Lutein and Zeaxanthin—Food Sources, Bioavailability and Dietary Variety in Age‐Related Macular Degeneration Protection
Abstract
:1. Introduction
2. Dietary Carotenoids
3. Age-Related Macular Degeneration (AMD)
4. Lutein and Zeaxanthin and AMD—Epidemiological and Intervention Studies
5. Recommended Intake Values for Lutein and Zeaxanthin
6. Dietary Sources of Lutein and Zeaxanthin
7. Absorption and Bioavailability of Dietary Carotenoids
8. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lim, L.S.; Mitchell, P.; Seddon, J.M.; Holz, F.G.; Wong, T.Y. Age-related macular degeneration. Lancet 2012, 379, 1728–1738. [Google Scholar] [CrossRef]
- Akuffo, K.O.; Nolan, J.; Stack, J.; Moran, R.; Feeney, J.; Kenny, R.A.; Peto, T.; Dooley, C.; O’Halloran, A.M.; Cronin, H.; et al. Prevalence of age-related macular degeneration in the Republic of Ireland. Br. J. Ophthalmol. 2015, 99, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Worsley, D.; Worsley, A. Prevalence predictions for age-related macular degeneration in New Zealand have implications for provision of healthcare services. N. Z. Med. J. 2015, 128, 44–55. [Google Scholar] [PubMed]
- Velez-Montoya, R.; Oliver, S.C.; Olson, J.L.; Fine, S.L.; Quiroz-Mercado, H.; Mandava, N. Current knowledge and trends in age-related macular degeneration: Genetics, epidemiology, and prevention. Retina 2014, 34, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Rein, D.B.; Wittenborn, J.S.; Zhang, X.; Honeycutt, A.A.; Lesesne, S.B.; Saaddine, J. Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments. Arch. Ophthalmol. 2009, 127, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, T.; Zhang, B.; Qin, L.; Wu, C.; Li, Q.; Ma, L. Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2015, 56, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, R.P.; Bernstein, P.S. Nutrient supplementation for age-related macular degeneration, cataract and dry eye. J. Ophthalmic. Vis. Res. 2014, 9, 487–493. [Google Scholar] [PubMed]
- Tian, Y.; Kijlstra, A.; Webers, C.A.; Berendschot, T.T. Lutein and factor D: Two intriguing players in the field of age-related macular degeneration. Arch. Biochem. Biophys. 2015, 572, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions in ocular disease. Prog. Retin. Eye Res. 2016, 50, 34–66. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Arteni, A.A.; Fradot, M.; Galzerano, D.; Mendes-Pinto, M.M.; Sahel, J.A.; Picaud, S.; Robert, B.; Pascal, A.A. Structure and conformation of the carotenoids in human retinal macular pigment. PLoS ONE 2015, 10, e0135779. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.M.; Meagher, K.; Kashani, S.; Beatty, S. What is meso-zeaxanthin, and where does it come from? Eye 2013, 27, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Zampatti, S.; Ricci, F.; Cusumano, A.; Marsella, L.T.; Novelli, G.; Giardina, E. Review of nutrient actions on age-related macular degeneration. Nutr. Res. 2014, 34, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.J.; Kwon, K.E.; Choi, N.K.; Park, K.H.; Woo, S.J. Prevalence and incidence of exudative age-related macular degeneration in South Korea: A nationwide population-based study. Ophthalmology 2015, 122, 2063–2070. [Google Scholar] [CrossRef] [PubMed]
- Owen, C.G.; Jarrar, Z.; Wormald, R.; Cook, D.G.; Fletcher, A.E.; Rudnicka, A.R. The estimated prevalence and incidence of late stage age related macular degeneration in the UK. Br. J. Ophthalmol. 2012, 96, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Ferris, F.L., 3rd; Wilkinson, C.P.; Bird, A.; Chakravarthy, U.; Chew, E.; Csaky, K.; Sadda, S.R. Clinical classification of age-related macular degeneration. Ophthalmology 2013, 120, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Meyers, K.J.; Liu, Z.; Millen, A.E.; Iyengar, S.K.; Blodi, B.A.; Johnson, E.; Snodderly, D.M.; Klein, M.L.; Gehrs, K.M.; Tinker, L.; et al. Joint associations of diet, lifestyle, and genes with age-related macular degeneration. Ophthalmology 2015, 122, 2286–2294. [Google Scholar] [CrossRef] [PubMed]
- SanGiovanni, J.P.; Chew, E.Y.; Agron, E.; Clemons, T.E.; Ferris, F.L., 3rd; Gensler, G.; Lindblad, A.S.; Milton, R.C.; Seddon, J.M.; Klein, R.; et al. The relationship of dietary omega-3 long-chain polyunsaturated fatty acid intake with incident age-related macular degeneration: Areds report No. 23. Arch. Ophthalmol. 2008, 126, 1274–1279. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.J.; Milton, R.C.; Klein, R.; Gensler, G.; Taylor, A. Dietary carbohydrate and the progression of age-related macular degeneration: A prospective study from the age-related eye disease study. Am. J. Clin. Nutr. 2007, 86, 1210–1218. [Google Scholar] [PubMed]
- Chiu, C.J.; Milton, R.C.; Gensler, G.; Taylor, A. Association between dietary glycemic index and age-related macular degeneration in nondiabetic participants in the age-related eye disease study. Am. J. Clin. Nutr. 2007, 86, 180–188. [Google Scholar] [PubMed]
- SanGiovanni, J.P.; Chew, E.Y.; Clemons, T.E.; Ferris, F.L., 3rd; Gensler, G.; Lindblad, A.S.; Milton, R.C.; Seddon, J.M.; Sperduto, R.D. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: Areds report No. 22. Arch. Ophthalmol. 2007, 125, 1225–1232. [Google Scholar] [PubMed]
- Gopinath, B.; Flood, V.M.; Rochtchina, E.; Wang, J.J.; Mitchell, P. Homocysteine, folate, vitamin b-12, and 10-y incidence of age-related macular degeneration. Am. J. Clin. Nutr. 2013, 98, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: Areds report No. 8. Arch. Ophthalmol. 2001, 119, 1417–1436. [Google Scholar]
- Rochtchina, E.; Wang, J.J.; Flood, V.M.; Mitchell, P. Elevated serum homocysteine, low serum vitamin b12, folate, and age-related macular degeneration: The Blue Mountains eye study. Am. J. Ophthalmol. 2007, 143, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Scripsema, N.K.; Hu, D.N.; Rosen, R.B. Lutein, zeaxanthin and meso-zeaxanthin in the clinical management of eye disease. J. Ophthalmol. 2015, 2015, 865179. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.; Flowerdew, G.; Smith, E.; Brody, J.A.; Tso, M.O. Factors associated with age-related macular degeneration: An analysis of data from the first national health and nutrition examination survey. Am. J. Epidemiol. 1988, 128, 700–710. [Google Scholar] [PubMed]
- Mares-Perlman, J.A.; Fisher, A.I.; Klein, R.; Palta, M.; Block, G.; Millen, A.E.; Wright, J.D. Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third national health and nutrition examination survey. Am. J. Epidemiol. 2001, 153, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, R.; Boekhoorn, S.; Vingerling, J.R.; Witteman, J.C.; Klaver, C.C.; Hofman, A.; de Jong, P.T. Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA 2005, 294, 3101–3107. [Google Scholar] [CrossRef] [PubMed]
- VandenLangenberg, G.M.; Mares-Perlman, J.A.; Klein, R.; Klein, B.E.; Brady, W.E.; Palta, M. Associations between antioxidant and zinc intake and the 5-year incidence of early age-related maculopathy in the beaver dam eye study. Am. J. Epidemiol. 1998, 148, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Moeller, S.M.; Jacques, P.F.; Blumberg, J.B. The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J. Am. Coll. Nutr. 2000, 19, 522S–527S. [Google Scholar] [CrossRef] [PubMed]
- Seddon, J.M.; Ajani, U.A.; Sperduto, R.D.; Hiller, R.; Blair, N.; Burton, T.C.; Farber, M.D.; Gragoudas, E.S.; Haller, J.; Miller, D.T.; et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration: Eye disease case-control study group. JAMA 1994, 272, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Dou, H.L.; Wu, Y.Q.; Huang, Y.M.; Huang, Y.B.; Xu, X.R.; Zou, Z.Y.; Lin, X.M. Lutein and zeaxanthin intake and the risk of age-related macular degeneration: A systematic review and meta-analysis. Br. J. Nutr. 2012, 107, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Moeller, S.M.; Parekh, N.; Tinker, L.; Ritenbaugh, C.; Blodi, B.; Wallace, R.B.; Mares, J.A. Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the carotenoids in age-related eye disease study (careds): Ancillary study of the women’s health initiative. Arch. Ophthalmol. 2006, 124, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.S.; Wang, J.J.; Flood, V.; Rochtchina, E.; Smith, W.; Mitchell, P. Dietary antioxidants and the long-term incidence of age-related macular degeneration: The blue mountains eye study. Ophthalmology 2008, 115, 334–341. [Google Scholar] [CrossRef]
- Cho, E.; Hankinson, S.E.; Rosner, B.; Willett, W.C.; Colditz, G.A. Prospective study of lutein/zeaxanthin intake and risk of age-related macular degeneration. Am. J. Clin. Nutr. 2008, 87, 1837–1843. [Google Scholar] [PubMed]
- Ho, L.; van Leeuwen, R.; Witteman, J.C.; van Duijn, C.M.; Uitterlinden, A.G.; Hofman, A.; de Jong, P.T.; Vingerling, J.R.; Klaver, C.C. Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and omega-3 fatty acids: The rotterdam study. Arch. Ophthalmol. 2011, 129, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Snellen, E.L.M.; Verbeek, A.L.M.; van den Hoogen, G.W.P.; Cruysberg, J.R.M.; Hoyng, C.B. Neovascular age-related macular degeneration and its relationship to antioxidant intake. Acta Ophthalmol. Scand. 2002, 80, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y.; Clemons, T.E.; SanGiovanni, J.P.; Danis, R.; Ferris, F.L., 3rd; Elman, M.; Antoszyk, A.; Ruby, A.; Orth, D.; Bressler, S. Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: The age-related eye disease study 2 (areds2) randomized clinical trial. JAMA 2013, 309, 2005–2015. [Google Scholar]
- Chew, E.Y.; Clemons, T.E.; Sangiovanni, J.P.; Danis, R.P.; Ferris, F.L., 3rd; Elman, M.J.; Antoszyk, A.N.; Ruby, A.J.; Orth, D.; Bressler, S.B.; et al. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: Areds2 report No. 3. JAMA Ophthalmol. 2014, 132, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Druesne-Pecollo, N.; Latino-Martel, P.; Norat, T.; Barrandon, E.; Bertrais, S.; Galan, P.; Hercberg, S. Beta-carotene supplementation and cancer risk: A systematic review and metaanalysis of randomized controlled trials. Int. J. Cancer 2010, 127, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Buitendijk, G.H.; Rochtchina, E.; Lee, K.E.; Klein, B.E.; van Duijn, C.M.; Flood, V.M.; Meuer, S.M.; Attia, J.; Myers, C.; et al. Genetic susceptibility, dietary antioxidants, and long-term incidence of age-related macular degeneration in two populations. Ophthalmology 2014, 121, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Piermarocchi, S.; Saviano, S.; Parisi, V.; Tedeschi, M.; Panozzo, G.; Scarpa, G.; Boschi, G.; Lo Giudice, G. Carotenoids in age-related maculopathy Italian study (carmis): Two-year results of a randomized study. Eur. J. Ophthalmol. 2012, 22, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Richer, S.; Stiles, W.; Statkute, L.; Pulido, J.; Frankowski, J.; Rudy, D.; Pei, K.; Tsipursky, M.; Nyland, J. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: The veterans last study (lutein antioxidant supplementation trial). Optometry 2004, 75, 216–230. [Google Scholar] [CrossRef]
- Bartlett, H.E.; Eperjesi, F. Effect of lutein and antioxidant dietary supplementation on contrast sensitivity in age-related macular disease: A randomized controlled trial. Eur. J. Clin. Nutr. 2007, 61, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yan, S.F.; Huang, Y.M.; Lu, X.R.; Qian, F.; Pang, H.L.; Xu, X.R.; Zou, Z.Y.; Dong, P.C.; Xiao, X.; et al. Effect of lutein and zeaxanthin on macular pigment and visual function in patients with early age-related macular degeneration. Ophthalmology 2012, 119, 2290–2297. [Google Scholar] [CrossRef] [PubMed]
- Weigert, G.; Kaya, S.; Pemp, B.; Sacu, S.; Lasta, M.; Werkmeister, R.M.; Dragostinoff, N.; Simader, C.; Garhofer, G.; Schmidt-Erfurth, U.; et al. Effects of lutein supplementation on macular pigment optical density and visual acuity in patients with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2011, 52, 8174–8178. [Google Scholar] [CrossRef] [PubMed]
- Dawczynski, J.; Jentsch, S.; Schweitzer, D.; Hammer, M.; Lang, G.E.; Strobel, J. Long term effects of lutein, zeaxanthin and omega-3-lcpufas supplementation on optical density of macular pigment in amd patients: The lutega study. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 2711–2723. [Google Scholar] [CrossRef] [PubMed]
- Murray, I.J.; Makridaki, M.; van der Veen, R.L.; Carden, D.; Parry, N.R.; Berendschot, T.T. Lutein supplementation over a one-year period in early amd might have a mild beneficial effect on visual acuity: The clear study. Invest. Ophthalmol. Vis. Sci. 2013, 54, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Beatty, S.; Chakravarthy, U.; Nolan, J.M.; Muldrew, K.A.; Woodside, J.V.; Denny, F.; Stevenson, M.R. Secondary outcomes in a clinical trial of carotenoids with coantioxidants versus placebo in early age-related macular degeneration. Ophthalmology 2013, 120, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Meyer zu Westrup, V.; Dietzel, M.; Zeimer, M.; Pauleikhoff, D.; Hense, H.W. Changes of macular pigment optical density in elderly eyes: A longtitudinal analysis of the mars study. Int. J. Retina Vitreous 2016, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Kaya, S.; Weigert, G.; Pemp, B.; Sacu, S.; Werkmeister, R.M.; Dragostinoff, N.; Garhofer, G.; Schmidt-Erfurth, U.; Schmetterer, L. Comparison of macular pigment in patients with age-related macular degeneration and healthy control subjects—A study using spectral fundus reflectance. Acta Ophthalmol. 2012, 90, e399–e403. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, R.; Du, J.H.; Liu, T.; Wu, S.S.; Liu, X.H. Lutein, zeaxanthin and meso-zeaxanthin supplementation associated with macular pigment optical density. Nutrients 2016, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Graydon, R.; Hogg, R.E.; Chakravarthy, U.; Young, I.S.; Woodside, J.V. The effect of lutein- and zeaxanthin-rich foods v. Supplements on macular pigment level and serological markers of endothelial activation, inflammation and oxidation: Pilot studies in healthy volunteers. Br. J. Nutr. 2012, 108, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Curran-Celentano, J.M.; Wenzel, A.; Nicolosi, R.J.; Handelman, G.J. Evaluating the influence of egg consumption as a source of macular carotenoids and the impact on serum cholesterol risk ratios. Invest. Opthalmol. Vis. Sci. 2003, 44, 403. [Google Scholar]
- Rasmussen, H.M.; Johnson, E.J. Nutrients for the aging eye. Clin. Interv. Aging 2013, 8, 741–748. [Google Scholar] [PubMed]
- Scott, K.J.; Thurnham, D.I.; Hart, D.J.; Bingham, S.A.; Day, K. The correlation between the intake of lutein, lycopene and beta-carotene from vegetables and fruits, and blood plasma concentrations in a group of women aged 50–65 years in the UK. Br. J. Nutr. 1996, 75, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Olmedilla, B.; Granado, F.; Gil-Martinez, E.; Blanco, I.; Rojas-Hidalgo, E. Reference values for retinol, tocopherol, and main carotenoids in serum of control and insulin-dependent diabetic spanish subjects. Clin. Chem. 1997, 43, 1066–1071. [Google Scholar] [PubMed]
- Pelz, R.; Schmidt-Faber, B.; Heseker, H. Carotenoid intake in the german national food consumption survey. Z. Ernahrungswiss 1998, 37, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L.; Chen, H.; Vogel, S.; Wilson, P.W.; Schaefer, E.J.; Lammi-Keefe, C.J. Carotenoid intakes, assessed by dietary questionnaire, are associated with plasma carotenoid concentrations in an elderly population. J. Nutr. 1999, 129, 438–445. [Google Scholar] [PubMed]
- Mares-Perlman, J.A.; Millen, A.E.; Ficek, T.L.; Hankinson, S.E. The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease: Overview. J. Nutr. 2002, 132, 518S–524S. [Google Scholar] [PubMed]
- Manzi, F.; Flood, V.; Webb, K.; Mitchell, P. The intake of carotenoids in an older Australian population: The blue mountains eye study. Public Health Nutr. 2002, 5, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Nebeling, L.C.; Forman, M.R.; Graubard, B.I.; Snyder, R.A. Changes in carotenoid intake in the United States: The 1987 and 1992 national health interview surveys. J. Am. Diet. Assoc. 1997, 97, 991–996. [Google Scholar] [CrossRef]
- Cook, T.; Rutishauser, I.; Seelig, M. Comparable Data on Food and Nutrient Intake and Physical Measurements: From the 1983, 1985 and 1995 National Nutrition Surveys; National Food and Nutrition Monitoring and Surveillance Project: Herston, Australia, 2001. [Google Scholar]
- Australian Bureau of Statistics. Australian Health Survey: Nutrition First Results—Foods and Nutrients, 2011–2012; Australian Bureau of Statistics: Canberra, Australia, 2014.
- Perry, A.; Rasmussen, H.; Johnson, E. Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J. Food Comp. Anal. 2009, 22, 9–15. [Google Scholar] [CrossRef]
- US Department of Agriculture, Agricultral Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference. Available online: http://www.ars.usda.gov/ba/bhnrc/ndl (accessed on 15 March 2016).
- Brown, M.J.; Ferruzzi, M.G.; Nguyen, M.L.; Cooper, D.A.; Eldridge, A.L.; Schwartz, S.J.; White, W.S. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 2004, 80, 396–403. [Google Scholar] [PubMed]
- Ghavami, A.; Coward, W.A.; Bluck, L.J. The effect of food preparation on the bioavailability of carotenoids from carrots using intrinsic labelling. Br. J. Nutr. 2012, 107, 1350–1366. [Google Scholar] [CrossRef] [PubMed]
- Hornero-Mendez, D.; Mínguez-Mosquera, M.-M. Bioaccessibility of carotenes from carrots: Effect of cooking and addition of oil. Innov. Food Sci. Emerg. Technol. 2007, 8, 407–412. [Google Scholar] [CrossRef]
- Kim, J.E.; Gordon, S.; Ferruzzi, M.; Campbell, W. Effects of whole egg consumption on carotenoids absorption from co-consumed, carotenoids-rich mixed-vegetable salad. FASEB J. 2015, 29, 1. [Google Scholar]
- Goltz, S.R.; Campbell, W.W.; Chitchumroonchokchai, C.; Failla, M.L.; Ferruzzi, M.G. Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans. Mol. Nutr. Food Res. 2012, 56, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Reboul, E.; Thap, S.; Tourniaire, F.; Andre, M.; Juhel, C.; Morange, S.; Amiot, M.J.; Lairon, D.; Borel, P. Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption. Br. J. Nutr. 2007, 97, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Riedl, J.; Linseisen, J.; Hoffmann, J.; Wolfram, G. Some dietary fibers reduce the absorption of carotenoids in women. J. Nutr. 1999, 129, 2170–2176. [Google Scholar] [PubMed]
- Van Het Hof, K.H.; West, C.E.; Weststrate, J.A.; Hautvast, J.G. Dietary factors that affect the bioavailability of carotenoids. J. Nutr. 2000, 130, 503–506. [Google Scholar] [PubMed]
- Johnson, E.J. The role of carotenoids in human health. Nutr. Clin. Care 2002, 5, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Goodrow, E.F.; Wilson, T.A.; Houde, S.C.; Vishwanathan, R.; Scollin, P.A.; Handelman, G.; Nicolosi, R.J. Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. J. Nutr. 2006, 136, 2519–2524. [Google Scholar] [PubMed]
- Blesso, C.N.; Andersen, C.J.; Bolling, B.W.; Fernandez, M.L. Egg intake improves carotenoid status by increasing plasma HDL cholesterol in adults with metabolic syndrome. Food Funct. 2013, 4, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kelly, E.R.; Plat, J.; Haenen, G.R.; Kijlstra, A.; Berendschot, T.T. The effect of modified eggs and an egg-yolk based beverage on serum lutein and zeaxanthin concentrations and macular pigment optical density: Results from a randomized trial. PLoS ONE 2014, 9, e92659. [Google Scholar] [CrossRef] [PubMed]
Classification | Symptoms |
---|---|
No signs of AMD | No visible drusen or pigmentary abnormalities |
No clinically significant increased risk of late AMD | Small drusen (<63 µm) |
Early AMD | Medium drusen (≥63–<125 µm) without pigmentary abnormalities thought to be related to AMD |
Intermediate AMD | Large drusen or pigmentary abnormalities associated with at least medium drusen |
Late AMD | Lesions associated with neovascular AMD or geographic atrophy |
Cohort Studies | ||||||
Study | Length of follow-up Study participant details | Dietary Lutein and Zeaxanthin Intake | Dietary Assessment Method | Association between lutein and zeaxanthin consumption and Early or Intermediate Age-Related Macular Disease | Association between lutein and zeaxanthin consumption and Late Age-Related Macular Disease | |
Van den Langenberg 1998 Beaver Dam Eye Study [29] | 5-year follow-up of 1709 US men and women aged 43–84 years | Median intake (µg per 1000 kcal): Quintile 1: 294 µg Quintile 5: 1006 µg | FFQ (100 item) | No significant association between L/Z intake and early AMD. | Not reported | |
Van Leeuwen et al. 2005 The Rotterdam Study [28] | 8-year follow-up of 4170 Dutch men and women aged ≥ 55 years | Mean intake mg/day: Quartile 1:1.4 mg Quartile 4:3.6 mg | FFQ (170 item) | No significant association between L/Z intake and incident AMD. | Not reported | |
Moeller et al. 2006 Carotenoids in Age-Related Eye Disease Study [33] | 7-year follow-up of 1787 US women aged 50−79 years | Low (<28th percentile): 792 ± 169 µg/day vs. High (>78th percentile): 2868 ± 919 µg/day Median intake (µg per 1000 kcal): Low: 618 µg High: 1438 µg | FFQ (122 item) | No association between dietary L/Z and prevalence of intermediate AMD in high vs. low intake. Significant, protective association (OR: 0.57; 95% CI 0.34−0.95) in women <75 years with stable L/Z intake and no history of CVD, diabetes, hypertension and/or AMD. | No significant association between dietary L/Z levels and late AMD in overall sample ORs in protective direction in younger women. | |
Tan et al. 2008 Blue Mountains Eye Study [34] | 10-year follow-up of 2454 Australian men and women aged 45−93 years | Median intake µg/day: 743 µg (SD: 482 µg) Top tertile: ≥ 942 µg/day | FFQ (145 item) | Those with above-median intakes had a reduced risk of indistinct soft or reticular drusen (RR: 0.66; 95% CI, 0.48−0.92). | Top tertile of L/Z intake had a reduced risk of incident neovascular AMD (RR: 0.35, 95% CI 0.13–0.92). | |
Cho et al. 200 The Health Professionals Follow-Up Study [35] | 16-year follow-up of 41,564 US male health professionals aged 50−79 years | Quintile 1: 1209 ± 317 µg/day Quintile 5: 6879 ± 315 µg/day | FFQ (130 item) | No overall association between L/Z intake and early AMD risk. | Top vs. bottom quintiles of L/Z intake and neovascular AMD pooled multivariate RR 0.78 (95% CI: 0.57, 1.06) | |
Cho et al. 2008 The Nurses’ Health Study [35] | 18-year follow-up of 71,494 US female health professionals aged 50−79 years | Quintile 1: 1097 ± 279 µg/day Quintile 5: 5852 ± 2797 µg/day | FFQ (130 item) | No overall association between L/Z intake and early AMD risk. | Top vs. bottom quintiles of L/Z intake and neovascular AMD pooled multivariate RR 0.78 (95% CI: 0.57, 1.06) | |
Ho et al. 2011 The Rotterdam Study [36] | 8.6-year follow-up 2167 individuals (≥ 55 years) from the Rotterdam study at risk of AMD | Tertile 1: 1.45−1.50 mg/day Tertile 3: 3.29−3.39 mg/day | FFQ (170 item) | High dietary intake of L/Z reduced the risk of early AMD in those at high genetic risk. | Not reported | |
Case-Control Studies | ||||||
Seddon et al. 1994 The Eye Disease Case-Control Study [31] | Case-control study of 356 subjects aged 55 to 80 years with advanced-stage AMD matched with 520 control subjects | Median intake (IU): Quintile 1: 560.8 Quintile 5: 5757 | FFQ (60 item) | Not reported | Highest vs. lowest dietary L/Z was associated with a reduced risk for advanced AMD (OR: 0.43; 95% CI 0.2−0.7). | |
Snellen et al. 2002 [37] | Case-control study of 72 case and 66 control subjects | Levels not reported. | Dietary habits interview | Not reported | The odds ratio for neovascular AMD with low L/Z vs. high L/Z was OR: 2.4 (95% CI, 1.1−5.1). | |
SanGiovanni et al. 2007 The Age-Related Eye Disease Study (AREDS) Report 22 [21] | Case-control study of 4519 AREDS participants aged 60 to 80 years at baseline | Median intake (µg per 1000 kcal): Quintile 1: 521 µg Quintile 5: 2095 µg | FFQ (90 item) | Highest quintile vs. lowest quintile dietary L/Z was inversely associated with large or extensive intermediate drusen (OR: 0.73; 95% CI 0.56−0.96). | Highest quintile vs. lowest quintile dietary intake L/Z was inversely associated with neovascular AMD (OR: 0.65; 95% CI 0.45−0.93) and geographic atrophy (OR: 0.45; 95% CI 0.24−0.86). |
Study | Length of Follow-Up | Study Participants | Lutein and Zeaxanthin Intake | Lutein and Zeaxanthin Intake and Risk of Early AMD | Lutein and Zeaxanthin Intake and Risk of Late AMD |
---|---|---|---|---|---|
AREDS II [38] | 5 years | 4203 US adults aged 50−85 years at risk of progression to late AMD | Lutein (10 mg) + zeaxanthin (2 mg) supplements plus baseline median intake of dietary L/Z of 2590 µg/day | Not reported | Lutein and zeaxanthin supplementation (as an addition to the original AREDS supplement) lowered the progression to late AMD but only in individuals with low dietary lutein and zeaxanthin. A reduction in risk for progression to late AMD was seen for individuals in quintile 1 who had a median intake of 696 µg L/Z per 1000 cal per day compared to no L/Z (HR: 0.74; 95% CI, 0.59−0.94). For those with a median intake of 1134 µg per 1000 cal per day—HR: 0.94 (95% CI: 0.74−1.21). |
Food | Lutein Trans (µg per 100 g) | Zeaxanthin Trans (µg per 100 g) | L/Z Ratio 1 |
---|---|---|---|
Asparagus, cooked | 991 | 0 | - |
Spinach, raw | 6603 | 0 | - |
Spinach, cooked | 12,640 | 0 | - |
Kale, cooked | 8884 | 0 | - |
Green beans, cooked | 306 | 0 | - |
Orange pepper, raw | 208 | 1665 | 0.1 |
Lettuce, romaine, raw | 3824 | 0 | - |
Broccoli, cooked | 772 | 0 | - |
Parsley, raw | 4326 | 0 | - |
Corn, cooked | 202 | 202 | 1.0 |
Pistachio nuts, raw | 1405 | 0 | - |
Egg whole, cooked | 237 | 216 | 1.1 |
Egg yolk, cooked | 645 | 587 | 1.1 |
Egg whole, raw | 288 | 279 | 1.0 |
Egg yolk, raw | 787 | 762 | 1.0 |
Food | Lutein and Zeaxanthin (µg/100 g) |
---|---|
Kale, cooked | 18,246 |
Spinach, raw | 12,197 |
Spinach, cooked | 11,308 |
Parsley | 5562 |
Peas, green (boiled) | 2593 |
Lettuce (romaine or cos) | 2313 |
Squash (boiled) | 2249 |
Edamame beans | 1619 |
Brussels sprouts (boiled) | 1541 |
Pistachio nuts, raw | 1404 |
Egg yolk, raw | 1094 |
Broccoli (cooked) | 1079 |
Pumpkin (cooked) | 1014 |
Asparagus, cooked | 771 |
Frozen corn (boiled from frozen) | 684 |
Frozen green beans (cooked) | 564 |
Egg whole, raw | 504 |
Egg whole, cooked (hard-boiled) | 353 |
Avocado (all commercial) | 270 |
Orange (all commercial) | 129 |
Tomato (red, ripe, cooked) | 94 |
Meal | Lutein/Zeaxanthin Content |
---|---|
Breakfast: Porridge with nuts: Porridge (rolled oats, milk, water) topped with 30 g pistachio nuts and 1/2 tsp honey + one medium orange | 589 µg |
Lunch: Curried egg sandwich: one boiled egg mixed with mayonnaise and curry powder, two slices wholegrain bread, salad vegetables including baby spinach | 4026 µg |
Dinner: Salmon, rice and vegetables: Oven-baked salmon fillet, corn on the cob, steamed vegetables including asparagus and broccoli | 1729 µg |
Snacks: One cup blueberries + cheese and crackers | 118 µg |
Total daily L/Z intake | 6462 µg |
Meal | Lutein/Zeaxanthin Content |
---|---|
Breakfast: Scrambled eggs on toast: Two poached eggs on wholegrain toast served with 1/2 cup wilted kale and grilled tomato + one glass milk | 9584 µg |
Lunch: Cheese and salad wrap: one wholegrain wrap with hummus, salad vegetables (cos lettuce, cucumber, carrot), 1/3 cup grated cheese and 1/4 avocado + one medium orange | 942 µg |
Dinner: Lamb chops and vegetables: Trim lamb chops with roast pumpkin and mixed vegetables (cooked in extra virgin olive oil) | 760 µg |
Snacks: one cup fresh fruit salad + one tub natural yoghurt | Nil |
Total daily L/Z intake | 11,286 µg |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eisenhauer, B.; Natoli, S.; Liew, G.; Flood, V.M. Lutein and Zeaxanthin—Food Sources, Bioavailability and Dietary Variety in Age‐Related Macular Degeneration Protection. Nutrients 2017, 9, 120. https://doi.org/10.3390/nu9020120
Eisenhauer B, Natoli S, Liew G, Flood VM. Lutein and Zeaxanthin—Food Sources, Bioavailability and Dietary Variety in Age‐Related Macular Degeneration Protection. Nutrients. 2017; 9(2):120. https://doi.org/10.3390/nu9020120
Chicago/Turabian StyleEisenhauer, Bronwyn, Sharon Natoli, Gerald Liew, and Victoria M. Flood. 2017. "Lutein and Zeaxanthin—Food Sources, Bioavailability and Dietary Variety in Age‐Related Macular Degeneration Protection" Nutrients 9, no. 2: 120. https://doi.org/10.3390/nu9020120
APA StyleEisenhauer, B., Natoli, S., Liew, G., & Flood, V. M. (2017). Lutein and Zeaxanthin—Food Sources, Bioavailability and Dietary Variety in Age‐Related Macular Degeneration Protection. Nutrients, 9(2), 120. https://doi.org/10.3390/nu9020120