Vegetarian Diet in Chronic Kidney Disease—A Friend or Foe
Abstract
:1. Introduction
2. Vegetarianism
3. Protein-Energy Status
4. Impact on Glomerular Filtration Rate
5. Impact on Phosphorus Levels
6. Impact on Insulin Resistance
7. Impact on Metabolic Acidosis
8. Cardiovascular Risk Factors
9. Other Effects
10. The Safety of Vegetarian Diet
11. Conclusions
Author Contributions
Conflicts of Interest
References
- Renal Dietitians Dietetic Practice Group; National Kidney Foundation Council on Renal Nutrition. National Renal Diet: Professional Guide, 2nd ed.; The American Dietetic Association: Chicago, IL, USA, 2002. [Google Scholar]
- Hsu, C.Y.; McCulloch, C.; Iribarren, C.; Darbinian, J.; Go, A. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 2006, 144, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Kopple, J.D.; Kalantar-Zadeh, K. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: Reconciling low protein intake with nutritional therapy. Am. J. Clin. Nutr. 2013, 97, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Abbott, K.C.; Salahudeen, A.K.; Kilpatrick, R.D.; Horwich, T.B. Survival advantages of obesity in dialysis patients. Am. J. Clin. Nutr. 2005, 81, 543–554. [Google Scholar] [PubMed]
- Kovesdy, C.P.; Anderson, J.E.; Kalantar-Zadeh, K. Paradoxical association between body mass index and mortality in men with CKD not yet on dialysis. Am. J. Kidney Dis. 2007, 49, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Davey, G.K.; Spencer, E.A.; Appleby, P.N.; Allen, N.E.; Knox, K.H.; Key, T.J. EPIC-Oxford: Lifestyle characteristics and nutrient intakes in a cohort of 33,883 meat-eaters and 31,546 non meat-eaters in the UK. Public Health Nutr. 2003, 6, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Atabak, S.; Esmaillzadek, A. Soy protein intake, cardiorenal indices, and C reactive protein in type II diabetes with nephropathy; a longitudinal randomized clinical trial. Diabetes Care 2008, 31, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Kontessis, P.; Jones, S.; Dodds, R.; Trevisan, R.; Nosadini, R.; Fioretto, P.; Borsato, M.; Sacerdoti, D.; Viberti, G. Renal, metabolic and hormonal responses to ingestions of animal and vegetable proteins. Kidney Int. 1990, 8, 136–144. [Google Scholar] [CrossRef]
- Elliott, P.; Stamler, J.; Dyer, A.R.; Appel, L.; Dennis, B.; Kesteloot, H.; Ueshima, H.; Okayama, A.; Chan, Q.; Garside, D.B.; et al. Association between Protein intake and blood pressure. Arch. Intern. Med. 2006, 166, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Barcenilla, A.; Pryde, S.E.; Martin, J.C.; Duncan, S.H.; Stewart, C.S.; Henderson, C.; Flint, H.J. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 2000, 66, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Macfarlane, G.T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 1991, 70, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Donohoe, D.R.; Garge, N.; Zhang, X.; Sun, W.; O’Connell, T.M.; Bunger, M.K.; Bultman, S.J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011, 13, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Conlon, M.A.; Bird, A.R. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients 2015, 7, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Trent, M.S.; Stead, C.M.; Tran, A.X.; Hankins, J.V. Diversity of endotoxin and its impact on pathogenesis. J. Endotoxin Res. 2006, 12, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-gut microbiota metabolic interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bjursell, M.K.; Himrod, J.; Deng, S.; Carmichael, L.K.; Chiang, H.C.; Hooper, L.V.; Gordon, J.I. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 2003, 299, 2074–2076. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermudez-Humaran, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, W.; Geisel, J. Vegetarian lifestyle and monitoring of vitamin B-12 status. Clin. Chim. Acta 2002, 326, 47–59. [Google Scholar] [CrossRef]
- Ho-Pham, L.T.; Nguyen, N.D.; Nguyen, T.V. Effect of vegetarian diets on bone mineral density: A Bayesian meta-analysis. Am. J. Clin. Nutr. 2009, 90, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Appleby, P.N.; Roddam, A.; Allen, N.; Key, T.J. Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. Eur. J. Clin. Nutr. 2007, 61, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J. Health effects of vegan diets. Am. J. Clin. Nutr. 2009, 89, 1627S–1633S. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, N.S.; Jaceldo-Siegl, K.; Sabate, J.; Fraser, G.E. Nutrient Profiles of Vegetarian and Non-vegetarian Dietary Patterns. J. Acad. Nutr. Diet. 2013, 113, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- NKF KDOQI GUIDELINES 2002. KDOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification. Available online: http://www2.kidney.org/professionals/kdoqi/guidelines_ckd/p6_comp_g9.htm (accessed on 20 January 2017).
- National Kidney Foundation. K/DOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am. J. Kidney Dis. 2007, 49, S1–S179. [Google Scholar]
- National Kidney Foundation. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Available online: www.kdigo.org/clinical_practice_guidelines/pdf/CKD/KDIGO_2012_CKD_GL.pdf (accessed on 21 January 2017).
- Kidney Health Australia—Caring for Australasians with Renal Impairment (KHA-CARI) Guidelines. Modification of Lifestyle and Nutrition Interventions for Management of Early Chronic Kidney Disease. Available online: http://www.cari.org.au/CKD/CKD%20early/Modification_of_Llifestyle_Nutrition_ECKD.pdf (accessed on 18 January 2017).
- Toigo, G.; Aparicio, M.; Attman, P.O.; Cano, N.; Cianciaruso, B.; Engel, B.; Fouque, D.; Heidland, A.; Teplan, V.; Wanner, C. Consensus Report. Expert Working Group report on nutrition in adult patients with renal insufficiency. Clin. Nutr. 2000, 19, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Clinical Practice Guidelines. Nutrition in CKD. UK Renal Association. 5th Edition. 2009–2010. Available online: www.renal.org/guidelines (accessed on 18 January 2017).
- Ogborn, M.R.; Bankovic-Calic, N.; Shoesmith, C.; Buist, R.; Peeling, J. Soy protein modification of rat polycystic kidney disease. Am. J. Physiol. 1998, 274, F541–F549. [Google Scholar] [PubMed]
- Trujillo, J.; Ramirez, V.; Perez, J.; Torre-Villalvazo, I.; Torres, N.; Tovar, A.R.; Munoz, R.M.; Uribe, N.; Gamba, G.; Bobadilla, N.A. Renal protection by a soy diet in obese Zucker rats is associated with restoration of nitric oxide generation. Am. J. Physiol. Ren. Physiol. 2005, 288, F108–F116. [Google Scholar] [CrossRef] [PubMed]
- Moe, S.M.; Chen, N.X.; Seifert, M.F.; Sinders, R.M.; Duan, D.; Chen, X.; Liang, Y.; Radcliff, J.S.; White, K.E.; Gattone, V.H., II. A rat model of chronic kidney disease-mineral bone disorder. Kidney Int. 2009, 75, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Mitch, W.E.; Remuzzi, G. Diets for patients with chronic kidney disease, should we reconsider? BMC Nephrol. 2016, 17, 80. [Google Scholar] [CrossRef] [PubMed]
- Spencer, E.A.; Appleby, P.N.; Davey, G.K.; Key, T.J. Diet and body mass index in 38,000 EPIC-Oxford meat-eaters, fish-eaters, vegetarians and vegans. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, M.; Chauveau, P.; de Précigout, V.; Bouchet, J.L.; Lasseur, C.; Combe, C. Nutrition and outcome on renal replacement therapy of patients with chronic renal failure treated with supplemented very low-protein diet. J. Am. Soc. Nephrol. 2000, 11, 708–716. [Google Scholar] [PubMed]
- Jibani, M.M.; Bloodworth, L.L.; Foden, E.; Griffiths, K.D.; Galpin, O.P. Predominantly vegetarian diet in patients with incipient and early clinical diabetic nephropathy: Effects of albumin excretion rate and nutritional status. Diabet. Med. 1991, 8, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Barsotti, G.; Morelli, E.; Cupisti, A.; Meola, M.; Dani, L.; Giovannetti, S. A low-nitrogen low-phosphorous vegan diet for patients with chronic renal failure. Nephron 1996, 74, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Blake, J.E.; Turner, J.; Smith, B.M. Effects of soy protein on renal function and proteinuria in patients with type 2 diabetes. Am. J. Clin. Nutr. 1998, 68, 1347S–1353S. [Google Scholar] [PubMed]
- Lohsiriwat, S. Protein Diet and Estimated Glomerular Filtration Rate. Open J. Nephrol. 2013, 3, 97–100. [Google Scholar] [CrossRef]
- Knight, E.L.; Stampfer, M.J.; Hankinson, S.E. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann. Intern. Med. 2003, 138, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Nagano, N.; Miyata, S.; Abe, M.; Kobayashi, N.; Wakita, S.; Yamashita, T.; Wada, M. Effect of manipulating serum phosphorus with phosphate binder on circulating PTH and FGF23 in renal failure rats. Kidney Int. 2006, 69, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Kestenbaum, B.; Sampson, J.N.; Rudser, K.D.; Patterson, D.J.; Seliger, S.L.; Young, B.; Sherrard, D.J.; Andress, D.L. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol. 2005, 16, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Moe, S.M.; Zidehsarai, M.P.; Chambers, M.A.; Jackman, L.A.; Radcliffe, J.S.; Trevino, L.L.; Donahue, S.E.; Asplin, J.R. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.; Sayre, S.S.; Leon, J.B. Effect of food additives on hyperphosphatemia among patients with end-stage renal disease. A randomized controlled trial. J. Am. Med. Assoc. 2009, 301, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Pagenkemper, J. Planning a vegetarian renal diet. J. Ren. Nutr. 1995, 5, 234–238. [Google Scholar] [CrossRef]
- Azadbakht, L.; Esmaillzadeh, A. Soy-protein consumption and kidney-related biomarkers among type 2 diabetics: A crossover, randomized clinical trial. J. Ren. Nutr. 2009, 19, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Howard, G.; O’Leary, D.H.; Zaccaro, D.; Haffner, S.; Rewers, M.; Hamman, R.; Selby, J.V.; Saad, M.F.; Savage, P.; Bergman, R. Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Circulation 1996, 93, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Folsom, A.R.; Eckfeldt, J.H.; Weitzman, S.; Ma, J.; Chambless, L.E.; Barnes, R.W.; Cram, K.B.; Hutchinson, R.G. Relation of carotid artery wall thickness to diabetes mellitus, fasting glucose and insulin, body size, and physical activity. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Stroke 1994, 25, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.E.; Leonetti, D.L.; Prigeon, R.L.; Boyko, E.J.; Bergstrom, R.W.; Fujimoto, W.Y. Relationship of proinsulin and insulin with noninsulin-dependent diabetes mellitus and coronary heart disease in Japanese-American men: Impact of obesity-clinical research center study. J. Clin. Endocrinol. Metab. 1995, 80, 1399–1406. [Google Scholar] [PubMed]
- Despres, J.P.; Lamarche, B.; Mauriege, P.; Cantin, B.; Dagenais, G.R.; Moorjani, S.; Lupien, P.J. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N. Engl. J. Med. 1996, 334, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Pyorala, M.; Miettinen, H.; Laakso, M.; Pyorala, K. Hyperinsulinemia and the risk of stroke in healthy middle-aged men: The 22-year follow-up results of the Helsinki Policemen Study. Stroke 1998, 29, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Eschwege, E.; Richard, J.L.; Thibult, N.; Ducimetiere, P.; Warnet, J.M.; Claude, J.R.; Rosselin, G.E. Coronary heart disease mortality in relation with diabetes, blood glucose and plasma insulin levels. The Paris Prospective Study, ten years later. Horm. Metab. Res. Suppl. 1985, 15, 41–46. [Google Scholar] [PubMed]
- Orchard, T.J.; Eichner, J.; Kuller, L.H.; Becker, D.J.; McCallum, L.M.; Grandits, G.A. Insulin as a predictor of coronary heart disease: Interaction with apolipoprotein E phenotype. A report from the Multiple Risk Factor Intervention Trial. Ann. Epidemiol. 1994, 4, 40–45. [Google Scholar] [CrossRef]
- Becker, B.; Kronenberg, F.; Kielstein, J.T.; Haller, H.; Morath, C.; Ritz, E.; Fliser, D.; The MMKD Study Group. Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: The Mild and Moderate Kidney Disease Study. J. Am. Soc. Nephrol. 2005, 16, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, K.; Shoji, T.; Emoto, M.; Tahara, H.; Koyama, H.; Ishimura, E.; Miki, T.; Tabata, T.; Nishizawa, Y. Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J. Am. Soc. Nephrol. 2002, 13, 1894–1900. [Google Scholar] [CrossRef] [PubMed]
- Siew, E.D.; Ikizler, T.A. Determinants of insulin resistance and its effects on protein metabolism in patients with advanced chronic kidney disease. Contrib. Nephrol. 2008, 161, 138–144. [Google Scholar] [PubMed]
- Hung, C.J.; Huang, P.C.; Li, Y.H.; Ho, L.T.; Chou, H.F. Taiwanese vegetarians have higher insulin sensitivity than omnivores. Br. J. Nutr. 2006, 95, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.S.; Lai, N.S.; Ho, L.T.; Lin, C.L. Insulin sensitivity in Chinese ovo-lactovegetarians compared with omnivores. Eur. J. Clin. Nutr. 2004, 58, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Scialla, J.J.; Appel, L.J.; Wolf, M.; Yang, W.; Zhang, X.; Sozio, S.M.; Miller, E.R.; Bazzano, L.A.; Cuevas, M.; Glenn, M.J.; et al. Plant protein intake is associated with fibroblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: The Chronic Renal Insufficiency Cohort study. J. Ren. Nutr. 2012, 22, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Mitch, W.E. Insights into the abnormalities of chronic renal disease attributed to malnutrition. J. Am. Soc. Nephrol. 2002, 13, S22–S27. [Google Scholar] [PubMed]
- Trilok, G.; Draper, H.H. Sources of protein-induced endogenous acid production and excretion by human adults. Calcif. Tissue Int. 1989, 44, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Scialla, J.J.; Anderson, C.A.M. Dietary acid load: A novel nutritional target in chronic kidney disease? Adv. Chronic Kidney Dis. 2013, 20, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Simoni, J.; Jo, C.; Wesson, D.E. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012, 81, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Key, T.J.; Fraser, G.E.; Thorogood, M.; Appleby, P.N.; Beral, V.; Reeves, G.; Burr, M.L.; Chang-Claude, J.; Frentzel-Beyme, R.; Kuzma, J.W.; et al. Mortality in vegetarians and nonvegetarians: Detailed findings from a collaborative analysis of 5 prospective studies. Am. J. Clin. Nutr. 1999, 70 (Suppl. S3), 516S–524S. [Google Scholar] [PubMed]
- Nanri, A.M.; Kono, S. Impact of C-reactive protein on disease risk and its relation to dietary factors: Literature review. Asia Pac. J. Cancer Prev. 2007, 8, 167–177. [Google Scholar]
- D’Amico, G.; Gentile, M.G. Influence of diet on lipid abnormalities in human renal disease. Am. J. Kidney Dis. 1993, 22, 151–157. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Appleby, P.N.; Davey, G.K.; Key, T.J. Hypertension and blood pressure among meat-eaters, fish-eaters, vegetarians and vegans in EPIC-Oxford. Public Health Nutr. 2002, 5, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Mukkuden-Petersen, J.; Oosthuizen, W.; Jerling, J.C. A systematic review of the effects of nuts on blood lipid profiles in humans. J. Nutr. 2005, 135, 2082–2089. [Google Scholar]
- Jenkins, D.J.; Kendall, C.W.; Faulkner, D.; Vidgen, E.; Trautwein, E.A.; Parker, T.L.; Marchie, A.; Koumbridis, G.; Lapsley, K.G.; Josse, R.G.; et al. A dietary portfolio approach to cholesterol reduction: Combined effects of plant sterols, vegetable proteins and viscous fibers in hypercholesterolemia. Metabolism 2002, 51, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Stampfer, M.J.; Hu, F.B.; Giovannucci, E.; Rimm, E.; Manson, J.E.; Hennekens, C.H.; Willett, W.C. Whole-grain consumption and risk of coronary heart disease: Results from the Nurses’ Health Study. Am. J. Clin. Nutr. 1999, 70, 412–419. [Google Scholar] [PubMed]
- Liu, S.; Manson, J.E.; Stampfer, M.J.; Rexrode, K.M.; Hu, F.B.; Rimm, E.B.; Willett, W.C. Whole grain consumption and risk of ischemic stroke in women: A prospective study. JAMA 2000, 284, 1534–1540. [Google Scholar] [CrossRef] [PubMed]
- Knekt, P.; Reunanen, A.; Jarvinen, R.; Seppanen, R.; Heliovaara, M.; Aromaa, A. Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am. J. Epidemiol. 1994, 139, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yuan, W. Effects of soy protein containing isoflavones in patients with chronic kidney disease: A systematic review and meta-analysis. Clin. Nutr. 2016, 35, 117–124. [Google Scholar]
- Zhang, J.; Liu, J.; Su, J.; Tian, F. The effects of soy protein on chronic kidney disease: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2014, 68, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Kandouz, S.; Mohamed, A.S.; Zheng, Y.; Sandeman, S.; Davenport, A. Reduced protein bound uraemic toxins in vegetarian kidney failure patients treated by haemodiafiltration. Hemodial. Int. 2016, 20, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.T.; Chang, C.Y.; Hsu, W.M.; Wang, I.-K.; Hsu, C.-H.; Cheng, S.-H.; Liang, C.-C.; Chang, C.-T.; Huang, C.-C. Nutritional status of vegetarians on maintenance haemodialysis. Nephrology (Carlton) 2011, 16, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.; Attini, R.; Vesario, E.; Gaglioti, P.; Piccoli, E.; Consiglio, V.; Deagostini, C.; Oberto, M.; Todros, T. Vegetarian supplemented low-protein diets. A safe option for pregnant CKD patients: Report of 12 pregnancies in 11 patients. Nephrol. Dial. Transplant. 2011, 26, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Attini, R.; Leone, F.; Parisi, S.; Fassio, F.; Capizzi, I.; Loi, V.; Colla, L.; Rossetti, M.; Gerbino, M.; Maxia, S.; et al. Vegan-vegetarian low-protein supplemented diets in pregnant CKD patients: Fifteen years of experience. BMC Nephrol. 2016, 17, 132. [Google Scholar] [CrossRef] [PubMed]
- Cahill, L.E.; Peng, C.Y.; Bankovic-Calic, N.; Sankaran, D.; Ogborn, M.R.; Aukema, H.M. Dietary soya protein during pregnancy and lactation in rats with hereditary kidney disease attenuates disease progression in offspring. Br. J. Nutr. 2007, 97, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bonacasa, B.; Siow, R.C.; Mann, G.E. Impact of dietary soy isoflavones in pregnancy on fetal programming of endothelial function in offspring. Microcirculation 2011, 18, 270–285. [Google Scholar] [CrossRef] [PubMed]
- Chauveau, P.; Couzi, L.; Vendrely, B.; de Precigout, V.; Combe, C.; Fouque, D.; Aparicio, M. Long-term outcome on renal replacement therapy in patients who previously received a keto acid-supplemented very-low-protein diet. Am. J. Clin. Nutr. 2009, 90, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Garneata, L.; Stancu, A.; Dragomir, D.; Stefan, G.; Mircescu, G. Ketoanalogue-Supplemented Vegetarian Very Low-Protein Diet and CKD Progression. J. Am. Soc. Nephrol. 2016, 27, 2164–2176. [Google Scholar] [CrossRef] [PubMed]
Guideline | Protein Intake | Salt Restriction | Phosphorus | Serum Potassium | Acid-Base Balance | Reference |
---|---|---|---|---|---|---|
KDIGO 2012 | 0.8 g/kg/day in adults with diabetes (2C) or without diabetes (2B) and GFR <30 mL/min/1.73 m2 (GFR categories G4–G5) | <90 mmol (<2 g) per day of sodium (5 g of sodium chloride) in adults | - | - | - | [25] |
KHA-CARI (2013) Mild CKD (stages 1–3) | 0.75–1.0 g/kg/day | 100 mmol/day (2.3 g sodium or 6 g salt per day) or less | No restriction of dietary phosphate intake | Restriction by appropriately suited diet | - | [26] |
ESPEN (2000) Early to moderate renal failure | 0.55–0.6 (2/3 of HBV) (minimum protein requirement) | - | Dietary phosphorus intake 600–700 mg/day | - | - | [27] |
UK Renal Association (2009–2010) | 0.75 g/kg IBW/day for patients with stage 4–5 CKD not on dialysis 1.2 g/kg IBW/day for patients treated with dialysis (2B) | - | - | - | - | [28] |
Country | Diet/Groups | Time | Outcome | Reference |
---|---|---|---|---|
UK/Italy | Healthy individuals fed with vegetable protein diet (n = 10), an animal protein diet (n = 10), or an animal protein diet supplemented with fiber (n = 7). All diets contained the same amount of total protein. | 3 weeks | GFR, renal plasma flow, and fractional clearance of albumin and IgG were significantly higher on the animal than the vegetable protein diets (GFR: 121 ± 4 vs. 111 ± 4 mL/min/1.73 m2, p < 0.001; RPF: 634 ± 29 vs. 559 ± 26 mL/min/1.73 m2, p < 0.001; theta Alb: (19.5 ± 3.1) × 10−7 vs. (10.2 ± 1.6) × 10−7, p < 0.01; theta IgG: (11.6 ± 3.1) × 10−7 vs. (7.5 ± 1.7) × 10−7, p < 0.05). | [8] |
USA | 1624 women with normal renal function or mild renal insufficiency enrolled in the Nurses’ Health Study. High protein diet | 11 years | High protein intake was not significantly associated with change in estimated GFR in women with normal renal function. In women with mild renal insufficiency, protein intake was significantly associated with a change in estimated GFR of −1.69 mL/min per 1.73 m2 (CI, −2.93 to −0.45 mL/min per 1.73 m2) per 10 g increase in protein intake. High intake of non-dairy animal protein in women with mild renal insufficiency was associated with a significantly greater change in estimated GFR (−1.21 mL/min per 1.73 m2 (CI, −2.34 to −0.33 mL/min per 1.73 m2) | [39] |
USA | Nine patients with a mean estimated GFR of 32 mL/min. Comparison of vegetarian and meat diets | 1 week | 1 week of a vegetarian diet led to lower serum phosphorus levels and decreased FGF23 levels. Plasma phosphorus (mg/dL) before meat consumption 3.5 ± 0.6 and after it 3.7 ± 0.6; plasma phosphorus (mg/dL) before vegetarian diet 3.5 ± 0.6 and after it 3.2 ± 0.5; p = 0.02. Plasma intact PTH (pg/mL) before meat 58 ± 31, after meat 46 ± 29, before vegetarian diet 58 ± 39, and after it 56 ± 30, p = 0.002. Plasma FGF23 (pg/mL) before meat 72 ± 39 and after it 101 ± 83; before vegetarian diet 84 ± 65 and after it 61 ± 35, p = 0.008. | [42] |
Isfahan, Iran | 14 patients (10 men and 4 women). Group 1—0.8 g/kg protein (70% animal and 30% vegetable proteins) Group 2—diet with the same amount of protein with 35% animal protein, 35% soy protein, and 30% other vegetable proteins. | 7 weeks | Consumption of soy protein reduced urinary urea nitrogen (−0.9 ± 0.8 vs. 0.2 ± 0.6 mg/dL, respectively, SD; p < 0.001), proteinuria (−78 ± 37 vs. 42 ± 39 mg/day, respectively, SD; p < 0.001), blood sodium (−2 ± 0.04 vs. 2.0 ± 0.06 mg/dL, respectively, SD; p < 0.01), and serum phosphorus (−0.03 ± 0.2 vs. 0.2 ± 0.3 mg/dL, respectively, SD; p < 0.01) compared with animal protein | [45] |
Hualien, Taiwan | 98 healthy female adults: 49 Buddhist lactovegetarians and 49 omnivores. | - | Vegetarians had significantly lower levels of fasting insulin (median: 35.3 vs. 50.6 pmol/L) and plasma glucose (mean: 4.7 (se 0.05) vs. 4.9 (se 0.05) mmol/L) in comparison to omnivores. Insulin resistance (homeostasis model assessment method) was significantly lower in the vegetarians than in the omnivores (median: 1.10 vs. 1.56) | [56] |
Chia-Yi, Taiwan | 36 healthy volunteers (vegetarian, n = 19; omnivore, n = 17) with normal fasting plasma glucose levels | - | Omnivores had higher serum uric acid levels than vegetarians (5.25 ± 0.84 vs. 4.54 ± 0.75 mg/dL, p = 0.011). Significant differences between omnivores and vegetarians: fasting insulin, 4.06 ± 0.77 vs. 3.02 ± 1.19 microU/mL, p = 0.004; HOMA-IR, 6.75 ± 1.31 vs. 4.78 ± 2.07, p = 0.002; HOMA %S, 159.2% ± 31.7% vs. 264.3% ± 171.7%, p = 0.018) | [57] |
Oxford, UK | 37,875 healthy men and women participating in EPIC-Oxford. Four diet groups (meat-eaters, fish-eaters, vegetarians, and vegans) | - | Age-adjusted mean BMI was significantly different between the four diet groups, being highest in the meat-eaters (24.41 kg/m2 in men, 23.52 kg/m2 in women) and lowest in the vegans (22.49 kg/m2 in men, 21.98 kg/m2 in women) | [33] |
Toronto, Ontario, Canada | Volunteers who were already consuming a low-saturated fat, low-cholesterol diet before starting the study. Test (combination) diet—very low content of saturated fat and high in plant sterols (1 g/1000 kcal), soy protein (23 g/1000 kcal), and viscous fibers (9 g/1000 kcal) obtained from foods available in supermarkets and health food stores | 1 month | The diet reduced low-density lipoprotein (LDL)-cholesterol by 29.0% ± 2.7% (p < 0.001) and the ratio of LDL-cholesterol to high-density lipoprotein (HDL)-cholesterol by 26.5% ± 3.4% (p < 0.001). Maximal reductions were seen by week 2. | [69] |
Boston, MA, USA | 75,521 women aged 38–63 year with no previous history of cardiovascular disease or diabetes. Assessment of whole-grain consumption effects | 10 years. of follow-up | After adjustment for age and smoking, increased whole-grain intake was associated with decreased risk of CHD. For increasing quintiles of intake, the corresponding relative risks (RRs) were 1.0 (reference), 0.86, 0.82, 0.72, and 0.67 (95% CI comparing two extreme quintiles: 0.54, 0.84; p for trend <0.001). | [70] |
- | Meta-analysis of 12 studies (280 participants). Assessment of the effects of soy protein containing isoflavones in patients with chronic kidney disease | NA 1 | Dietary soy was associated with significant decrease of serum creatinine (−0.05 mg/dL (95% CI: −0.10, −0.00 mg/dL; p = 0.04)), serum phosphorus (−0.13 mg/dL (95% CI: −0.26, −0.01 mg/dL; p = 0.04)), CRP (−0.98 mg/L (95% CI: −1.25, −0.71 mg/L; p < 0.00001)), and proteinuria (−0.13 mg/day (95% CI: −0.18, −0.08 mg/day; p < 0.00001)) in the pre-dialysis subgroup. | [73] |
- | The meta-analysis consisted of nine trials, comprising 197 subjects. Analysis of effects of soy protein on chronic kidney disease | NA | Soy protein intake significantly reduced SCR (−6.231 μmol/L (95% confidence interval (CI): −11.109, −1.352 μmol/L); p = 0.012) and serum phosphorus concentrations (−0.804 (95% CI: −1.143, −0.464 μmol/L); p = 0.00). It also significantly reduced serum TG, with a pooled estimated change of −0.223 mmol/L (95% CI: −0.396, −0.051 mmol/L; p = 0.011). | [74] |
London, UK; Brighton, UK; Ash Sharqia Governorate, Egypt | Cohort of 138 CKD stage 5 patients treated by On-line HDF (Ol-HDF). Comparison of indoxyl sulfate (IS) and p-cresyl sulfate (PCS) in vegetarians and omnivores. | - | Vegetarian patients had lower IS and PCS levels (median 41.5 (24.2–71.9) vs. 78.1 (49.5–107.5) and PCS (41.6 (14.2–178.3) vs. 127.3 (77.4–205.6) µmol/L, respectively, p < 0.05, as well as lower pre-Ol-HDF serum urea, and phosphate (13.8 ± 3.8 vs. 18.4 ± 5.2 mmol/L, and 1.33 ± 0.21 vs. 1.58 ± 0.45 mmol/L), and estimated urea nitrogen intake (1.25 ± 0.28 vs. 1.62 ± 0.5 g/kg/day), respectively, all p < 0.05 | [75] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gluba-Brzózka, A.; Franczyk, B.; Rysz, J. Vegetarian Diet in Chronic Kidney Disease—A Friend or Foe. Nutrients 2017, 9, 374. https://doi.org/10.3390/nu9040374
Gluba-Brzózka A, Franczyk B, Rysz J. Vegetarian Diet in Chronic Kidney Disease—A Friend or Foe. Nutrients. 2017; 9(4):374. https://doi.org/10.3390/nu9040374
Chicago/Turabian StyleGluba-Brzózka, Anna, Beata Franczyk, and Jacek Rysz. 2017. "Vegetarian Diet in Chronic Kidney Disease—A Friend or Foe" Nutrients 9, no. 4: 374. https://doi.org/10.3390/nu9040374
APA StyleGluba-Brzózka, A., Franczyk, B., & Rysz, J. (2017). Vegetarian Diet in Chronic Kidney Disease—A Friend or Foe. Nutrients, 9(4), 374. https://doi.org/10.3390/nu9040374