, A.B.; Werstuck, G.H.; Zhou, J.; Austin, R.C. Hyperhomocysteinemia and its role in the development of atherosclerosis. Clin. Biochem. 2003, 36, 431–441. [Google Scholar] [CrossRef]
- Buysschaer, M.; Dramais, A.S.; Wallemacq, P.E.; Hermans, M.P. Hyperhomocysteinemia in type 2 diabetes: Relationship to macroangiopathy, nephropathy, and insulin resistance. Diabetes Care 2000, 23, 1816–1822. [Google Scholar] [CrossRef]
- Al-Daghri, N.M. Hyperhomocysteinemia, coronary heart disease, and diabetes mellitus as predicted by various definitions for metabolic syndrome in a hypertensive Saudi population. Saudi Med. J. 2007, 28, 339–346. [Google Scholar] [PubMed]
- Li, Y.; Jiang, C.; Xu, G.; Wang, N.; Zhu, Y.; Tang, C.; Wang, X. Homocysteine upregulates resistin production from adipocytes in vivo and in vitro. Diabetes 2008, 57, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Mechanisms of TNF-alpha-induced insulin resistance. Exp. Clin. Endocrinol. Diabetes 1999, 107, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Moller, D.E. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol. Metab. 2000, 11, 212–217. [Google Scholar] [CrossRef]
- Kaya, C.; Cengiz, S.D.; Satiroglu, H. Obesity and insulin resistance associated with lower plasma vitamin B12 in PCOS. Reprod. Biomed. Online 2009, 19, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.P.; Christian, P.; Schulze, K.J.; Arguello, M.; LeClerq, S.C.; Khatry, S.K.; West, K.P., Jr. Low maternal vitamin B-12 status is associated with offspring insulin resistance regardless of antenatal micronutrient supplementation in rural Nepal. J. Nutr. 2011, 141, 1912–1917. [Google Scholar] [CrossRef] [PubMed]
- Gammon, C.S.; von Hurst, P.R.; Coad, J.; Kruger, R.; Stonehouse, W. Vegetarianism, vitamin B12 status, and insulin resistance in a group of predominantly overweight/obese South Asian women. Nutrition 2012, 28, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, M.S.; Weakley, S.M.; Yao, Q.; Chen, C. Resistin: Functional roles and therapeutic considerations for cardiovascular disease. Brit. J. Pharmacol. 2012, 165, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Sheng, C.H.; Di, J.; Jin, Y.; Zhang, Y.C.; Wu, M.; Sun, Y.; Zhang, G.Z. Resistin is expressed in human hepatocytes and induces insulin resistance. Endocrine 2008, 33, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature 2001, 409, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Gerber, M.; Boettner, A.; Seidel, B.; Lammert, A.; Bar, J.; Schuster, E.; Thiery, J.; Kiewss, W.; Kratzsch, J. Serum resistin levels of obese and lean children and adolescents: Biochemical analysis and clinical relevance. J. Clin. Endocrinol. Metab. 2005, 90, 4503–4509. [Google Scholar] [CrossRef] [PubMed]
- Filková, M.; Haluzík, M.; Gay, S.; Šenolt, L. The role of resistin as a regulator of inflammation: Implications for various human pathologies. Clin. Immunol. 2009, 133, 157–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Chen, D.Y.; Cao, J.; He, Z.Y.; Zhu, B.P.; Long, M. High serum resistin level may be an indicator of the severity of coronary disease in acute coronary syndrome. Chin. Med. Sci. J. 2009, 24, 161–166. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. The irresistible biology of resistin. J. Clin. Investig. 2003, 111, 173–174. [Google Scholar] [CrossRef] [PubMed]
- McTernan, C.L.; McTernan, P.G.; Harte, A.L.; Levick, P.L.; Barnett, A.H.; Kumar, S. Resistin, central obesity, and type 2 diabetes. Lancet 2002, 359, 46–47. [Google Scholar] [CrossRef]
- Pang, S.S.; Le, Y.Y. Role of resistin in inflammation and inflammation-related diseases. Cell. Mol. Immunol. 2006, 3, 29–34. [Google Scholar] [PubMed]
- Bokarewa, M.; Nagaev, I.; Dahlberg, L.; Smith, U.; Tarkowski, A. Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 2005, 174, 5789–5795. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, D.; Adamovska, S.; Bartek, J.; Jurakova, R.; Proskova, J. Resistin - concentrations in persons with type 2 diabetes mellitus and in individuals with acute inflammatory disease. Biomed. Pap. 2003, 147, 63–69. [Google Scholar] [CrossRef]
Parameters | Children | Adults |
---|---|---|
Clinical Characteristics | ||
N | 224 | 140 |
M/F (%) | 122/102 (54.5/45.5) | 37/103 (26.4/73.6) |
Age (years) | 12.99 ± 2.73 | 41.87 ± 8.82 |
Body Mass Index (kg/m2) | 20.07 ± 4.92 | 31.65 ± 5.77 |
Waist circumference (cm) | 66.37 ± 15.50 | 88.51 ± 15.65 |
Hip circumference (cm) | 82.06 ± 15.59 | 99.01 ± 15.77 |
Systolic Blood Pressure | 105.54 ± 10.21 | 114.25 ± 13.53 |
Diastolic Blood Pressure | 68.85 ± 7.12 | 75.73 ± 8.81 |
Glycemic Profile | ||
Glucose (mmol/L) | 5.11 ± 0.61 | 5.37 ± 0.81 |
Insulin (IU/mL) # | 6.5 (4.1–10.8) | 9.3 (7.1–13.2) |
HOMA-IR # | 1.46 (0.88–2.41) | 2.37 (1.50–3.22) |
Lipid Profile | ||
Triglycerides (mmol/L) # | 1.06 ± 0.55 | 1.54 ± 0.71 |
Total Cholesterol (mmol/L) | 4.23 ± 0.77 | 4.65 ± 0.98 |
HDL-Cholesterol (mmol/L) | 1.02 ± 0.34 | 0.87 ± 0.33 |
LDL-Cholesterol (mmol/L) | 2.72 ± 0.69 | 3.07 ± 0.77 |
Metabolic Profile | ||
Leptin (ng/mL) # | 9.10 (1.94–27.62) | 15.73 (7.52–25.67) |
Adiponectin (mg/mL) # | 20.22 (12.66–28.42) | 17.37 (5.19–431) |
Resistin (ng/mL) # | 15.10 (9.97–20.88) | 5.01 (2.89–14.47) |
TNF-α (pg/mL) # | 7.51 (4.91–9.79) | 15.34 (5.08–74.02) |
Vitamin B12 (Pg/mL) # | 421 (290.6–530.6) | 371.25 (288.6–496.3) |
Parameters | Coefficients of Correlation (r) | |
---|---|---|
Children (N = 224) | Adults (N = 140) | |
Age (years) | −0.192 ** | 0.022 |
Body Mass Index (kg/m2) | −0.132 | 0.006 |
Waist circumference (cm) | −0.105 | 0.089 |
Hip circumference (cm) | −0.207 ** | 0.050 |
Systolic Blood Pressure (mmHg) | −0.211 ** | 0.116 |
Diastolic Blood Pressure (mmHg) | −0.119 | −0.029 |
Glucose (mmol/L) | −0.102 | −0.071 |
Insulin (IU/mL) # | −0.248 ** | −0.118 |
HOMA-IR | −0.261 ** | −0.156 |
Triglyceride (mmol/L) # | −0.104 | 0.041 |
Cholesterol (mmol/L) | 0.010 | 0.177 |
HDL-Cholesterol (mmol/L) | 0.139 * | 0.030 |
LDL-Cholesterol (mmol/L) | −0.046 | 0.117 |
Leptin (ng/mL) # | −0.130 | 0.060 |
Adiponectin (mg/mL) # | 0.054 | 0.036 |
Resistin (ng/mL) # | −0.160 ** | 0.248 ** |
TNF-α (pg/mL) # | −0.062 | −0.242 ** |
Predictor | Unstandardized β | SE | p-Value | |
---|---|---|---|---|
Adults | HDL-cholesterol | 0.781 | 0.169 | 0.044 |
Children | Gender | −0.155 | 0.036 | 0.001 |
Age | −0.022 | 0.007 | 0.02 | |
Resistin | −0.167 | 0.069 | 0.004 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Daghri, N.M.; Rahman, S.; Sabico, S.; Yakout, S.; Wani, K.; Al-Attas, O.S.; Saravanan, P.; Tripathi, G.; McTernan, P.G.; Alokail, M.S. Association of Vitamin B12 with Pro-Inflammatory Cytokines and Biochemical Markers Related to Cardiometabolic Risk in Saudi Subjects. Nutrients 2016, 8, 460. https://doi.org/10.3390/nu8090460
Al-Daghri NM, Rahman S, Sabico S, Yakout S, Wani K, Al-Attas OS, Saravanan P, Tripathi G, McTernan PG, Alokail MS. Association of Vitamin B12 with Pro-Inflammatory Cytokines and Biochemical Markers Related to Cardiometabolic Risk in Saudi Subjects. Nutrients. 2016; 8(9):460. https://doi.org/10.3390/nu8090460
Chicago/Turabian StyleAl-Daghri, Nasser M., Shakilur Rahman, Shaun Sabico, Sobhy Yakout, Kaiser Wani, Omar S. Al-Attas, Ponnusamy Saravanan, Gyanendra Tripathi, Philip G. McTernan, and Majed S. Alokail. 2016. "Association of Vitamin B12 with Pro-Inflammatory Cytokines and Biochemical Markers Related to Cardiometabolic Risk in Saudi Subjects" Nutrients 8, no. 9: 460. https://doi.org/10.3390/nu8090460
APA StyleAl-Daghri, N. M., Rahman, S., Sabico, S., Yakout, S., Wani, K., Al-Attas, O. S., Saravanan, P., Tripathi, G., McTernan, P. G., & Alokail, M. S. (2016). Association of Vitamin B12 with Pro-Inflammatory Cytokines and Biochemical Markers Related to Cardiometabolic Risk in Saudi Subjects. Nutrients, 8(9), 460. https://doi.org/10.3390/nu8090460