Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement
Abstract
:1. Description and History of MSM
1.1. MSM Synthesis—The Sulfur Cycle
1.2. Absorption and Bioavailability
2. Mechanisms of Actions
2.1. Anti-Inflammation
2.2. Antioxidant/Free-Radical Scavenging
2.3. Immune Modulation
2.4. Sulfur Donor/Methylation
3. Common Uses
3.1. Arthritis and Inflammation
3.2. Cartilage Preservation
3.3. Improve Range of Motion and Physical Function
3.4. To Reduce Muscle Soreness Associated with Exercise
3.5. Reduce Oxidative Stress
3.6. Improve Seasonal Allergies
3.7. Improve Skin Quality and Texture
3.8. MSM and Cancer
4. Safety Profile
MSM and Alcohol
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ALDH | Aldehyde Dehydrogenase |
ALF | Aggregated Locomotor Function |
Bcl-2 | B-cell lymphoma 2 |
Bcl-XL | B-cell lymphoma-extra large |
BW | Body Weight |
CAM | Complementary and Alternative Medicine |
CAT | Catalase |
CO | Carbon Monoxide |
COX | Cyclooxygenase |
CRP | C-Reactive Protein |
DMS | Dimethyl Sulfide |
DMSO | Dimethyl Sulfoxide |
DMSP | Dimethylsulfoniopropionate |
DNA | Deoxyribose Nucleic Acid |
ECM | Extracellular Matrix |
EDTA | Ethylenediaminetetraacetic acid |
GCL | Glutamate-Cysteine Ligase |
GCM | Glucosamine, Chondroitin Sulfate, and Methylsulfonylmethane |
GPx | Glutathione Peroxidase |
GRAS | Generally Recognized As Safe |
GSH | Reduced Glutathione |
GSSG | Oxidized Glutathione |
GST | Glutathione S-Transferase |
H2O2 | Hydrogen Peroxide |
HIF-1α | Hypoxia Inducible Factor-1α |
HIV-1 Tat | Human Immunodeficiency Virus Type 1 Transactivating regulatory protein |
HSP | Heat Shock Protein |
IGF-1 | Insulin-like Growth Factor-1 |
IGF-1R | Insulin-like Growth Factor-1 Receptor |
IL | Interleukin |
iNOS | Inducible Nitric Oxide Synthase |
Jak | Janus Kinase |
LD50 | Lethal Dose |
LPS | Lipopolysaccharide |
MDA | Malondialdehyde |
MPO | Myeloperoxidase |
MSM | Methylsulfonylmethane |
NADPH2 | Reduced Nicotinamide-Adenine Dinucleotide Phosphate |
NF-κB | Nuclear Factor Kappa-light-chain-enhancer of activated B cells |
NHANES | National Health and Nutritional Examination Survey |
NHIS | National Health Interview Surveys |
NLRP3 | Nucleotide-binding domain, Leucine-Rich repeat family Pyrin domain containing 3 |
NO | Nitric Oxide |
NO3 | Nitrate |
NOAEL | No Observed Adverse Effect Level |
Nrf2 | Nuclear factor (erythroid-derived 2)-like 2 |
O2 | Molecular Oxygen |
O2- | Superoxide Radical |
OA | Osteoarthritis |
OH | Hydroxyl Radical |
ppm | Parts per million |
Prdx | Peroxiredoxin |
ROS | Reactive Oxygen Species |
SF36 | 36-Item Short Form Survey |
SOD | Superoxide Dismutase |
STAT | Signal Transducers and Activators of Transcription |
TEAC | Trolox Equivalent Antioxidant Capacity |
TNF-α | Tumor Necrosis Factor-alpha |
UV | Ultraviolet |
VAS | Visual Analogue Scale |
VEGF | Vascular Endothelial Growth Factor |
WOMAC | Western Ontario and McMaster Universities Arthritis Index |
References
- Bertken, R. Crystalline dmso: DMSO2. Arthritis Rheum. 1983, 26, 693–694. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.; Murray, J.S.; Lane, P.; Politzer, P. Why are dimethyl sulfoxide and dimethyl sulfone such good solvents? J. Mol. Model. 2008, 14, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Brayton, C.F. Dimethyl sulfoxide (DMSO): A review. Cornell Vet. 1986, 76, 61–90. [Google Scholar] [PubMed]
- Williams, K.I.; Burstein, S.H.; Layne, D.S. Metabolism of dimethyl sulfide, dimethyl sulfoxide, and dimethyl sulfone in the rabbit. Arch. Biochem. Biophys. 1966, 117, 84–87. [Google Scholar] [CrossRef]
- Williams, K.I.; Whittemore, K.S.; Mellin, T.N.; Layne, D.S. Oxidation of dimethyl sulfoxide to dimethyl sulfone in the rabbit. Science 1965, 149, 203–204. [Google Scholar] [CrossRef] [PubMed]
- Kocsis, J.J.; Harkaway, S.; Snyder, R. Biological effects of the metabolites of dimethyl sulfoxide. Ann. N. Y. Acad. Sci. 1975, 243, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.W.; Appleton, J. Msm-the Definitive Guide: A Comprehensive Review of the Science and Therapeutics of Methylsulfonylmethane; Freedom Press: Topanga, CA, USA, 2003. [Google Scholar]
- Herschler, R.J. Methylsulfonylmethane and Methods of Use. U.S. Patent 4,296,130, 30 August 1979. [Google Scholar]
- Herschler, R.J. Use of Methylsulfonylmethane to Enhance Diet of an Animal. U.S. Patent 5,071,878, 6 February 1991. [Google Scholar]
- Herschler, R.J. Use of Methylsulfonylmethane to Relieve Pain and Relieve Pain and Nocturnal Cramps and to Reduce Stress-Induced Deaths in Animals. U.S. Patent 4,973,605, 26 July 1989. [Google Scholar]
- Herschler, R.J. Use of Methylsulfonylmethane to Treat Parasitic Infections. U.S. Patent 4,914,135, 26 July 1989. [Google Scholar]
- Herschler, R.J. Dietary Products and Uses Comprising Methylsulfonylmethane. U.S. Patent 4,863,748, 26 June 1986. [Google Scholar]
- Herschler, R.J. Methylsulfonylmethane in Dietary Products. U.S. Patent 4,616,039, 29 April 1985. [Google Scholar]
- Herschler, R.J. Solid Pharmaceutical Compositions Comprising MSM and their Production. U.S. Patent 4,568,547, 28 February 1984. [Google Scholar]
- Herschler, R.J. Dietary and Pharmaceutical Uses of Methylsulfonylmethane and Compositions Comprising It. U.S. Patent 4,514,421, 14 September 1982. [Google Scholar]
- Herschler, R.J. Preparations Containing Methylsulfonylmethane and Methods of Use and Purification. U.S. Patent 4,477,469, 26 June 1981. [Google Scholar]
- Robb-Nicholson, C. By the way, doctor. Is msm as good as it sounds? Can you tell me anything about the dietary supplement msm? I’ve heard it’s supposed to relieve arthritis pain. Harv. Womens Health Watch 2002, 9, 8. [Google Scholar] [PubMed]
- Debbi, E.M.; Agar, G.; Fichman, G.; Ziv, Y.B.; Kardosh, R.; Halperin, N.; Elbaz, A.; Beer, Y.; Debi, R. Efficacy of methylsulfonylmethane supplementation on osteoarthritis of the knee: A randomized controlled study. BMC Complement. Altern. Med. 2011, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.S.; Axelrod, L.J.; Howard, P.; Buratovich, N.; Waters, R.F. Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: A pilot clinical trial. Osteoarthr. Cartil. 2006, 14, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Lopez, H.L. Nutritional interventions to prevent and treat osteoarthritis. Part II: Focus on micronutrients and supportive nutraceuticals. PM R 2012, 4, S155–S168. [Google Scholar] [CrossRef] [PubMed]
- Childs, S.J. Dimethyl sulfone (DMSO2) in the treatment of interstitial cystitis. Urol. Clin. N. Am. 1994, 21, 85–88. [Google Scholar]
- Barrager, E.; Schauss, A.G. Methylsulfonylmethane as a treatment for seasonal allergic rhinitis: Additional data on pollen counts and symptom questionnaire. J. Altern. Complement. Med. 2003, 9, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Barrager, E.; Veltmann, J.R.J.; Schauss, A.G.; Schiller, R.N. A multicentered, open-label trial on the safety and efficacy of methylsulfonylmethane in the treatment of seasonal allergic rhinitis. J. Altern. Complement. Med. 2002, 8, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Van der Merwe, M.; Bloomer, R.J. The influence of methylsulfonylmethane on inflammation-associated cytokine release before and following strenuous exercise. J. Sports Med. 2016, 2016, 7498359. [Google Scholar] [CrossRef] [PubMed]
- Borzelleca, J.F.; Sipes, I.G.; Wallace, K.B. Dossier in Support of the Generally Recognized as Safe (GRAS) Status of Optimsm (Methylsulfonylmethane; MSM) as a Food Ingredient; Food and Drug Administration: Vero Beach, FL, USA, 2007. [Google Scholar]
- Clarke, T.C.; Black, L.I.; Stussman, B.J.; Barnes, P.M.; Nahin, R.L. Trends in the use of complementary health approaches among adults: United states, 2002–2012. Natl. Health Stat. Rep. 2015, 79, 1–16. [Google Scholar]
- Kantor, E.D.; Lampe, J.W.; Vaughan, T.L.; Peters, U.; Rehm, C.D.; White, E. Association between use of specialty dietary supplements and c-reactive protein concentrations. Am. J. Epidemiol. 2012, 176, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Wall, G.C.; Krypel, L.L.; Miller, M.J.; Rees, D.M. A pilot study of complementary and alternative medicine use in patients with fibromyalgia syndrome. Pharm. Pract. 2007, 5, 185–190. [Google Scholar] [CrossRef]
- Sievert, S.M.; Kiene, R.P.; Schultz-Vogt, H.N. The sulfur cycle. In Oceanography; Oceanography Society: Rockville, MD, USA, 2007; Volume 20, pp. 117–123. [Google Scholar]
- Bentley, R.; Chasteen, T.G. Environmental voscs––Formation and degradation of dimethyl sulfide, methanethiol and related materials. Chemosphere 2004, 55, 291–317. [Google Scholar] [CrossRef] [PubMed]
- Boucher, O.; Moulin, C.; Belviso, S.; Aumont, O.; Bopp, L.; Cosme, E.; Kuhlmann, R.V.; Lawrence, M.G.; Pham, M.; Reddy, M.S. Dms atmospheric concentrations and sulphate aerosol indirect radiative forcing: A sensitivity study to the dms source representation and oxidation. Atmos. Chem. Phys. 2003, 3, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, S.; Kjaergaard, H.G. Effect of hydration on the hydrogen abstraction reaction by ho in dms and its oxidation products. J. Phys. Chem. A 2010, 114, 4857–4863. [Google Scholar] [CrossRef] [PubMed]
- Kastner, J.R.; Buquoi, Q.; Ganagavaram, R.; Das, K.C. Catalytic ozonation of gaseous reduced sulfur compounds using wood fly ash. Environ. Sci. Technol. 2005, 39, 1835–1842. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Chen, J.; Yang, X. Potential particulate pollution derived from uv-induced degradation of odorous dimethyl sulfide. J. Environ. Sci. 2011, 23, 51–59. [Google Scholar] [CrossRef]
- Ramírez-Anguita, J.M.; González-Lafont, À.; Lluch, J.M. Formation pathways of DMSO2 in the addition channel of the oh-initiated dms oxidation: A theoretical study. J. Comput. Chem. 2009, 30, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Watts, S.F.; Watson, A.; Brimblecombe, P. Measurements of the aerosol concentrations of methanesulphonic acid, dimethyl sulphoxide and dimethyl sulphone in the marine atmosphere of the british isles. Atmos. Environ. (1967–1989) 1987, 21, 2667–2672. [Google Scholar] [CrossRef]
- Charlson, R.J.; Lovelock, J.E.; Andreae, M.O.; Warren, S.G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655–661. [Google Scholar] [CrossRef]
- Lee, P.A.; de Mora, S.J.; Levasseur, M. A review of dimethylsulfoxide in aquatic environments. Atmos.-Ocean 1999, 37, 439–456. [Google Scholar] [CrossRef]
- Harvey, G.R.; Lang, R.F. Dimethylsulfoxide and dimethylsulfone in the marine atmosphere. Geophys. Res. Lett. 1986, 13, 49–51. [Google Scholar] [CrossRef]
- Smale, B.C.; Lasater, N.J.; Hunter, B.T. Fate and metabolism of dimethyl sulfoxide in agricultural crops. Ann. N. Y. Acad. Sci. 1975, 243, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Endoh, T.; Habe, H.; Nojiri, H.; Yamane, H.; Omori, T. The sigma54-dependent transcriptional activator sfnr regulates the expression of the pseudomonas putida sfnfg operon responsible for dimethyl sulphone utilization. Mol. Microbiol. 2005, 55, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Endoh, T.; Habe, H.; Yoshida, T.; Nojiri, H.; Omori, T. A cysb-regulated and sigma54-dependent regulator, sfnr, is essential for dimethyl sulfone metabolism of pseudomonas putida strain ds1. Microbiology 2003, 149, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Endoh, T.; Kasuga, K.; Horinouchi, M.; Yoshida, T.; Habe, H.; Nojiri, H.; Omori, T. Characterization and identification of genes essential for dimethyl sulfide utilization in pseudomonas putida strain ds1. Appl. Microbiol. Biotechnol. 2003, 62, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Habe, H.; Kouzuma, A.; Endoh, T.; Omori, T.; Yamane, H.; Nojiri, H. Transcriptional regulation of the sulfate-starvation-induced gene sfna by a sigma54-dependent activator of pseudomonas putida. Microbiology 2007, 153, 3091–3098. [Google Scholar] [CrossRef] [PubMed]
- Kouzuma, A.; Endoh, T.; Omori, T.; Nojiri, H.; Yamane, H.; Habe, H. The ptsp gene encoding the pts family protein ei(Ntr) is essential for dimethyl sulfone utilization by pseudomonas putida. FEMS Microbiol. Lett. 2007, 275, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Kouzuma, A.; Endoh, T.; Omori, T.; Nojiri, H.; Yamane, H.; Habe, H. Transcription factors cysb and sfnr constitute the hierarchical regulatory system for the sulfate starvation response in pseudomonas putida. J. Bacteriol. 2008, 190, 4521–4531. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.W.; Dawson, H.J.; Lackey, H.B. Naturally occurring levels of dimethyl sulfoxide in selected fruits, vegetables, grains, and beverages. J. Agric. Food Chem. 1981, 29, 1089–1091. [Google Scholar] [CrossRef] [PubMed]
- Winning, H.; Roldan-Marin, E.; Dragsted, L.O.; Viereck, N.; Poulsen, M.; Sanchez-Moreno, C.; Cano, M.P.; Engelsen, S.B. An exploratory nmr nutri-metabonomic investigation reveals dimethyl sulfone as a dietary biomarker for onion intake. Analyst 2009, 134, 2344–2351. [Google Scholar] [CrossRef] [PubMed]
- Moazzami, A.A.; Zhang, J.X.; Kamal-Eldin, A.; Aman, P.; Hallmans, G.; Johansson, J.E.; Andersson, S.O. Nuclear magnetic resonance-based metabolomics enable detection of the effects of a whole grain rye and rye bran diet on the metabolic profile of plasma in prostate cancer patients. J. Nutr. 2011, 141, 2126–2132. [Google Scholar] [CrossRef] [PubMed]
- Bennet, R.C.; Corder, W.C.; Finn, R.K. Miscellaneous seperation processes. In Chemical Engineers’ Handbook; Perry, R.H., Chilton, C.H., Eds.; McGraw-Hill Book Company: New York, NY, USA, 1973; Volume 5. [Google Scholar]
- Firn, R. Chapter 4: Are natural products different from synthetic chemicals? In Nature’s Chemicals: The Natural Products That Shaped Our World; Oxford University Press on Demand: Oxford, UK, 2010. [Google Scholar]
- Silva Ferreira, A.C.; Rodrigues, P.; Hogg, T.; Guedes de Pinho, P. Influence of some technological parameters on the formation of dimethyl sulfide, 2-mercaptoethanol, methionol, and dimethyl sulfone in port wines. J. Agric. Food Chem. 2003, 51, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, M.; Yamanishi, T. Formation of aroma components in roasted or pan-fired green tea by roasting or pan-firing treatment. Nippon Nogeikagaku Kaishi 1999, 73, 893–906. [Google Scholar] [CrossRef]
- Williams, K.I.; Burstein, S.H.; Layne, D.S. Dimethyl sulfone: Isolation from cows’ milk. Proc. Soc. Exp. Biol. Med. 1966, 122, 865–866. [Google Scholar] [CrossRef] [PubMed]
- Engelke, U.F.; Tangerman, A.; Willemsen, M.A.; Moskau, D.; Loss, S.; Mudd, S.H.; Wevers, R.A. Dimethyl sulfone in human cerebrospinal fluid and blood plasma confirmed by one-dimensional 1H and two-dimensional 1H-13C NMR. NMR Biomed. 2005, 18, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Gerhards, E.; Gibian, H. The metabolism of dimethyl sulfoxide and its metabolic effects in man and animals. Ann. N. Y. Acad. Sci. 1967, 141, 65–76. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Slupsky, C.M. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial–mammalian co-metabolism. J. Proteome Res. 2014, 13, 5281–5292. [Google Scholar] [CrossRef] [PubMed]
- Palmnäs, M.S.; Cowan, T.E.; Bomhof, M.R.; Su, J.; Reimer, R.A.; Vogel, H.J.; Hittel, D.S.; Shearer, J. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE 2014, 9, e109841. [Google Scholar] [CrossRef] [PubMed]
- Yde, C.C.; Bertram, H.C.; Theil, P.K.; Knudsen, K.E.B. Effects of high dietary fibre diets formulated from by-products from vegetable and agricultural industries on plasma metabolites in gestating sows. Arch. Anim. Nutr. 2011, 65, 460–476. [Google Scholar] [CrossRef] [PubMed]
- Simpson, H.; Campbell, B. Review article: Dietary fibre–microbiota interactions. Aliment. Pharmacol. Ther. 2015, 42, 158–179. [Google Scholar] [CrossRef] [PubMed]
- Cerdá, B.; Pérez, M.; Pérez-Santiago, J.D.; Tornero-Aguilera, J.F.; González-Soltero, R.; Larrosa, M. Gut microbiota modification: Another piece in the puzzle of the benefits of physical exercise in health? Front. Physiol. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.; Barros, A.N.S.; Domingues, M.R.R.M.; Goodfellow, B.J.; Galhano, E.L.; Pita, C.; Almeida, M.D.C.; Carreira, I.M.; Gil, A.M. Following healthy pregnancy by nmr metabolomics of plasma and correlation to urine. J. Proteome Res. 2015, 14, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, B.A.; Appleton, J.; Ames, G.B. Pharmacokinetics and distribution of 35S methylsulfonylmethane following oral administration to rats. J. Agric. Food Chem. 2007, 55, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, S.; Qian, W.; Ishihara, A.; Kabe, T. Elucidation of dimethylsulfone metabolism in rat using a 35S radioisotope tracer method. Nutr. Res. 2002, 22, 313–322. [Google Scholar] [CrossRef]
- Krieger, D.R.; Schwartz, H.I.; Feldman, R.; Pino, I.; Vanzant, A.; Kalman, D.S.; Feldman, S.; Acosta, A.; Pardo, P.; Pezzullo, J.C. A Pharmacokinetic Dose-Escalating Evaluation of MSM in Healthy Male Volunteers; Miami Research Associates: Miami, FL, USA, 2009; pp. 1–83. [Google Scholar]
- Layman, D.L.; Jacob, S.W. The absorption, metabolism and excretion of dimethyl sulfoxide by rhesus monkeys. Life Sci. 1985, 37, 2431–2437. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Zhang, J.-X. Urine-derived key volatiles may signal genetic relatedness in male rats. Chem. Senses 2010, 36, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Mattina, M.; Pignatello, J.; Swihart, R. Identification of volatile components of bobcat (lynx rufus) urine. J. Chem. Ecol. 1991, 17, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Burger, B.V.; Visser, R.; Moses, A.; Le Roux, M. Elemental sulfur identified in urine of cheetah, acinonyx jubatus. J. Chem. Ecol. 2006, 32, 1347–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apps, P.; Mmualefe, L.; McNutt, J.W. Identification of volatiles from the secretions and excretions of african wild dogs (lycaon pictus). J. Chem. Ecol. 2012, 38, 1450–1461. [Google Scholar] [CrossRef] [PubMed]
- Dawiskiba, T.; Deja, S.; Mulak, A.; Zabek, A.; Jawien, E.; Pawelka, D.; Banasik, M.; Mastalerz-Migas, A.; Balcerzak, W.; Kaliszewski, K. Serum and urine metabolomic fingerprinting in diagnostics of inflammatory bowel diseases. World J. Gastroenterol. 2014, 20, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, A.; Yamamoto, S.; Narai, R.; Nishida, M.; Yashiki, M.; Sakui, N.; Namera, A. Determination of dimethyl sulfoxide and dimethyl sulfone in urine by gas chromatography-mass spectrometry after preparation using 2, 2-dimethoxypropane. Biomed. Chromatogr. 2010, 24, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Coppa, M.; Martin, B.; Pradel, P.; Leotta, B.; Priolo, A.; Vasta, V. Effect of a hay-based diet or different upland grazing systems on milk volatile compounds. J. Agric. Food Chem. 2011, 59, 4947–4954. [Google Scholar] [CrossRef] [PubMed]
- Bakke, J.M.; Figenschou, E. Volatile compounds from the red deer (cervus elaphus) secretion from the tail gland. J. Chem. Ecol. 1983, 9, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Figueira, J.; Jonsson, P.; Adolfsson, A.N.; Adolfsson, R.; Nyberg, L.; Öhman, A. Nmr analysis of the human saliva metabolome distinguishes dementia patients from matched controls. Mol. BioSyst. 2016, 12, 2562–2571. [Google Scholar] [CrossRef] [PubMed]
- Cecil, K.M.; Lin, A.; Ross, B.D.; Egelhoff, J.C. Methylsulfonylmethane observed by in vivo proton magnetic resonance spectroscopy in a 5-year-old child with developmental disorder: Effects of dietary supplementation. J. Comput. Assist. Tomogr. 2002, 26, 818–820. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Nguy, C.H.; Shic, F.; Ross, B.D. Accumulation of methylsulfonylmethane in the human brain: Identification by multinuclear magnetic resonance spectroscopy. Toxicol. Lett. 2001, 123, 169–177. [Google Scholar] [CrossRef]
- Rogovin, J.L. Accumulation of methylsulfonylmethane in the human brain: Identification by multinuclear magnetic resonance spectroscopy. Toxicol. Lett. 2002, 129, 263–265. [Google Scholar] [CrossRef]
- Rosea, S.E.; Chalk, J.B.; Galloway, G.J.; Doddrell, D.M. Detection of dimethyl sulfone in the human brain by in vivo proton magnetic resonance spectroscopy. Magn. Reson. Imaging 2000, 18, 95–98. [Google Scholar] [CrossRef]
- Willemsen, M.A.; Engelke, U.F.; van der Graaf, M.; Wevers, R.A. Methylsulfonylmethane (MSM) ingestion causes a significant resonance in proton magnetic resonance spectra of brain and cerebrospinal fluid. Neuropediatrics 2006, 37, 312–314. [Google Scholar] [CrossRef] [PubMed]
- Waring, R.; Emery, P. The genetic origin of responses to drugs. Br. Med. Bull. 1995, 51, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Kistler, M.; Szymczak, W.; Fedrigo, M.; Fiamoncini, J.; Höllriegl, V.; Hoeschen, C.; Klingenspor, M.; de Angelis, M.H.; Rozman, J. Effects of diet-matrix on volatile organic compounds in breath in diet-induced obese mice. J. Breath Res. 2014, 8, 016004. [Google Scholar] [CrossRef] [PubMed]
- Martin, W. Natural Occurrence of DMSO and DMSO2 in the Human Organism; DMSO International DMSO Workshop, San Francisco, CA, 19 September 1987; Jacob, S.W., Kappel, J.E., Eds.; W. Zuckschwerdt Verlag: Germering, Germany; San Francisco, CA, USA, 1987; pp. 71–77. [Google Scholar]
- Bloomer, R.; Melcher, D.; Benjamin, R. Serum msm concentrations following one month of msm treatment in healthy men. Clin. Pharmacol. Biopharm. 2015, 4, 2. [Google Scholar] [CrossRef]
- Joung, Y.H.; Darvin, P.; Kang, D.Y.; Nipin, S.; Byun, H.J.; Lee, C.-H.; Lee, H.K.; Yang, Y.M. Methylsulfonylmethane inhibits RANKL-induced osteoclastogenesis in BMMs by suppressing NF-κB and STAT3 activities. PLoS ONE 2016, 11, e0159891. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, D.; Lim, H.; Baek, D.; Shin, H.; Kim, J. The anti-inflammatory effects of methylsulfonylmethane on lipopolysaccharide-induced inflammatory responses in murine macrophages. Biol. Pharm. Bull. 2009, 32, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Kloesch, B.; Liszt, M.; Broell, J.; Steiner, G. Dimethyl sulphoxide and dimethyl sulphone are potent inhibitors of IL-6 and IL-8 expression in the human chondrocyte cell line C-28/I2. Life Sci. 2011, 89, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Christian, F.; Smith, E.L.; Carmody, R.J. The regulation of nf-κb subunits by phosphorylation. Cells 2016, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold spring harb perspect biol 1: A001651. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Kim, J.; Lee, M.-J.; Kim, Y.J.; Cho, Y.-W.; Lee, G.-S. Methylsulfonylmethane inhibits NLRP3 inflammasome activation. Cytokine 2015, 71, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Amiel, D.; Theodosakis, J. The effect of distilled methylsulfonylmethane (msm) on human chondrocytes in vitro. Osteoarthr. Cartil. 2007, 15, C123. [Google Scholar] [CrossRef]
- Tousoulis, D.; Kampoli, A.-M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J. Nitric oxide: A regulator of mast cell activation and mast cell-mediated inflammation. Clin. Exp. Immunol. 2002, 129, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Abderrazak, A.; Syrovets, T.; Couchie, D.; El Hadri, K.; Friguet, B.; Simmet, T.; Rouis, M. NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015, 4, 296–307. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Hara, H.; Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 2016, 41, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.D.; Alvarez, L.A.; Zhang, X.; Soldati, T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015, 6, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Beilke, M.A.; Collins-Lech, C.; Sohnle, P.G. Effects of dimethyl sulfoxide on the oxidative function of human neutrophils. J. Lab. Clin. Med. 1987, 110, 91–96. [Google Scholar] [PubMed]
- Kastl, L.; Sauer, S.; Ruppert, T.; Beissbarth, T.; Becker, M.; Süss, D.; Krammer, P.; Gülow, K. TNF-α mediates mitochondrial uncoupling and enhances ros-dependent cell migration via NF-ĸB activation in liver cells. FEBS Lett. 2014, 588, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Joung, Y.H.; Na, Y.M.; Yoo, Y.B.; Darvin, P.; Sp, N.; Kang, D.Y.; Kim, S.Y.; Kim, H.S.; Choi, Y.H.; Lee, H.K. Combination of ag490, a jak2 inhibitor, and methylsulfonylmethane synergistically suppresses bladder tumor growth via the jak2/STAT3 pathway. Int. J. Oncol. 2014, 44, 883–895. [Google Scholar] [PubMed]
- Lim, E.J.; Hong, D.Y.; Park, J.H.; Joung, Y.H.; Darvin, P.; Kim, S.Y.; Na, Y.M.; Hwang, T.S.; Ye, S.-K.; Moon, E.-S. Methylsulfonylmethane suppresses breast cancer growth by down-regulating STAT3 and STAT5b pathways. PLoS ONE 2012, 7, e33361. [Google Scholar] [CrossRef] [PubMed]
- Nipin, S.; Darvin, P.; Yoo, Y.B.; Joung, Y.H.; Kang, D.Y.; Kim, D.N.; Hwang, T.S.; Kim, S.Y.; Kim, W.S.; Lee, H.K. The combination of methylsulfonylmethane and tamoxifen inhibits the jak2/STAT5b pathway and synergistically inhibits tumor growth and metastasis in er-positive breast cancer xenografts. BMC Cancer 2015, 15, 474. [Google Scholar]
- Dickson, B.J. The Role of NADPH Oxidase in ROS Mediated Differentiation. Mater’s Thesis, The University of Western Ontario, London, ON, Canada, August 2016. [Google Scholar]
- Höll, M.; Koziel, R.; Schäfer, G.; Pircher, H.; Pauck, A.; Hermann, M.; Klocker, H.; Jansen-Dürr, P.; Sampson, N. Ros signaling by nadph oxidase 5 modulates the proliferation and survival of prostate carcinoma cells. Mol. Carcinog. 2016, 55, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef] [PubMed]
- Manea, A.; Tanase, L.I.; Raicu, M.; Simionescu, M. Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Gross, A. BCL-2 family proteins as regulators of mitochondria metabolism. Biochim. Biophys. Acta 2016, 1857, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Karabay, A.Z.; Aktan, F.; Sunguroğlu, A.; Buyukbingol, Z. Methylsulfonylmethane modulates apoptosis of lps/ifn-γ-activated raw 264.7 macrophage-like cells by targeting p53, Bax, Bcl-2, cytochrome c and PARP proteins. Immunopharmacol. Immunotoxicol. 2014, 36, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xu, Y. P53, oxidative stress, and aging. Antioxid. Redox Signal. 2011, 15, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Smith, A.J.; Tan, J.; Shytle, R.D.; Giunta, B. Msm ameliorates HIV-1 tat induced neuronal oxidative stress via rebalance of the glutathione cycle. Am. J. Transl. Res. 2015, 7, 328. [Google Scholar] [PubMed]
- Zhang, H.; Davies, K.J.; Forman, H.J. Oxidative stress response and nrf2 signaling in aging. Free Radic. Biol. Med. 2015, 88, 314–336. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of NRF2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Grimble, R.F. The effects of sulfur amino acid intake on immune function in humans. J. Nutr. 2006, 136, 1660S–1665S. [Google Scholar] [PubMed]
- Parcell, S. Sulfur in human nutrition and applications in medicine. Altern. Med. Rev. 2002, 7, 22–44. [Google Scholar] [PubMed]
- Ramoutar, R.R.; Brumaghim, J.L. Antioxidant and anticancer properties and mechanisms of inorganic selenium, oxo-sulfur, and oxo-selenium compounds. Cell Biochem. Biophys. 2010, 58, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 2006, 8, S3. [Google Scholar] [CrossRef] [PubMed]
- Candussio, L.; Klugmann, F.; Decorti, G.; Bevilacqua, S.; Baldini, L. Dimethyl sulfoxide inhibits histamine release induced by various chemicals. Agents Actions 1987, 20, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Layman, D.L. Growth inhibitory effects of dimethyl sulfoxide and dimethyl sulfone on vascular smooth muscle and endothelial cells in vitro. In Vitro Cell. Dev. Biol. 1987, 23, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.S.; Layman, D.L. Dimethyl sulfoxide inhibition of prostacyclin production in cultured aortic endothelial cells. Ann. N. Y. Acad. Sci. 1983, 411, 318–320. [Google Scholar] [CrossRef] [PubMed]
- Jafari, N.; Bohlooli, S.; Mohammadi, S.; Mazani, M. Cytotoxicity of methylsulfonylmethane on gastrointestinal (AGS, HEPG2, and KEYSE-30) cancer cell lines. J. Gastrointest. Cancer 2012, 43, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Shin, H.-J.; Ha, H.-L.; Park, Y.-H.; Kwon, T.-H.; Jung, M.-R.; Moon, H.-B.; Cho, E.-S.; Son, H.-Y.; Yu, D.-Y. Methylsulfonylmethane suppresses hepatic tumor development through activation of apoptosis. World J. Hepatol. 2014, 6, 98–106. [Google Scholar] [PubMed]
- Karabay, A.Z.; Koc, A.; Ozkan, T.; Hekmatshoar, Y.; Sunguroglu, A.; Aktan, F.; Buyukbingol, Z. Methylsulfonylmethane induces P53 independent apoptosis in HCT-116 colon cancer cells. Int. J. Mol. Sci. 2016, 17, 1123. [Google Scholar] [CrossRef] [PubMed]
- Caron, J.M.; Bannon, M.; Rosshirt, L.; O’donovan, L. Methyl sulfone manifests anticancer activity in a metastatic murine breast cancer cell line and in human breast cancer tissue-part i: Murine 4t1 (66CL-4) cell line. Chemotherapy 2013, 59, 14–23. [Google Scholar] [PubMed]
- Caron, J.M.; Caron, J.M. Methyl sulfone blocked multiple hypoxia-and non-hypoxia-induced metastatic targets in breast cancer cells and melanoma cells. PLoS ONE 2015, 10, e0141565. [Google Scholar] [CrossRef] [PubMed]
- Touchberry, C.D.; Von Schulze, A.; Amat-Fernandez, C.; Lee, H.; Chow, Y.; Wetmore, L.A. Methylsulfonylmethane (MSM) treatment enhances C2C12 wound closure and protects cells from oxidative stress. FASEB J. 2016, 30, 1245.20. [Google Scholar]
- Caron, J.M.; Bannon, M.; Rosshirt, L.; Luis, J.; Monteagudo, L.; Caron, J.M.; Sternstein, G.M. Methyl sulfone induces loss of metastatic properties and reemergence of normal phenotypes in a metastatic cloudman s-91 (M3) murine melanoma cell line. PLoS ONE 2010, 5, e11788. [Google Scholar] [CrossRef] [PubMed]
- Caron, J.M.; Monteagudo, L.; Sanders, M.; Bannon, M.; Deckers, P.J. Methyl sulfone manifests anticancer activity in a metastatic murine breast cancer cell line and in human breast cancer tissue-part 2: Human breast cancer tissue. Chemotherapy 2013, 59, 24–34. [Google Scholar] [PubMed]
- Richmond, V.L. Incorporation of methylsulfonylmethane sulfur into guinea pig serum proteins. Life Sci. 1986, 39, 263–268. [Google Scholar] [CrossRef]
- Cloutier, J.-F.; Castonguay, A.; O’Connor, T.R.; Drouin, R. Alkylating agent and chromatin structure determine sequence context-dependent formation of alkylpurines. J. Mol. Biol. 2001, 306, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Li, Y.-S.; Song, M.-F.; Kasai, H. DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorg. Med. Chem. Lett. 2010, 20, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Hootman, J.M.; Helmick, C.G.; Barbour, K.E.; Theis, K.A.; Boring, M.A. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among us adults, 2015–2040. Arthritis Rheumatol. 2016, 68, 1582–1587. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Ueno, S.; Kumamoto, S.; Yoshikai, Y. Suppressive effect of methylsulfonylmethane (MSM) on type ii collagen-induced arthritis in dba/1j mice. Jpn. Pharmacol. Ther. 2004, 32, 421–428. [Google Scholar]
- Amiel, D.; Healey, R.M.; Oshima, Y. Assessment of methylsulfonylmethane (MSM) on the development of osteoarthritis (OA): An animal study. FASEB J. 2008, 22, 1094.3. [Google Scholar]
- Arafa, N.M.; Hamuda, H.M.; Melek, S.T.; Darwish, S.K. The effectiveness of echinacea extract or composite glucosamine, chondroitin and methyl sulfonyl methane supplements on acute and chronic rheumatoid arthritis rat model. Toxicol. Ind. Health 2013, 29, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Usha, P.; Naidu, M. Randomised, double-blind, parallel, placebo-controlled study of oral glucosamine, methylsulfonylmethane and their combination in osteoarthritis. Clin. Drug Investig. 2004, 24, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Debi, R.; Fichman, G.; Ziv, Y.B.; Kardosh, R.; Debbi, E.; Halperin, N.; Agar, G. The role of msm in knee osteoarthritis: A double blind, randomized, prospective study. Osteoarthr. Cartil. 2007, 15, C231. [Google Scholar] [CrossRef]
- Pagonis, T.A.; Givissis, P.A.; Kritis, A.C.; Christodoulou, A.C. The effect of methylsulfonylmethane on osteoarthritic large joints and mobility. Int. J. Orthop. 2014, 1, 19–24. [Google Scholar]
- Nakasone, Y.; Watabe, K.; Watanabe, K.; Tomonaga, A.; Nagaoka, I.; Yamamoto, T.; Yamaguchi, H. Effect of a glucosamine-based combination supplement containing chondroitin sulfate and antioxidant micronutrients in subjects with symptomatic knee osteoarthritis: A pilot study. Exp. Ther. Med. 2011, 2, 893–899. [Google Scholar] [PubMed]
- Vidyasagar, S.; Mukhyaprana, P.; Shashikiran, U.; Sachidananda, A.; Rao, S.; Bairy, K.L.; Adiga, S.; Jayaprakash, B. Efficacy and tolerability of glucosamine chondroitin sulphate-methyl sulfonyl methane (MSM) in osteoarthritis of knee in indian patients. Iran. J. Pharmacol. Ther. 2004, 3, 61–65. [Google Scholar]
- Magrans-Courtney, T.; Wilborn, C.; Rasmussen, C.; Ferreira, M.; Greenwood, L.; Campbell, B.; Kerksick, C.M.; Nassar, E.; Li, R.; Iosia, M. Effects of diet type and supplementation of glucosamine, chondroitin, and msm on body composition, functional status, and markers of health in women with knee osteoarthritis initiating a resistance-based exercise and weight loss program. J. Int. Soc. Sports Nutr. 2011, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notarnicola, A.; Maccagnano, G.; Moretti, L.; Pesce, V.; Tafuri, S.; Fiore, A.; Moretti, B. Methylsulfonylmethane and boswellic acids versus glucosamine sulfate in the treatment of knee arthritis: Randomized trial. Int. J. Immunopathol. Pharmacol. 2016, 29, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Shi, R.; Xu, G.; Cheng, L.; Shao, L.; Rao, J. Effects of AR7 joint complex on arthralgia for patients with osteoarthritis: Results of a three-month study in Shanghai, China. Nutr. J. 2008, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Amirshahrokhi, K.; Bohlooli, S.; Chinifroush, M. The effect of methylsulfonylmethane on the experimental colitis in the rat. Toxicol. Appl. Pharmacol. 2011, 253, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Amirshahrokhi, K.; Bohlooli, S. Effect of methylsulfonylmethane on paraquat-induced acute lung and liver injury in mice. Inflammation 2013, 36, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Kamel, R.; El Morsy, E.M. Hepatoprotective effect of methylsulfonylmethane against carbon tetrachloride-induced acute liver injury in rats. Arch. Pharm. Res. 2013, 36, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.; Morton, J. Diminished inflammatory joint disease in mrl/1pr mice ingesting dimethylsulfoxide (DMSO) or methylsulfonylmethane (MSM). Fed. Proc. 1985, 44, 530. [Google Scholar]
- Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartil. 2013, 21, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Squires, G.R.; Mousa, A.; Tanzer, M.; Zukor, D.J.; Antoniou, J.; Feige, U.; Poole, A.R. Role of interleukin-1 and tumor necrosis factor α in matrix degradation of human osteoarthritic cartilage. Arthritis Rheumatol. 2005, 52, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Ezaki, J.; Hashimoto, M.; Hosokawa, Y.; Ishimi, Y. Assessment of safety and efficacy of methylsulfonylmethane on bone and knee joints in osteoarthritis animal model. J. Bone Miner. Metab. 2013, 31, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Murav’ev, I.; Venikova, M.; Pleskovskaia, G.; Riazantseva, T.; Sigidin, I. Effect of dimethyl sulfoxide and dimethyl sulfone on a destructive process in the joints of mice with spontaneous arthritis. Patol. Fiziol. Eksp. Ter. 1990, 2, 37–39. [Google Scholar]
- Maher, A.D.; Coles, C.; White, J.; Bateman, J.F.; Fuller, E.S.; Burkhardt, D.; Little, C.B.; Cake, M.; Read, R.; McDonagh, M.B. 1H nmr spectroscopy of serum reveals unique metabolic fingerprints associated with subtypes of surgically induced osteoarthritis in sheep. J. Proteome Res. 2012, 11, 4261–4268. [Google Scholar] [CrossRef] [PubMed]
- Melcher, D.A.; Lee, S.-R.; Peel, S.A.; Paquette, M.R.; Bloomer, R.J. Effects of methylsulfonylmethane supplementation on oxidative stress, muscle soreness, and performance variables following eccentric exercise. Gazz. Med. Ital.-Arch. Sci. Med. 2016, 175, 1–13. [Google Scholar]
- Gumina, S.; Passaretti, D.; Gurzi, M.; Candela, V. Arginine l-alpha-ketoglutarate, methylsulfonylmethane, hydrolyzed type i collagen and bromelain in rotator cuff tear repair: A prospective randomized study. Curr. Med. Res. Opin. 2012, 28, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Higler, M.; Brommer, H.; L’ami, J.; Grauw, J.; Nielen, M.; Weeren, P.; Laverty, S.; Barneveld, A.; Back, W. The effects of three-month oral supplementation with a nutraceutical and exercise on the locomotor pattern of aged horses. Equine Vet. J. 2014, 46, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, A.; Tafuri, S.; Fusaro, L.; Moretti, L.; Pesce, V.; Moretti, B. The “mesaca” study: Methylsulfonylmethane and boswellic acids in the treatment of gonarthrosis. Adv. Ther. 2011, 28, 894–906. [Google Scholar] [CrossRef] [PubMed]
- Tant, L.; Gillard, B.; Appelboom, T. Open-label, randomized, controlled pilot study of the effects of a glucosamine complex on low back pain. Curr. Ther. Res. 2005, 66, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Stuber, K.; Sajko, S.; Kristmanson, K. Efficacy of glucosamine, chondroitin, and methylsulfonylmethane for spinal degenerative joint disease and degenerative disc disease: A systematic review. J. Can. Chiropr. Assoc. 2011, 55, 47. [Google Scholar] [PubMed]
- Lewis, P.B.; Ruby, D.; Bush-Joseph, C.A. Muscle soreness and delayed-onset muscle soreness. Clin. Sports. Med. 2012, 31, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Barmaki, S.; Bohlooli, S.; Khoshkhahesh, F.; Nakhostin-Roohi, B. Effect of methylsulfonylmethane supplementation on exercise—Induced muscle damage and total antioxidant capacity. J. Sports Med. Phys. Fit. 2012, 52, 170. [Google Scholar]
- Kalman, D.S.; Feldman, S.; Samson, A.; Krieger, D.R. A randomized double blind placebo controlled evaluation of msm for exercise induced discomfort/pain. FASEB J. 2013, 27, 1076–1077. [Google Scholar]
- Kalman, D.S.; Feldman, S.; Scheinberg, A.R.; Krieger, D.R.; Bloomer, R.J. Influence of methylsulfonylmethane on markers of exercise recovery and performance in healthy men: A pilot study. J. Int. Soc. Sports Nutr. 2012, 9, 46. [Google Scholar] [CrossRef] [PubMed]
- Withee, E.D.; Tippens, K.M.; Dehen, R.; Hanes, D. Effects of msm on exercise-induced muscle and joint pain: A pilot study. J. Int. Soc. Sports Nutr. 2015, 12, P8. [Google Scholar] [CrossRef]
- Bohlooli, S.; Mohammadi, S.; Amirshahrokhi, K.; Mirzanejad-asl, H.; Yosefi, M.; Mohammadi-Nei, A.; Chinifroush, M.M. Effect of methylsulfonylmethane pretreatment on aceta-minophen induced hepatotoxicity in rats. Iran. J. Basic Med. Sci. 2013, 16, 896. [Google Scholar] [PubMed]
- Marañón, G.; Muñoz-Escassi, B.; Manley, W.; García, C.; Cayado, P.; De la Muela, M.S.; Olábarri, B.; León, R.; Vara, E. The effect of methyl sulphonyl methane supplementation on biomarkers of oxidative stress in sport horses following jumping exercise. Acta Vet. Scand. 2008, 50, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, S.; Najafi, M.; Hamzeiy, H.; Maleki-Dizaji, N.; Pezeshkian, M.; Sadeghi-Bazargani, H.; Darabi, M.; Mostafalou, S.; Bohlooli, S.; Garjani, A. Protective effects of methylsulfonylmethane on hemodynamics and oxidative stress in monocrotaline-induced pulmonary hypertensive rats. Adv. Pharmacol. Sci. 2012, 2012, 507278. [Google Scholar] [CrossRef] [PubMed]
- DiSilvestro, R.A.; DiSilvestro, D.J.; DiSilvestro, D.J. Methylsulfonylmethane (MSM) intake in mice produces elevated liver glutathione and partially protects against carbon tetrachloride-induced liver injury. FASEB J. 2008, 22, 445.8. [Google Scholar]
- Nakhostin-Roohi, B.; Barmaki, S.; Khoshkhahesh, F.; Bohlooli, S. Effect of chronic supplementation with methylsulfonylmethane on oxidative stress following acute exercise in untrained healthy men. J. Pharm. Pharmacol. 2011, 63, 1290–1294. [Google Scholar] [CrossRef] [PubMed]
- Nakhostin-Roohi, B.; Niknam, Z.; Vaezi, N.; Mohammadi, S.; Bohlooli, S. Effect of single dose administration of methylsulfonylmethane on oxidative stress following acute exhaustive exercise. Iran. J. Pharm. Res. 2013, 12, 845–853. [Google Scholar] [PubMed]
- Zhang, M.; Wong, I.G.; Gin, J.B.; Ansari, N.H. Assessment of methylsulfonylmethane as a permeability enhancer for regional edta chelation therapy. Drug Deliv. 2009, 16, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhang, M.; Shoeb, M.; Hogan, D.; Tang, L.; Syed, M.; Wang, C.; Campbell, G.; Ansari, N. Metal chelator combined with permeability enhancer ameliorates oxidative stress-associated neurodegeneration in rat eyes with elevated intraocular pressure. Free Radic. Biol. Med. 2014, 69, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Z.; El Ayadi, A.; Goswamy, J.; Finnerty, C.C.; Mifflin, R.; Sousse, L.; Enkhbaatar, P.; Papaconstantinou, J.; Herndon, D.N.; Ansari, N.H. Topically applied metal chelator reduces thermal injury progression in a rat model of brass comb burn. Burns 2015, 41, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Shoeb, M.; Liu, P.; Xiao, T.; Hogan, D.; Wong, I.G.; Campbell, G.A.; Ansari, N.H. Topical metal chelation therapy ameliorates oxidation-induced toxicity in diabetic cataract. J. Toxicol. Environ. Health Part A 2011, 74, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.; Gupta, S.; Rai, S.; Mittal, P. Effect of topical application of methylsulfonylmethane (MSM), EDTA on pitting edema and oxidative stress in a double blind, placebo-controlled study. Cell. Mol. Biol. 2011, 57, 62–69. [Google Scholar] [PubMed]
- Kantor, E.D.; Ulrich, C.M.; Owen, R.W.; Schmezer, P.; Neuhouser, M.L.; Lampe, J.W.; Peters, U.; Shen, D.D.; Vaughan, T.L.; White, E. Specialty supplement use and biologic measures of oxidative stress and DNA damage. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2313–2322. [Google Scholar] [CrossRef] [PubMed]
- Manzella, N.; Bracci, M.; Strafella, E.; Staffolani, S.; Ciarapica, V.; Copertaro, A.; Rapisarda, V.; Ledda, C.; Amati, M.; Valentino, M. Circadian modulation of 8-oxoguanine DNA damage repair. Sci. Rep. 2015, 5, 13752. [Google Scholar] [CrossRef] [PubMed]
- Gaby, A.R. Methylsulfonylmethane as a treatment for seasonal allergic rhinitis: More data needed on pollen counts and questionnaire. J. Altern. Complement. Med. 2002, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Anthonavage, M.; Benjamin, R.L.; Withee, E.D. Effects of oral supplementation with methylsulfonylmethane on skin health and wrinkle reduction. Nat. Med. J. 2015, 7. [Google Scholar]
- Berardesca, E.; Cameli, N.; Primavera, G.; Carrera, M. Clinical and instrumental evaluation of skin improvement after treatment with a new 50% pyruvic acid peel. Dermatol. Surg. 2006, 32, 526–531. [Google Scholar] [PubMed]
- Berardesca, E.; Cameli, N.; Cavallotti, C.; Levy, J.L.; Piérard, G.E.; de Paoli Ambrosi, G. Combined effects of silymarin and methylsulfonylmethane in the management of rosacea: Clinical and instrumental evaluation. J. Cosmet. Dermatol. 2008, 7, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Fleck, C.A. Managing ichthyosis: A case study. Ostomy Wound Manag. 2006, 52, 82–90. [Google Scholar]
- Kang, D.Y.; Darvin, P.; Yoo, Y.B.; Joung, Y.H.; Sp, N.; Byun, H.J.; Yang, Y.M. Methylsulfonylmethane inhibits her2 expression through STAT5b in breast cancer cells. Int. J. Oncol. 2016, 48, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Park, D.J.; Thomas, N.J.; Yoon, C.; Yoon, S.S. Vascular endothelial growth factor a inhibition in gastric cancer. Gastric Cancer 2015, 18, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Werner, H.; Bruchim, I. Igf-1 and brca1 signalling pathways in familial cancer. Lancet. Oncol. 2012, 13, e537–e544. [Google Scholar] [CrossRef]
- McCabe, D.; O’Dwyer, P.; Sickle-Santanello, B.; Woltering, E.; Abou-Issa, H.; James, A. Polar solvents in the chemoprevention of dimethylbenzanthracene-induced rat mammary cancer. Arch. Surg. 1986, 121, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- O’Dwyer, P.J.; McCabe, D.P.; Sickle-Santanello, B.J.; Woltering, E.A.; Clausen, K.; Martin, E., Jr. Use of polar solvents in chemoprevention of 1, 2-dimethylhydrazine-induced colon cancer. Cancer 1988, 62, 944–948. [Google Scholar] [CrossRef]
- Satia, J.A.; Littman, A.; Slatore, C.G.; Galanko, J.A.; White, E. Associations of herbal and specialty supplements with lung and colorectal cancer risk in the vitamins and lifestyle study. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Horvath, K.; Noker, P.; Somfai-Relle, S.; Glavits, R.; Financsek, I.; Schauss, A. Toxicity of methylsulfonylmethane in rats. Food Chem. Toxicol. 2002, 40, 1459–1462. [Google Scholar] [CrossRef]
- Magnuson, B.; Appleton, J.; Ryan, B.; Matulka, R. Oral developmental toxicity study of methylsulfonylmethane in rats. Food Chem. Toxicol. 2007, 45, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.I.; Siegel, B.V. Effects of oral dimethyl sulfoxide and dimethyl sulfone on murine autoimmune lymphoproliferative disease 1. Proc. Soc. Exp. Biol. Med. 1986, 183, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Takiyama, K.; Konishi, F.; Nakashima, Y.; Kumamoto, S.; Maruyama, I. Single and 13-week repeated oral dose toxicity study of methylsulfonylmethane in mice. Oyo Yakuri 2010, 79, 23–30. [Google Scholar]
- Brim, T.A.; Center, V.; Wynn, S.; Springs, S.; Gray, L.; Brown, L. More on accidental overdosage of joint supplements. J. Am. Vet. Med. Assoc. 2010, 236, 1061. [Google Scholar] [PubMed]
- Khan, S.A.; McLean, M.K.; Gwaltney-Brant, S. Accidental overdosage of joint supplements in dogs. J. Am. Vet. Med. Assoc. 2010, 236, 509. [Google Scholar] [PubMed]
- Gaval-Cruz, M.; Weinshenker, D. Mechanisms of disulfiram-induced cocaine abstinence: Antabuse and cocaine relapse. Mol. Interv. 2009, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Anderson, G.; Nowicki, D. Synergistic effect of tahitian noni juice (TNJ) and methylsulfonylmethane (MSM) on mammary breast cancer prevention at the initiation stage of chemical carcinogenesis induced by dmba in female sprague-dawley (SD) rats. Cancer Epidemiol. Biomark. Prev. 2003, 12, 1354S. [Google Scholar]
- Sousa-Lima, I.; Park, S.-Y.; Chung, M.; Jung, H.J.; Kang, M.-C.; Gaspar, J.M.; Seo, J.A.; Macedo, M.P.; Park, K.S.; Mantzoros, C. Methylsulfonylmethane (MSM), an organosulfur compound, is effective against obesity-induced metabolic disorders in mice. Metabolism 2016, 65, 1508–1521. [Google Scholar] [CrossRef] [PubMed]
Species | Route | Duration | NOAEL | Reference |
---|---|---|---|---|
Acute ≤15 days | ||||
Mice | Oral | Not stated (acute) | 5 g/kg | Kocsis et al. (1975) [6] |
Mice | Intraperitoneal | Not stated (acute) | 5 g/kg | Kocsis et al. (1975) [6] |
Mice | Oral gavage | 15 days | 5 g/kg | Takiyama et al. (2010) [190] |
Rat | Intraperitoneal | Not stated (acute) | 5 g/kg | Kocsis et al. (1975) [6] |
Rat | Oral gavage | 15 days | 2 g/kg | Horvath et al. (2002) [187] |
Subacute | ||||
Gestating Rat | Oral gavage (14 days) | 21 days | 1 g/kg/day | Magnuson et al. (2007) [188] |
Subchronic | ||||
Mice | Oral | 91 days | 1.5 g/kg/day | Takiyama et al. (2010) [190] |
Rat | Oral | 90 days | 1.5 g/kg/day | Horvath et al. (2002) [187] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butawan, M.; Benjamin, R.L.; Bloomer, R.J. Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement. Nutrients 2017, 9, 290. https://doi.org/10.3390/nu9030290
Butawan M, Benjamin RL, Bloomer RJ. Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement. Nutrients. 2017; 9(3):290. https://doi.org/10.3390/nu9030290
Chicago/Turabian StyleButawan, Matthew, Rodney L. Benjamin, and Richard J. Bloomer. 2017. "Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement" Nutrients 9, no. 3: 290. https://doi.org/10.3390/nu9030290
APA StyleButawan, M., Benjamin, R. L., & Bloomer, R. J. (2017). Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement. Nutrients, 9(3), 290. https://doi.org/10.3390/nu9030290