South Asian Ethnicity Is Related to the Highest Risk of Vitamin B12 Deficiency in Pregnant Canadian Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Demographic, Lifestyle, Dietary, and Anthropometric Variables
2.3. Biochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Plasma Total B12 and MMA Concentration
3.3. Predictors of B12 Status
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ronnenberg, A.G.; Goldman, M.B.; Chen, D.; Aitken, I.W.; Willett, W.C.; Selhub, J.; Xu, X. Preconception homocysteine and B vitamin status and birth outcomes in Chinese women. Am. J. Clin. Nutr. 2002, 76, 1385–1391. [Google Scholar] [PubMed]
- Muthayya, S.; Kurpad, A.V.; Duggan, C.P.; Bosch, R.J.; Dwarkanath, P.; Mhaskar, A.; Mhaskar, R.; Thomas, A.; Vaz, M.; Bhat, S.; et al. Low maternal vitamin B12 status is associated with intrauterine growth retardation in urban South Indians. Eur. J. Clin. Nutr. 2006, 60, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Verkleij-Hagoort, A.C.; van Driel, L.M.; Lindemans, J.; Isaacs, A.; Steegers, E.A.; Helbing, W.A.; Uitterlinden, A.G.; Steegers-Theunissen, R.P. Genetic and lifestyle factors related to the periconception vitamin B12 status and congenital heart defects: A Dutch case-control study. Mol. Genet. Metab. 2008, 94, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Molloy, A.M.; Kirke, P.N.; Troendle, J.F.; Burke, H.; Sutton, M.; Brody, L.C.; Scott, J.M.; Mills, J.L. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic acid fortification. Pediatrics 2009, 123, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.P.; Christian, P.; Schulze, K.J.; Arguello, M.; LeClerq, S.C.; Khatry, S.K.; West, K.P., Jr. Low maternal vitamin B-12 status is associated with offspring insulin resistance regardless of antenatal micronutrient supplementation in rural Nepal. J. Nutr. 2011, 141, 1912–1917. [Google Scholar] [CrossRef] [PubMed]
- Yajnik, C.S.; Deshpande, S.S.; Jackson, A.A.; Refsum, H.; Rao, S.; Fisher, D.J.; Bhat, D.S.; Naik, S.S.; Coyaji, K.J.; Joglekar, C.V.; et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: The Pune maternal nutrition study. Diabetologia 2008, 51, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Hay, G.; Clausen, T.; Whitelaw, A.; Trygg, K.; Johnston, C.; Henriksen, T.; Refsum, H. Maternal folate and cobalamin status predicts vitamin status in newborns and 6-month-old infants. J. Nutr. 2010, 140, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Duggan, C.; Srinivasan, K.; Thomas, T.; Samuel, T.; Rajendran, R.; Muthayya, S.; Finkelstein, J.L.; Lukose, A.; Fawzi, W.; Allen, L.H.; et al. Vitamin B-12 supplementation during pregnancy and early lactation increases maternal, breast milk, and infant measures of vitamin B-12 status. J. Nutr. 2014, 144, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Strand, T.A.; Taneja, S.; Ueland, P.M.; Refsum, H.; Bahl, R.; Schneede, J.; Sommerfelt, H.; Bhandari, N. Cobalamin and folate status predicts mental development scores in North Indian children 12–18 mo of age. Am. J. Clin. Nutr. 2013, 97, 310–317. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, A.J.; Greene-Finestone, L.S.; Shi, Y. Vitamin B-12 and homocysteine status in a folate-replete population: Results from the Canadian Health Measures Survey. Am. J. Clin. Nutr. 2011, 94, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Quay, T.A.W.; Schroder, T.H.; Jeruszka-Bielak, M.; Li, W.; Devlin, A.M.; Barr, S.I.; Lamers, Y. High rate of suboptimal vitamin B12 status in South Asian and European women of childbearing age in Metro Vancouver. Appl. Physiol. Nutr. Metab. 2015. [Google Scholar] [CrossRef] [PubMed]
- Visentin, C.E.; Masih, S.P.; Plumptre, L.; Schroder, T.H.; Sohn, K.J.; Ly, A.; Lausman, A.Y.; Berger, H.; Croxford, R.; Lamers, Y.; et al. Low serum vitamin B-12 concentrations are prevalent in a cohort of pregnant Canadian women. J. Nutr. 2016, 146, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.T.; Innis, S.M.; Mulder, K.A.; Dyer, R.A.; King, D.J. Low plasma vitamin B-12 is associated with a lower pregnancy-associated rise in plasma free choline in Canadian pregnant women and lower postnatal growth rates in their male infants. Am. J. Clin. Nutr. 2013, 98, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Krishnaveni, G.V.; Hill, J.C.; Veena, S.R.; Bhat, D.S.; Wills, A.K.; Karat, C.L.; Yajnik, C.S.; Fall, C.H. Low plasma vitamin B12 in pregnancy is associated with gestational ‘diabesity’ and later diabetes. Diabetologia 2009, 52, 2350–2358. [Google Scholar] [PubMed]
- Samuel, T.M.; Duggan, C.; Thomas, T.; Bosch, R.; Rajendran, R.; Virtanen, S.M.; Srinivasan, K.; Kurpad, A.V. Vitamin B(12) intake and status in early pregnancy among urban South Indian women. Ann. Nutr. Metab. 2013, 62, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Mearns, G.J.; Koziol-McLain, J.; Obolonkin, V.; Rush, E.C. Preventing vitamin B12 deficiency in South Asian women of childbearing age: A randomised controlled trial comparing an oral vitamin B12 supplement with B12 dietary advice. Eur. J. Clin. Nutr. 2014, 68, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Yetley, E.A.; Pfeiffer, C.M.; Phinney, K.W.; Bailey, R.L.; Blackmore, S.; Bock, J.L.; Brody, L.C.; Carmel, R.; Curtin, L.R.; Durazo-Arvizu, R.A.; et al. Biomarkers of vitamin B-12 status in NHANES: A roundtable summary. Am. J. Clin. Nutr. 2011, 94, 313S–321S. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Green, T.J.; Innis, S.M.; Barr, S.I.; Whiting, S.J.; Shand, A.; von Dadelszen, P. Suboptimal vitamin D levels in pregnant women despite supplement use. Can. J. Public Health 2011, 102, 308–312. [Google Scholar] [PubMed]
- Schroder, T.H.; Quay, T.A.; Lamers, Y. Methylmalonic acid quantified in dried blood spots provides a precise, valid, and stable measure of functional vitamin B-12 status in healthy women. J. Nutr. 2014, 144, 1658–1663. [Google Scholar] [CrossRef] [PubMed]
- Von Castel-Roberts, K.M.; Morkbak, A.L.; Nexo, E.; Edgemon, C.A.; Maneval, D.R.; Shuster, J.J.; Valentine, J.F.; Kauwell, G.P.; Bailey, L.B. Holo-transcobalamin is an indicator of vitamin B-12 absorption in healthy adults with adequate vitamin B-12 status. Am. J. Clin. Nutr. 2007, 85, 1057–1061. [Google Scholar] [PubMed]
- Rasmussen, K. Studies on methylmalonic acid in humans. I. Concentrations in serum and urinary excretion in normal subjects after feeding and during fasting, and after loading with protein, fat, sugar, isoleucine, and valine. Clin. Chem. 1989, 35, 2271–2276. [Google Scholar] [PubMed]
- Pfeiffer, C.M.; Caudill, S.P.; Gunter, E.W.; Osterloh, J.; Sampson, E.J. Biochemical indicators of B vitamin status in the US population after folic acid fortification: Results from the National Health and Nutrition Examination Survey 1999–2000. Am. J. Clin. Nutr. 2005, 82, 442–450. [Google Scholar] [PubMed]
- Holleland, G.; Schneede, J.; Ueland, P.M.; Lund, P.K.; Refsum, H.; Sandberg, S. Cobalamin deficiency in general practice. Assessment of the diagnostic utility and cost-benefit analysis of methylmalonic acid determination in relation to current diagnostic strategies. Clin. Chem. 1999, 45, 189–198. [Google Scholar] [PubMed]
- Obeid, R.; Morkbak, A.L.; Munz, W.; Nexo, E.; Herrmann, W. The cobalamin-binding proteins transcobalamin and haptocorrin in maternal and cord blood sera at birth. Clin. Chem. 2006, 52, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Morkbak, A.L.; Hvas, A.M.; Milman, N.; Nexo, E. Holotranscobalamin remains unchanged during pregnancy. Longitudinal changes of cobalamins and their binding proteins during pregnancy and postpartum. Haematologica 2007, 92, 1711–1712. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzoglou, A.; Smith, A.D.; Nurk, E.; Berstad, P.; Drevon, C.A.; Ueland, P.M.; Vollset, S.E.; Tell, G.S.; Refsum, H. Dietary sources of vitamin B-12 and their association with plasma vitamin B-12 concentrations in the general population: The Hordaland Homocysteine Study. Am. J. Clin. Nutr. 2009, 89, 1078–1087. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.G.; Goodman, J.; O’Mahoney, P.R.; Mamdani, M.M.; Jiang, D. High rate of maternal vitamin B12 deficiency nearly a decade after canadian folic acid flour fortification. QJM 2008, 101, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Koebnick, C.; Heins, U.A.; Dagnelie, P.C.; Wickramasinghe, S.N.; Ratnayaka, I.D.; Hothorn, T.; Pfahlberg, A.B.; Hoffmann, I.; Lindemans, J.; Leitzmann, C. Longitudinal concentrations of vitamin B(12) and vitamin B(12)-binding proteins during uncomplicated pregnancy. Clin. Chem. 2002, 48, 928–933. [Google Scholar] [PubMed]
- Carmel, R.; Mallidi, P.V.; Vinarskiy, S.; Brar, S.; Frouhar, Z. Hyperhomocysteinemia and cobalamin deficiency in young Asian Indians in the United States. Am. J. Hematol. 2002, 70, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, K.; Moller, J.; Ostergaard, K.; Kristensen, M.O.; Jensen, J. Methylmalonic acid concentrations in serum of normal subjects: Biological variability and effect of oral L-isoleucine loads before and after intramuscular administration of cobalamin. Clin. Chem. 1990, 36, 1295–1299. [Google Scholar] [PubMed]
- Murphy, M.M.; Molloy, A.M.; Ueland, P.M.; Fernandez-Ballart, J.D.; Schneede, J.; Arija, V.; Scott, J.M. Longitudinal study of the effect of pregnancy on maternal and fetal cobalamin status in healthy women and their offspring. J. Nutr. 2007, 137, 1863–1867. [Google Scholar] [PubMed]
- Milman, N.; Byg, K.E.; Bergholt, T.; Eriksen, L.; Hvas, A.M. Cobalamin status during normal pregnancy and postpartum: A longitudinal study comprising 406 Danish women. Eur. J. Haematol. 2006, 76, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Greibe, E.; Andreasen, B.H.; Lildballe, D.L.; Morkbak, A.L.; Hvas, A.M.; Nexo, E. Uptake of cobalamin and markers of cobalamin status: A longitudinal study of healthy pregnant women. Clin. Chem. Lab. Med. 2011, 49, 1877–1882. [Google Scholar] [CrossRef] [PubMed]
- Masih, S.P.; Plumptre, L.; Ly, A.; Berger, H.; Lausman, A.Y.; Croxford, R.; Kim, Y.I.; O’Connor, D.L. Pregnant Canadian women achieve recommended intakes of one-carbon nutrients through prenatal supplementation but the supplement composition, including choline, requires reconsideration. J. Nutr. 2015, 145, 1824–1834. [Google Scholar] [CrossRef] [PubMed]
- Carmel, R.; Green, R.; Jacobsen, D.W.; Rasmussen, K.; Florea, M.; Azen, C. Serum cobalamin, homocysteine, and methylmalonic acid concentrations in a multiethnic elderly population: Ethnic and sex differences in cobalamin and metabolite abnormalities. Am. J. Clin. Nutr. 1999, 70, 904–910. [Google Scholar] [PubMed]
- Sukumar, N.; Venkataraman, H.; Wilson, S.; Goljan, I.; Selvamoni, S.; Patel, V.; Saravanan, P. Vitamin B12 status among pregnant women in the UK and its association with obesity and gestational diabetes. Nutrients 2016, 8, 768. [Google Scholar] [CrossRef] [PubMed]
- Knight, B.A.; Shields, B.M.; Brook, A.; Hill, A.; Bhat, D.S.; Hattersley, A.T.; Yajnik, C.S. Lower circulating B12 is associated with higher obesity and insulin resistance during pregnancy in a non-diabetic White British population. PLoS ONE 2015, 10, e0135268. [Google Scholar]
- Allin, K.H.; Friedrich, N.; Pietzner, M.; Grarup, N.; Thuesen, B.H.; Linneberg, A.; Pisinger, C.; Hansen, T.; Pedersen, O.; Sandholt, C.H. Genetic determinants of serum vitamin B12 and their relation to body mass index. Eur. J. Epidemiol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Molloy, A.M.; Pangilinan, F.; Mills, J.L.; Shane, B.; O'Neill, M.B.; McGaughey, D.M.; Velkova, A.; Abaan, H.O.; Ueland, P.M.; McNulty, H.; et al. A common polymorphism in HIBCH influences methylmalonic acid concentrations in blood independently of cobalamin. Am. J. Hum. Genet. 2016, 98, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Thuesen, B.H.; Husemoen, L.L.; Ovesen, L.; Jorgensen, T.; Fenger, M.; Linneberg, A. Lifestyle and genetic determinants of folate and vitamin B12 levels in a general adult population. Br. J. Nutr. 2010, 103, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, V.S.; Chand, M.P.; Kumar, J.; Garg, G.; Seth, S.; Karthikeyan, G.; Sengupta, S. Common variant in FUT2 gene is associated with levels of vitamin B(12) in Indian population. Gene 2013, 515, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Carmel, R.; Green, R.; Pfeiffer, C.M.; Cogswell, M.E.; Osterloh, J.D.; Sempos, C.T.; Yetley, E.A. Monitoring of vitamin B-12 nutritional status in the United States by using plasma methylmalonic acid and serum vitamin B-12. Am. J. Clin. Nutr. 2011, 94, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzoglou, A.; Oulhaj, A.; Smith, A.D.; Nurk, E.; Drevon, C.A.; Ueland, P.M.; Vollset, S.E.; Tell, G.S.; Refsum, H. Determinants of plasma methylmalonic acid in a large population: Implications for assessment of vitamin B12 status. Clin. Chem. 2009, 55, 2198–2206. [Google Scholar] [CrossRef] [PubMed]
- Selhub, J.; Morris, M.S.; Jacques, P.F. In vitamin B12 deficiency, higher serum folate is associated with increased total homocysteine and methylmalonic acid concentrations. Proc. Natl. Acad. Sci. USA 2007, 104, 19995–20000. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W.; Garrod, M.G.; Allen, L.H.; Haan, M.N.; Green, R. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate. Am. J. Clin. Nutr. 2009, 90, 1586–1592. [Google Scholar] [CrossRef] [PubMed]
- Solomon, L.R. Advanced age as a risk factor for folate-associated functional cobalamin deficiency. J. Am. Geriatr. Soc. 2013, 61, 577–582. [Google Scholar] [CrossRef] [PubMed]
n | Median (Interquartile Range) * | Prevalence, n (%) | ||||
---|---|---|---|---|---|---|
<148 pmol/L | 148–220 pmol/L | >220 pmol/L | p Value $ | |||
All participants | 320 | 215 (160, 283) | 58 (18) | 106 (33) | 156 (49) | |
Age (years) | ||||||
<30 | 120 | 185 a (145, 245) | 31 (26) | 41 (34) | 48 (40) | 0.001 # |
≥30 | 200 | 230 b (182, 298) | 27 (14) | 53 (26) | 120 (60) | |
Gestational age (weeks) | ||||||
<27 | 106 | 229 (176, 298) | 16 (15) | 28 (26) | 62 (59) | NS |
≥27 | 214 | 210 (154, 275) | 42 (20) | 66 (31) | 106 (49) | |
Pre-pregnancy body mass index (kg/m2) | ||||||
<25 | 235 | 222 (166, 291) | 39 (17) | 67 (28) | 129 (55) | NS |
25–29.9 | 64 | 204 (151, 263) | 15 (23) | 19 (30) | 30 (47) | |
≥30 | 21 | 189 (159, 243) | 4 (19) | 8 (38) | 9 (43) | |
Ethnicity | ||||||
European | 150 | 203 a (160, 277) | 24 (16) | 61 (41) | 65 (43) | <0.001 # |
Chinese | 60 | 256 b (202, 311) | 4 (7) | 14 (23) | 42 (70) | |
South Asian | 26 | 132 c (105, 231) | 16 (61.5) | 3 (11.5) | 7 (27) | |
Other | 84 | 220 a,b (171, 269) | 14 (17) | 28 (33) | 42 (50) | |
Education | ||||||
Less than high school | 21 | 172 ‡ (161, 209) | 3 (14) | 13 (62) | 5 (24) | 0.004 # |
High school degree | 77 | 206 (147, 264) | 20 (26) | 21 (27) | 36 (47) | |
University or trade school | 221 | 228 ‡ (171, 287) | 35 (16) | 60 (27) | 126 (57) | |
Family income per year ($) | ||||||
<40,000 | 36 | 184 (151, 230) | 7 (19) | 16 (44) | 13 (36) | NS |
40,000 to <80,000 | 52 | 223 (171, 280) | 9 (17) | 14 (27) | 29 (56) | |
80,000 to <120,000 | 57 | 231 (160, 302) | 10 (17) | 17 (30) | 30 (53) | |
≥120,000 | 55 | 211 (176, 280) | 8 (14) | 18 (33) | 29 (53) | |
Unknown | 72 | 225 (164, 306) | 13 (18) | 16 (22) | 43 (60) | |
Not answered | 48 | 208 (152, 271) | 11 (23) | 13 (27) | 24 (50) | |
Smoking of tobacco during pregnancy | ||||||
Yes | 18 | 200 (160, 237) | 3 (17) | 9 (50) | 6 (33) | NS |
No | 302 | 219 (160, 284) | 55 (18) | 85 (28) | 162 (54) | |
Use of B12-containing supplements | ||||||
Yes | 297 | 222 a (162, 284) | 50 (17) | 85 (29) | 162 (54) | 0.002 # |
No | 23 | 173 b (140, 221) | 8 (35) | 9 (39) | 6 (26) | |
Fish consumption | ||||||
Yes | 238 | 223 (160, 287) | 42 (18) | 73 (31) | 123 (52) | NS |
No | 82 | 204 (153, 258) | 16 (20) | 33 (40) | 33 (40) | |
Meat consumption | ||||||
Yes | 267 | 216 (160, 280) | 49 (18) | 80 (30) | 138 (52) | NS |
No | 18 | 204 (145, 302) | 5 (28) | 4 (22) | 9 (50) |
Univariate | Multivariate | |||
---|---|---|---|---|
β Coefficient (95% Confidence Interval) | p Value | Adjusted β Coefficient (95% Confidence Interval) | Adjusted p Value | |
Age (years) | 3.05 (0.49, 5.6) | 0.02 | 2.07 (−0.54, 4.67) | 0.12 |
Gestational age (weeks) | −3.12 (−5.63, −0.61) | 0.02 | −2.96 (−5.41, −0.51) | 0.02 |
Ethnicity | ||||
European | reference | 0.10 | ||
Other | −5.74 (−38.8, 27.3) | |||
Chinese Asian | 33.8 (−1.20, 68.8) | |||
South Asian | −26.7 (−77.4, 24.1) | |||
Pre-pregnancy body mass index (kg/m2) | −3.75 (−6.74, −0.76) | 0.01 | −3.37 (−6.31, −0.42) | 0.03 |
Smoking | −31.7 (−90.8, 27.3) | 0.29 | ||
Education | ||||
Less than high school | reference | 0.02 | reference | 0.13 |
High school degree | 46.4 (−11.3, 104) | 32.3 (−24.6, 89.2) | ||
University or trade school | 69.2 (16.3, 122) | 50.8 (−2.61, 104) | ||
B12 supplement use | 43.9 (−6.4, 94.2) | 0.09 | 42.1 (−6.92, 91.1) | 0.09 |
Fish intake | 13.2 (−17.2, 43.5) | 0.39 | ||
Meat intake | 13.1 (−41.2, 67.4) | 0.63 | ||
Egg intake | 41.4 (−19.5, 102.3) | 0.18 |
Univariate | Multivariate | |||
---|---|---|---|---|
OR (95% Confidence Interval) | p Value | Adjusted OR (95% Confidence Interval) | Adjusted p Value | |
Age (years) | 0.95 (0.89, 1.00) | 0.07 | ||
Gestational age (weeks) | 1.03 (0.97, 1.09) | 0.28 | ||
Ethnicity | ||||
European | reference | <0.0001 | reference | <0.0001 |
Other | 1.25 (0.57, 2.62) | 1.41 (0.64, 3.04) | ||
Chinese Asian | 0.39 (0.11, 1.08) | 0.48 (0.13, 1.35) | ||
South Asian | 8.90 (3.43, 24.7) | 10.4 (3.90, 29.4) | ||
Pre-pregnancy body mass index (kg/m2) | 1.05 (0.98, 1.11) | 0.17 | ||
Smoking | 1.07 (0.24, 3.51) | 0.92 | ||
Education | ||||
Less than high school | reference | 0.18 | ||
High school degree | 2.01 (0.58, 9.44) | |||
University or trade school | 1.07 (0.33, 4.79) | |||
B12 supplement use | 0.34 (0.14, 0.91) | 0.03 | 0.31 (0.11, 0.86) | 0.03 |
Fish intake | 0.96 (0.50, 1.95) | 0.91 | ||
Meat intake | 0.59 (0.21, 1.90) | 0.35 | ||
Egg intake | 0.29 (0.10, 0.91) | 0.03 |
Univariable | Multivariable | |||
---|---|---|---|---|
β Coefficient (95% Confidence Interval) | p Value | Adjusted β Coefficient (95% Confidence Interval) | Adjusted p Value | |
Age (years) | −1.16 (−3.05 to 0.74) | 0.23 | ||
Gestational age (weeks) | 2.61 (0.78 to 4.45) | 0.01 | 2.88 (1.11 to 4.65) | 0.002 |
Ethnicity | ||||
European | reference | 0.0007 | reference | 0.008 |
Other | −8.69 (−32.4 to 15.1) | −13.7 (−36.5 to 9.14) | ||
Chinese Asian | −13.8 (−39.0 to 11.3) | −11.4 (−35.7 to 13.0) | ||
South Asian | 67.4 (30.9 to 104) | 52.6 (15.8 to 89.4) | ||
Pre-pregnancy body mass index (kg/m2) | 0.57 (−1.64 to 2.79) | 0.61 | ||
Smoking | 32.8 (−10.4 to 76.0) | 0.14 | 40.7 (−1.05 to 82.4) | 0.06 |
Education | ||||
Less than high school | reference | 0.12 | ||
High school degree | −32.1 (−74.7 to 10.5) | |||
University or trade school | −40.4 (−79.4 to −1.42) | |||
B12 supplement | −8.74 (−45.8 to 28.3) | 0.64 | ||
Fish intake | −17.8 (−40.0 to 4.39) | 0.12 | ||
Meat intake | −24.3 (−63.9 to 15.5) | 0.23 | ||
Egg intake | −101 (−145 to −58.2) | <0.0001 | −72.6 (−117 to −28.2) | 0.002 |
Univariable | Multivariable | |||
---|---|---|---|---|
OR (95% Confidence Interval) | p Value | Adjusted OR (95% Confidence Interval) | Adjusted p Value | |
Age (years) | 0.97 (0.91 to 1.02) | 0.25 | ||
Gestational age (weeks) | 1.10 (1.03 to 1.17) | 0.002 | 1.11 (1.04 to 1.19) | 0.001 |
Ethnicity | ||||
European | reference | 0.001 | reference | 0.003 |
Other | 0.70 (0.28 to 1.61) | 0.59 (0.23 to 1.38) | ||
Chinese Asian | 1.11 (0.47 to 2.45) | 1.07 (0.45 to 2.41) | ||
South Asian | 6.10 (2.37 to 16.2) | 5.48 (1.95 to 15.8) | ||
Pre-pregnancy body mass index (kg/m2) | 1.01 (0.94 to 1.07) | 0.84 | ||
Smoking | 0.66 (0.10 to 2.48) | 0.57 | ||
Education | ||||
Less than high school | reference | 0.42 | ||
High school degree | 1.20 (0.37 to 4.69) | |||
University or trade school | 0.75 (0.26 to 2.77) | |||
B12 supplement | 0.54 (0.21 to 1.59) | 0.25 | ||
Fish intake | 0.74 (0.39 to 1.46) | 0.38 | ||
Meat intake | 0.43 (0.16 to 1.29) | 0.12 | ||
Egg intake | 0.21 (0.07 to 0.63) | 0.006 | 0.36 (0.10 to 1.28) | 0.11 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeruszka-Bielak, M.; Isman, C.; Schroder, T.H.; Li, W.; Green, T.J.; Lamers, Y. South Asian Ethnicity Is Related to the Highest Risk of Vitamin B12 Deficiency in Pregnant Canadian Women. Nutrients 2017, 9, 317. https://doi.org/10.3390/nu9040317
Jeruszka-Bielak M, Isman C, Schroder TH, Li W, Green TJ, Lamers Y. South Asian Ethnicity Is Related to the Highest Risk of Vitamin B12 Deficiency in Pregnant Canadian Women. Nutrients. 2017; 9(4):317. https://doi.org/10.3390/nu9040317
Chicago/Turabian StyleJeruszka-Bielak, Marta, Carly Isman, Theresa H. Schroder, Wangyang Li, Tim J. Green, and Yvonne Lamers. 2017. "South Asian Ethnicity Is Related to the Highest Risk of Vitamin B12 Deficiency in Pregnant Canadian Women" Nutrients 9, no. 4: 317. https://doi.org/10.3390/nu9040317
APA StyleJeruszka-Bielak, M., Isman, C., Schroder, T. H., Li, W., Green, T. J., & Lamers, Y. (2017). South Asian Ethnicity Is Related to the Highest Risk of Vitamin B12 Deficiency in Pregnant Canadian Women. Nutrients, 9(4), 317. https://doi.org/10.3390/nu9040317