Association between Coffee Consumption and Its Polyphenols with Cardiovascular Risk Factors: A Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.2.1. Assessment of Coffee Consumption
2.2.2. Estimation of Polyphenol Intake from Coffee
2.3. Demographic and Lifestyle Characteristics
2.4. Anthropometric Measurements
2.5. Outcome Measurements
2.5.1. Blood Pressure (BP)
2.5.2. Blood Samples
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Financial Disclosure
References
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Amett, D.K.; Blaha, M.J.; Cushman, M.; Dai, S.; De Simone, G.; Ferguson, T.B.; Ford, E.; et al. Heart disease and stroke statistics-2015 update: A report from the American Heart Association. Circulation 2015, 131, e29–e322. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Atlas on Cardiovascular Disease Prevention and Control; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- International Coffee Organization. Trade Statistics. Available online: http://www.ico.org/profiles_e.asp (accessed on 20 February 2017).
- Souza, A.M.; Pereira, R.A.; Yokoo, E.M.; Levy, R.B.; Sichieri, R. Alimentos mais consumidos no Brasil: Inquérito Nacional de Alimentação 2008–2009 (Most consumed foods in Brazil: National Dietary Survey 2008–2009). Rev. Saúde Publica 2013, 47, 190S–199S. [Google Scholar]
- O’Keefe, J.H.; Bhatti, S.K.; Patil, H.R.; DiNicolantonio, J.J.; Lucan, S.C.; Lavie, C.J. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J. Am. Coll. Cardiol. 2013, 62, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Cano-Marquina, A.; Tarín, J.J.; Cano, A. The impact of coffee on health. Maturitas 2013, 75, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Bhupathiraju, S.N.; Chen, M.; van Dam, R.M.; Hu, F.B. Caffeinated and Decaffeinated Coffee Consumption and Risk of Type 2 Diabetes: A systematic review and a dose-response meta-analysis. Diabetes Care 2014, 37, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Noordzij, M.; Uiterwaal, C.S.P.M.; Arends, L.R.; Kok, F.J.; Grobbee, D.E.; Geleijnse, J.M. Blood pressure response to chronic intake of coffee and caffeine: A meta-analysis of randomized controlled trials. J. Hypertens. 2005, 23, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Mesas, A.E.; Leon-Muñoz, L.M.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2011, 94, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, I.M.; Klein, L.C. Boiled or filtered coffee? Effects of coffee and caffeine on cholesterol, fibrinogen and C-reactive protein. Toxicol. Rev. 2006, 25, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, N.; White, H. Systematic review of randomized controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus. J. Hum. Nutr. Diet. 2013, 26, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.N.; Ho, S.C.; Zhou, C.; Ling, W.H.; Chen, W.Q.; Wang, C.L.; Chen, Y.-M. Coffee consumption and risk of coronary heart diseases: A meta-analysis of 21 prospective cohort studies. Int. J. Cardiol. 2009, 137, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Satija, A.; Bhupathiraju, S.N.; Hu, Y.; Sun, Q.; Han, J.; Lopez-Garcia, E.; Willett, W.; van Dam, R.M.; Hu, F.B. Association of Coffee Consumption with Total and Cause-Specific Mortality in Three Large Prospective Cohorts. Circulation 2015, 132, 2305–2315. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Bhupathiraju, S.N.; Satija, A.; van Dam, RM.; Hu, F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 2014, 129, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Tresserra-Rimbau, A.; Estruch, R.; Martínez-González, M.; Medina-Remón, A.; Castañer, O.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.M. Effects of Polyphenol, Measured by a Biomarker of Total Polyphenols in Urine, on Cardiovascular Risk Factors After a Long-Term Follow-Up in the PREDIMED Study. Oxid. Med. Cell. Longev. 2016. [Google Scholar] [CrossRef] [PubMed]
- Kempf, K.; Herder, C.; Erlund, I.; Kolb, H.; Martin, S.; Carstensen, M.; Koenig, W.; Sundvall, J.; Bidel, S.; Kuha, S.; et al. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: A clinical trial. Am. J. Clin. Nutr. 2010, 91, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Natella, F.; Nardini, M.; Giannetti, I.; Dattilo, C.; Scaccini, C. Coffee drinking influences plasma antioxidant capacity in humans. J. Agric. Food Chem. 2002, 50, 6211–6216. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Palomo, I. Mechanisms of endothelial cell protection by hydroxycinnamic acids. Vasc. Pharmacol. 2014, 63, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Sciacca, S.; Pajak, A.; Martínez-González, M.A.; Giovannucci, E.L.; Galvano, F. Coffee consumption and risk of all-cause, cardiovascular, and cancer mortality in smokers and non-smokers: A dose-response meta-analysis. Eur. J. Epidemiol. 2016, 31, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Guenther, P.M.; DeMaio, T.J.; Ingwersen, L.A.; Berline, M. The multiple-pass approach for the 24 h recall in the Continuing Survey of Food Intakes by Individuals (CSFII) 1994 ± 1996. In Proceedings of the International Conference on Dietary Assessment Methods, Boston, MA, USA, January 1995.
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [PubMed]
- Harttig, U.; Haubrock, J.; Knueppel, S.; Boeing, H.; Consortium EFCOVAL. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65, S87–S91. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A. Phenol-Explorer: Database on Polyphenol Content in Foods. Available online: http://phenol-explorer.eu/ (accessed on 28 September 2015).
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: An application of the Phenol-Explorer database. J. Agric. Food Chem. 2010, 58, 4959–4969. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.M.; Steluti, J.; Fisberg, R.M.; Marchioni, D.M. Dietary intake and food contributors of polyphenols in adults and elderly adults of Sao Paulo: A population-based study. Br. J. Nutr. 2016, 115, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- The IPAQ Group. International Physical Activity Questionnaire. Available online: http://www.ipaq.ki.se (accessed on 12 October 2016).
- World Health Organization (WHO). Physical Status: The Use E Interpretation of Anthropometry; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- Sociedade Brasileira de Cardiologia; Sociedade Brasileira de Hipertensão; Sociedade Brasileira de Nefrologia. V Diretrizes brasileiras de hipertensão arterial. Arq. Bras. Cardiol. 2007, 89, e24–e79. [Google Scholar]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr. The Seventh Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. The JNC 7 Report. JAMA 2003, 289, 2560–2571. [Google Scholar] [CrossRef] [PubMed]
- Expert Dyslipidemia Panel of the International Atherosclerosis Society. An International Atherosclerosis Society Position Paper: Global recommendations for the management of dyslipidemia-full report. J. Clin. Lipidol. 2014, 8, 29–60. [Google Scholar]
- Refsum, H.; Smith, A.D.; Ueland, P.M.; Nexo, E.; Clarke, R.; McPartlin, J.; Johnston, C.; Engbaek, F.; Schneede, J.; McPartlin, C.; et al. Facts and recommendations about total homocysteine determinations: An expert opinion. Clin. Chem. 2004, 50, 3–32. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.S.; Sultan, M.T. Coffee and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2011, 51, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sui, X.; Lavie, C.J.; Hebert, J.R.; Earnest, C.P.; Zhang, J.; Blair, S.N. Association of coffee consumption with all-cause and cardiovascular disease mortality. Mayo Clin. Proc. 2013, 88, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Grioni, S.; Agnoli, C.; Sieri, S.; Pala, V.; Ricceri, F.; Masala, G.; Saieva, C.; Panico, S.; Mattiello, A.; Chiodini, P.; et al. Espresso coffee consumption and risk of coronary heart disease in a large Italian Cohort. PLoS ONE 2015, 10, e0126550. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Pischon, T.; Bergmann, M.M.; Teucher, B.; Kaaks, R.; Boeing, H. Coffee consumption and risk of chronic disease in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Germany study. Am. J. Clin. Nutr. 2012, 95, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gracia, E.; Van Dam, R.M.; Willett, W.C.; Rimm, E.B.; Manson, J.E.; Stampfer, M.J.; Rexrode, K.M.; Hu, F.B. Coffee consumption and coronary heart disease in men and women. Circulation 2006, 113, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Riksen, N.P.; Rongen, G.A.; Smits, P. Acute and long-term cardiovascular effects of coffee: Implications for coronary heart disease. Pharmacol. Ther. 2009, 121, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Echeverri, D.; Montes, F.R.; Cabrera, M.; Galán, A.; Prieto, A. Caffeine’s vascular mechanisms of action. Int. J. Vasc. Med. 2010, 2010, 834060. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Pluchinotta, F.R.; Marventano, S.; Buscemi, S.; Li Volti, G.; Galvano, F.; Grosso, G. Coffee components and cardiovascular risk: Beneficial and detrimental effects. Int. J. Food Sci. Nutr. 2014, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ranheim, T.; Halvorsen, B. Coffee consumption and human health-beneficial or detrimental?-Mechanisms for effects of coffee consumption on different risk factors for cardiovascular disease and type 2 diabetes mellitus. Mol. Nutr. Food Res. 2005, 49, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens. Res. 2012, 35, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, A.; Bondonno, C.P.; Liu, A.H.; Considine, M.J.; Rich, L.; Mas, E.; Croft, K.D.; Hodgson, J.M. Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: A randomized trial. J. Agric. Food Chem. 2012, 60, 9130–9136. [Google Scholar] [CrossRef] [PubMed]
- De Bree, A.; Verschuren, W.M.; Blom, H.J.; Kromhout, D. Lifestyle factors and plasma homocysteine concentrations in a general population sample. Am. J. Epidemiol. 2001, 154, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Grubben, M.J.; Boers, G.H.; Blom, H.J.; Broekhuizen, R.; de Jong, R.; van Rijt, L.; de Ruijter, E.; Swinkels, D.W.; Nagengast, F.M.; Katan, M.B. Unfiltered coffee increases plasma homocysteine concentrations in healthy volunteers: A randomized trial. Am. J. Clin. Nutr. 2000, 71, 480–484. [Google Scholar] [PubMed]
- Urgert, R.A.; van Vliet, T.; Zock, P.L.; Katan, M.B. Heavy coffee consumption and plasma homocysteine: A randomized controlled trial in healthy volunteers. Am. J. Clin. Nutr. 2000, 72, 1107–1110. [Google Scholar] [PubMed]
- Olthof, M.R.; Hollman, P.C.; Zock, P.L.; Katan, M.B. Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases total homocysteine concentrations in humans. Am. J. Clin. Nutr. 2001, 73, 532–538. [Google Scholar] [PubMed]
- Esposito, F.; Morisco, F.; Verde, V.; Ritieni, A.; Alezio, A.; Caporaso, N.; Fogliano, V. Moderate coffee consumption increases plasma glutathione but not homocysteine in healthy subjects. Aliment. Pharmacol. Ther. 2003, 17, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Saw, S.M.; Yuan, J.M.; Ong, C.N.; Arakawa, K.; Lee, H.P.; Coetzee, G.A.; Yu, M.C. Genetic, dietary and other lifestyle determinants of plasma homocysteine concentrations in middle-aged and older Chinese men and women in Singapore. Am. J. Clin. Nutr. 2001, 73, 232–239. [Google Scholar] [PubMed]
- Mursu, J.; Voutilainen, S.; Nurmi, T.; Alfthan, G.; Virtanen, J.K.; Rissanen, T.H.; Happonen, P.; Nyyssönen, K.; Kaikkonen, J.; Salonen, R.; et al. The effects of coffee consumption on lipid peroxidation and plasma total homocysteine concentrations: A clinical trial. Free Radic. Biol. Med. 2005, 38, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, T.A.; Rogero, M.M.; Mioto, B.M.; Tarasoutchi, D.; Tuda, V.L.; César, L.A.; Torres, E.A. Paper-filtered coffee increases cholesterol and inflammation biomarkers independent of roasting degree: A clinical trial. Nutrition 2013, 29, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.P.; Feng, J.; Sun, K.; Liu, Y.Y.; Wei, X.H.; Fan, J.Y.; Huang, P.; Mao, X.-W.; Zhou, Z.; Wang, C.-S.; et al. Caffeic acid inhibits acute hyperhomocysteinemia-induced leukocyte rolling and adhesion in mouse cerebral venules. Microcirculation 2012, 19, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Moon, M.K.; Lee, Y.J.; Kim, J.S.; Kang, D.G.; Lee, H.S. Effect of caffeic acid on tumor necrosis factor-alpha-induced vascular inflammation in human umbilical vein endothelial cells. Biol. Pharm. Bull. 2009, 32, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Ma, D.; Zhang, Y.; Liu, Z.; Wang, P. The effect of coffee consumption on serum lipids: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2012, 66, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Rebello, S.A.; van Dam, R.M. Coffee consumption and cardiovascular health: Getting to the heart of the matter. Curr. Cardiol. Rep. 2013, 15, 403. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Coffee Consumption, Cups per Day | p-Value a | |||
---|---|---|---|---|---|
<1 | 1–3 | ≥3 | Total | ||
No. of subjects | 193 | 185 | 179 | 557 | |
Sociodemographic | |||||
Age (years), median (IQR) | 40 (29.0, 53.0) | 44 (33.0, 57.0) | 47 (36.0, 57.0) | 61 (44.0, 70.5) | 0.013 1 |
Sex, n (%) | |||||
Male | 64 (40.9) | 71 (50.2) | 71 (47.0) | 206 (45.8) | 0.360 2 |
Female | 129 (59.1) | 114 (49.8) | 108 (53.0) | 351 (54.2) | |
Race, n (%) | |||||
White | 120 (63.0) | 109 (58.1) | 117 (62.1) | 346 (61.1) | 0.918 2 |
Black | 14 (5.8) | 18 (6.5) | 9 (6.4) | 41 (6.2) | |
Others | 59 (31.2) | 58 (35.4) | 53 (31.5) | 170 (32.7) | |
Household per capita income, n (%) | |||||
<1 MW | 80 (34.6) | 83 (37.5) | 68 (38.3) | 231 (36.7) | 0.851 2 |
≥1 MW | 113 (65.4) | 102 (62.5) | 111 (61.7) | 326 (63.3) | |
Physical activity level, n (%) | |||||
Low | 157 (74.1) | 161 (80.5) | 152 (79.2) | 470 (77.7) | 0.608 2 |
Moderate/High | 36 (25.9) | 23 (19.5) | 27 (20.8) | 86 (22.3) | |
Smoking status, n (%) | |||||
Non-smoker | 114 (65.6) | 96 (56.1) | 97 (52.1) | 307 (58.4) | 0.034 2 |
Smoker | 79 (34.4) | 82 (43.9) | 89 (47.9) | 250 (41.6) | |
Body Mass Index (kg/m2), median (IQR) | 25.2 (23.2, 29.1) | 24.9 (22.7, 28.6) | 26.7 (23.7, 30.8) | 26.5 (23.6, 30.5) | 0.307 1 |
Biochemical | |||||
SBP (mm Hg), n (%) | |||||
Normal | 133 (80.1) | 130 (87.2) | 119 (77.3) | 382 (81.5) | 0.089 2 |
Elevated | 60 (19.9) | 55 (12.8) | 60 (22.7) | 175 (18.5) | |
DBP (mm Hg), n (%) | |||||
Normal | 163 (85.3) | 168 (91.5) | 144 (81.8) | 465 (86.2) | 0.045 2 |
Elevated | 30 (14.7) | 27 (8.5) | 35 (18.2) | 92 (13.8) | |
FPG (mg/dL), n (%) | |||||
Normal | 167 (90.9) | 154 (86.0) | 158 (92.5) | 479 (89.8) | 0.177 2 |
Elevated | 26 (9.1) | 31 (14.0) | 21 (7.4) | 78 (10.2) | |
TC (mg/dL), n (%) | |||||
Normal | 118 (69.0) | 98 (58.7) | 88 (54.0) | 304 (61.1) | 0.061 2 |
Elevated | 75 (31.0) | 87 (41.3) | 91 (46.0) | 253 (38.9) | |
LDL-c (mg/dL), n (%) | |||||
Normal | 63 (36.2) | 46 (26.6) | 31 (20.5) | 140 (28.2) | 0.098 2 |
Elevated | 130 (63.8) | 139 (73.4) | 148 (79.5) | 417 (71.8) | |
HDL-c (mg/dL), n (%) | |||||
Normal | 150 (68.7) | 133 (61.1) | 129 (61.2) | 412 (64.0) | 0.466 2 |
Elevated | 43 (31.3) | 52 (38.9) | 50 (38.8) | 145 (36.0) | |
TG (mg/dL), n (%) | |||||
Normal | 135 (74.2) | 123 (69.5) | 116 (66.8) | 374 (70.4) | 0.565 2 |
Elevated | 58 (25.8) | 62 (30.5) | 63 (33.2) | 183 (29.6) | |
Homocysteine (µmol/L) | |||||
Normal | 163 (88.0) | 162 (93.4) | 156 (89.9) | 481 (90.3) | 0.350 2 |
Elevated | 30 (12.0) | 23 (6.6) | 23 (10.1) | 76 (9.7) | |
Dietetic | |||||
Coffee polyphenol intake (mg/day), median (IQR) | 66.6 (0, 147.4) | 261.6 (225.3, 297.3) | 408.4 (351.8, 546.1) | 247.0 (145.9, 346.7) | <0.001 1 |
Caffeine intake (mg/day), median (IQR) | 44.7 (24.0, 67.1) | 91.3 (80.2, 100.6) | 147.3 (117.3, 173.3) | 92.4 (60.8, 125.2) | <0.001 1 |
Alcohol intake (g/day), median (IQR) | 0.1 (0.0, 1.2) | 0.2 (0.0, 2.3) | 0.3 (0.0, 3.2) | 0.2 (0.0, 2.1) | 0.412 1 |
Sodium intake (mg/day), median (IQR) | 2986.1 (2526.5, 3848.9) | 3260.0 (2563.4, 3895.6) | 3015.9 (2567.4, 3677.5) | 2863.4 (2342.0, 3472.7) | 0.995 1 |
Total energy intake (kcal/day), median (IQR) | 1679.4 (1354.4, 2013.8) | 1712.8 (1382.3, 2152.6) | 1671.1 (1361.8, 2010.2) | 1543.9 (1243.8, 1887.9) | 0.615 1 |
Cardiovascular Risk Factors | Coffee Consumption, cups per Day | ||
---|---|---|---|
<1 | 1–3 | ≥3 | |
Elevated SBP (≥140 mm Hg) | |||
OR crude (unadjusted) | 1.00 | 0.58 (0.33, 1.05) | 1.17 (0.63, 2.21) |
OR adjusted 1 | 1.00 | 0.45 (0.26, 0.78) | 0.81 (0.41, 1.61) |
Elevated DBP (≥90 mm Hg) | |||
OR crude (unadjusted) | 1.00 | 0.54 (0.24, 1.22) | 1.30 (0.66, 2.54) |
OR adjusted 1 | 1.00 | 0.44 (0.20, 0.98) | 0.89 (0.45, 1.75) |
Increased FPG (≥100 mg/dL) | |||
OR crude (unadjusted) | 1.00 | 1.64 (0.82, 3.24) | 0.81 (0.34, 1.92) |
OR adjusted 2 | 1.00 | 1.39 (0.60, 3.23) | 0.72 (0.22, 2.26) |
Increased TC (≥200 mg/dL) | |||
OR crude (unadjusted) | 1.00 | 1.57 (0.86, 2.85) | 1.89 (1.22, 2.93) |
OR adjusted 3 | 1.00 | 1.46 (0.76, 2.80) | 1.45 (0.94, 2.22) |
Increased LDL-c (>100 mg/dL) | |||
OR crude (unadjusted) | 1.00 | 1.56 (0.76, 3.20) | 2.20 (1.12, 4.32) |
OR adjusted 3 | 1.00 | 1.46 (0.68, 3.12) | 2.07 (0.92, 4.67) |
Reduced HDL-c (<40 mg/dL men; <50 mg/dL women) | |||
OR crude (unadjusted) | 1.00 | 1.40 (0.77, 2.54) | 1.39 (0.75, 2.59) |
OR adjusted 3 | 1.67 (0.87, 3.20) | 1.77 (0.80, 3.94) | |
Increased TG (≥150 mg/dL) | |||
OR crude (unadjusted) | 1.00 | 1.26 (0.59, 2.71) | 1.43 (0.73, 2.80) |
OR adjusted 3 | 1.00 | 1.26 (0.59, 2.63) | 1.35 (0.61, 2.98) |
Increased Homocysteine (>12 µmol/L adults; >16 µmol/L older adults) | |||
OR crude (unadjusted) | 1.00 | 0.52 (0.16, 1.43) | 0.82 (0.35, 1.94) |
OR adjusted 4 | 1.00 | 0.32 (0.11, 0.93) | 0.43 (0.19, 1.01) |
Cardiovascular Risk Factors | Polyphenol Intake from Coffee, mg per Day a | ||
---|---|---|---|
<101 | 101–337 | ≥337 | |
Elevated SBP (≥140 mm Hg) | |||
OR crude (unadjusted) | 1.00 | 0.55 (0.30, 1.02) | 0.94 (0.52, 1.73) |
OR adjusted 1 | 1.00 | 0.46 (0.24, 0.87) | 0.72 (0.35,1.45) |
Elevated DBP (≥90 mm Hg) | |||
OR crude (unadjusted) | 1.00 | 0.52 (0.26, 1.06) | 0.86 (0.45, 1.65) |
OR adjusted 1 | 1.00 | 0.51 (0.26, 0.98) | 0.70 (0.39, 1.27) |
Increased FPG (≥100 mg/dL) | |||
OR crude (unadjusted) | 1.00 | 1.77 (0.97, 3.23) | 0.66 (0.28, 1.58) |
OR adjusted 2 | 1.00 | 1.98 (0.87, 4.54) | 0.71 (0.23, 2.20) |
Increased TC (≥200 mg/dL) | |||
OR crude (unadjusted) | 1.00 | 0.96 (0.54, 1.72) | 1.35 (0.92, 1.98) |
OR adjusted 3 | 1.00 | 0.83 (0.44, 1.57) | 1.07 (0.71, 1.59) |
Increased LDL-c (>100 mg/dL) | |||
OR crude (unadjusted) | 1.00 | 1.05 (0.49, 2.25) | 1.80 (0.86, 3.75) |
OR adjusted 3 | 1.00 | 0.99 (0.45, 2.17) | 1.67 (0.70, 4.03) |
Reduced HDL-c (<40 mg/dL men; <50 mg/dL women) | |||
OR crude (unadjusted) | 1.00 | 1.31 (0.78, 2.18) | 1.31 (0.74, 2.31) |
OR adjusted 3 | 1.00 | 1.27 (0.70, 2.31) | 1.51 (0.74, 3.07) |
Increased TG (≥150 mg/dL) | |||
OR crude (unadjusted) | 1.00 | 0.87 (0.45, 1.71) | 1.00 (0.52, 1.92) |
OR adjusted 3 | 1.00 | 0.72 (0.36, 1.45) | 0.86 (0.41, 1.78) |
Increased Homocysteine (>12 µmol/L adults; >16 µmol/L older adults) | |||
OR crude (unadjusted) | 1.00 | 0.52 (0.18, 1.51) | 0.84 (0.40,1.81) |
OR adjusted 4 | 1.00 | 0.29 (0.11, 0.78) | 0.59 (0.31, 1.11) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, A.M.; Steluti, J.; Fisberg, R.M.; Marchioni, D.M. Association between Coffee Consumption and Its Polyphenols with Cardiovascular Risk Factors: A Population-Based Study. Nutrients 2017, 9, 276. https://doi.org/10.3390/nu9030276
Miranda AM, Steluti J, Fisberg RM, Marchioni DM. Association between Coffee Consumption and Its Polyphenols with Cardiovascular Risk Factors: A Population-Based Study. Nutrients. 2017; 9(3):276. https://doi.org/10.3390/nu9030276
Chicago/Turabian StyleMiranda, Andreia Machado, Josiane Steluti, Regina Mara Fisberg, and Dirce Maria Marchioni. 2017. "Association between Coffee Consumption and Its Polyphenols with Cardiovascular Risk Factors: A Population-Based Study" Nutrients 9, no. 3: 276. https://doi.org/10.3390/nu9030276
APA StyleMiranda, A. M., Steluti, J., Fisberg, R. M., & Marchioni, D. M. (2017). Association between Coffee Consumption and Its Polyphenols with Cardiovascular Risk Factors: A Population-Based Study. Nutrients, 9(3), 276. https://doi.org/10.3390/nu9030276