Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Bellizzi, V.; Cupisti, A.; Locatelli, F.; Bolasco, P.; Brunori, G.; Cancarini, G.; Caria, S.; De Nicola, L.; Di Iorio, B.R.; Di Micco, L.; et al. “Conservative Treatment of CKD” study group of the Italian Society of Nephrology. Low-protein diets for chronic kidney disease patients: The Italian experience. BMC Nephrol. 2016, 17, 77. [Google Scholar] [CrossRef] [PubMed]
- Mitch, W.E.; Remuzzi, G. Diets for patients with chronic kidney disease, should we reconsider? BMC Nephrol. 2016, 17, 80. [Google Scholar] [CrossRef] [PubMed]
- Rebholz, C.M.; Crews, D.C.; Grams, M.E.; Steffen, L.M.; Levey, A.S.; Miller, E.R., 3rd; Appel, L.J.; Coresh, J. DASH (Dietary Approaches to Stop Hypertension) diet and risk of subsequent kidney disease. Am. J. Kidney Dis. 2016, 68, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Asghari, G.; Farhadnejad, H.; Mirmiran, P.; Dizavi, A.; Yuzbashian, E.; Azizi, F. Adherence to the Mediterranean diet is associated with reduced risk of incident chronic kidney diseases among Tehranian adults. Hypertens. Res. 2017, 40, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Gallieni, M.; Cupisti, A. DASH and Mediterranean diets as nutritional interventions for CKD patients. Am. J. Kidney Dis. 2016, 68, 828–830. [Google Scholar] [CrossRef] [PubMed]
- Vegter, S.; Perna, A.; Postma, M.J.; Navis, G.; Remuzzi, G.; Ruggenenti, P. Sodium intake, ACE inhibition, and progression to ESRD. J. Am. Soc. Nephrol. 2012, 23, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Cupisti, A.; D’Alessandro, C.; Di Iorio, B.; Bottai, A.; Zullo, C.; Giannese, D.; Barsotti, M.; Egidi, M.F. Nutritional support in the tertiary care of patients affected by chronic renal insufficiency: Report of a step-wise, personalized, pragmatic approach. BMC Nephrol. 2016, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, M.; Bellizzi, V.; Chauveau, P.; Cupisti, A.; Ecder, T.; Fouque, D.; Garneata, L.; Lin, S.; Mitch, W.E.; Teplan, V.; et al. Keto acid therapy in predialysis chronic kidney disease patients: Final consensus. J. Ren. Nutr. 2012, 22, S22–S24. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Kalantar-Zadeh, K. Back to the future: Restricted protein intake for conservative management of CKD, triple goals of renoprotection, uremia mitigation, and nutritional health. Int. Urol. Nephrol. 2016, 48, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Tom, K.; Young, V.R.; Chapman, T.; Masud, T.; Akpele, L.; Maroni, B.J. Long-term adaptive responses to dietary protein restriction in chronic renal failure. Am. J. Physiol. Endocrinol. Metab. 1995, 268, E668–E677. [Google Scholar]
- Cupisti, A.; Bolasco, P.G. Keto-analogues and essential amino acids and other supplements in the conservative management of chronic kidney disease. Panminerva Med. 2017, 59, 149–156. [Google Scholar] [PubMed]
- Aparicio, M.; Bellizzi, V.; Chauveau, P.; Cupisti, A.; Ecder, T.; Fouque, D.; Garneata, L.; Lin, S.; Mitch, W.E.; Teplan, V.; et al. Do ketoanalogues still have a role in delaying dialysis initiation in CKD predialysis patients? Semin. Dial. 2013, 26, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Kopple, J.D.; Kalantar-Zadeh, K. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: Reconciling low protein intake with nutritional therapy. Am. J. Clin. Nutr. 2013, 97, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.P.; Kalantar-Zadeh, K.; Kopple, J.D. Is there a role for ketoacid supplements in the management of CKD? Am. J. Kidney Dis. 2015, 65, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Plebani, M.; Iervasi, G.; Gallieni, M. Vitamin K deficiency in chronic kidney disease: Evidence is building up. Am. J. Nephrol. 2017, 45, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Crepaldi, G.; Maggi, S.; Galli, F.; D’Angelo, A.; Calò, L.; Giannini, S.; Miozzo, D.; Gallieni, M. Vitamin K, bone fractures, and vascular calcifications in chronic kidney disease: An important but poorly studied relationship. J. Endocrinol. Investig. 2011, 34, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Meijers, B.K.; De Preter, V.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P. p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol. Dial. Transplant. 2010, 25, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Salmean, Y.A.; Segal, M.S.; Langkamp-Henken, B.; Canales, M.T.; Zello, G.A.; Dahl, W.J. Foods with added fiber lower serum creatinine levels in patients with chronic kidney disease. J. Ren. Nutr. 2013, 23, e29–e32. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Montemurno, E.; Vannini, L.; Cosola, C.; Cavallo, N.; Gozzi, G.; Maranzano, V.; Di Cagno, R.; Gobbetti, M.; Gesualdo, L. Effect of whole-grain barley on the human fecal microbiota and metabolome. Appl. Environ. Microbiol. 2015, 81, 7945–7956. [Google Scholar] [CrossRef] [PubMed]
- Cosola, C.; De Angelis, M.; Rocchetti, M.T.; Montemurno, E.; Maranzano, V.; Dalfino, G.; Manno, C.; Zito, A.; Gesualdo, M.; Ciccone, M.M.; et al. Beta-glucans supplementation associates with reduction in p-cresyl sulfate levels and improved endothelial vascular reactivity in healthy individuals. PLoS ONE 2017, 12, e0169635. [Google Scholar] [CrossRef] [PubMed]
- St-Jules, D.E.; Goldfarb, D.S.; Sevick, M.A. Nutrient non-equivalence: Does restricting high-potassium plant foods help to prevent hyperkalemia in hemodialysis patients? J. Ren. Nutr. 2016, 26, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014, 86, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, C.; Piccoli, G.B.; Calella, P.; Brunori, G.; Pasticci, F.; Egidi, M.F.; Capizzi, I.; Bellizzi, V.; Cupisti, A. “Dietaly”: Practical issues for the nutritional management of CKD patients in Italy. BMC Nephrol. 2016, 17, 102. [Google Scholar] [CrossRef] [PubMed]
- Banca Dati di Composizione Degli Alimenti per Studi Epidemiologi in ITALIA. Istituto Europeo di Oncologi Revisione del 2008. Available online: http://www.ieo.it/bda2008 (accessed on 15 December 2016).
- USDA National Nutrient Database for Standard Reference, Release 28. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/dayocs/usda-national-nutrient-database-for-standard-reference/ (accessed on 15 December 2016).
- Remer, T.; Manz, F. Potential renal acid load of foods and its influence on urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Frassetto, L.A.; Todd, K.M.; Morris, R.C., Jr.; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [PubMed]
- World Health Organization; Food and Agriculture Organization of the United Nations; United Nations University. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation (WHO Technical Report Series 935); WHO: Geneve, Switzerland, 2007. [Google Scholar]
- LARN. Livelli di Assunzione di Riferimento di Nutrienti ed energia per la popolazione Italiana; Società Italiana di Nutrizione Umana (SINU): Milano, Italy, 2012. [Google Scholar]
- Nationale Kidney Foundation. Clinical Practice guidelines for nutrition in chronic renal failure. Am. J. Kidney Dis. 2000, 35, S1–S140. [Google Scholar]
- Ramezani, A.; Massy, Z.A.; Meijers, B.; Evenepoel, P.; Vanholder, R.; Raj, D.S. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am. J. Kidney Dis. 2016, 67, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, A.; Regolisti, G.; Cosola, C.; Gesualdo, L.; Fiaccadori, E. Gut microbiota in type two diabetes and chronic kidney disease. Curr. Diabetes Rep. 2017, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Montemurno, E.; Cosola, C.; Dalfino, G.; Daidone, G.; De Angelis, M.; Gobbetti, M.; Gesualdo, L. What would you like to eat, Mr CKD microbiota? A Mediterranean diet, please! Kidney Blood Press. Res. 2014, 39, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Puertollano, E.; Kolida, S.; Yaqoob, P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Meijers, B.K.; Bammens, B.R.; Verbeke, K. Uremic toxins originating from colonic microbial metabolism. Kidney Int. Suppl. 2009, 114, S12–S19. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Kopple, J.D.; Deepak, S.; Block, D.; Block, G. Food intake characteristics of hemodialysis patients as obtained by food frequency questionnaire. J. Ren. Nutr. 2002, 12, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Poesen, R.; Meijers, B.; Evenepoel, P. The colon: An overlooked site for therapeutics in dialysis patients. Semin. Dial. 2013, 26, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.K.; Muir, J.G.; Gibson, P.R. Review article: Insights into colonic protein fermentation, its modulation and potential health implications. Aliment. Pharmacol. Ther. 2016, 43, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Anders, H.J.; Andersen, K.; Stecher, B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013, 83, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Mishima, E.; Fukuda, S.; Shima, H.; Hirayama, A.; Akiyama, Y.; Takeuchi, Y.; Fukuda, N.N.; Suzuki, T.; Suzuki, C.; Yuri, A.; et al. Alteration of the intestinal environment by lubiprostone is associated with amelioration of adenine-induced CKD. J. Am. Soc. Nephrol. 2015, 26, 1787–1794. [Google Scholar] [CrossRef] [PubMed]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome, and immune system: Envisioning the future. Nature 2011, 474, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, L.A.; Morris, R.C., Jr.; Sebastian, A. Dietary sodium chloride intake independently predicts the degree of hyperchloremic metabolic acidosis in healthy humans consuming a net acid-producing diet. Am. J. Physiol. Ren. Physiol. 2007, 293, F521–F525. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, B.R.; Di Micco, L.; Marzocco, S.; De Simone, E.; De Blasio, A.; Sirico, M.L.; Nardone, L.; On Behalf Of Ubi Study Group. Very Low-Protein Diet (VLPD) Reduces Metabolic Acidosis in Subjects with Chronic Kidney Disease: The “Nutritional Light Signal” of the Renal Acid Load. Nutrients 2017, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F.; Clegg, D.J. Achieving the benefits of a high-potassium, paleolithic diet, without the toxicity. Mayo Clin. Proc. 2016, 91, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Barsotti, G.; Morelli, E.; Cupisti, A.; Bertoncini, P.; Giovannetti, S. A special, supplemented ‘vegan’ diet for nephrotic patients. Am. J. Nephrol. 1991, 11, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.R.; Bakris, G.L.; Bushinsky, D.A.; Freeman, M.W.; Mayo, M.R.; Garza, D.; Stasiv, Y.; Zawadzki, R.; Berman, L.; Bushinsky, D.A.; et al. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N. Engl. J. Med. 2015, 372, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Niwa, T.; Tsukushi, S.; Ise, M.; Miyazaki, T.; Tsubakihara, Y.; Owada, A.; Shiigai, T. Indoxyl sulfate and progression of renal failure: Effects of a low-protein diet and oral sorbent on indoxyl sulfate production in uremic rats and undialyzed uremic patients. Min. Electrolyte Metab. 1997, 23, 179–184. [Google Scholar]
- Marzocco, S.; Dal Piaz, F.; Di Micco, L.; Torraca, S.; Sirico, M.L.; Tartaglia, D.; Autore, G.; Di Iorio, B. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif. 2013, 35, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Poesen, R.; Mutsaers, H.A.; Windey, K.; van den Broek, P.H.; Verweij, V.; Augustijns, P.; Kuypers, D.; Jansen, J.; Evenepoel, P.; Verbeke, K.; et al. The influence of dietary protein intake on mammalian tryptophan and phenolic metabolites. PLoS ONE 2015, 2015, e0140820. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, N.; Nishiike, T.; Iguchi, H.; Sakamoto, K. The effect of diet on blood vitamin K status and urinary mineral excretion assessed by a food questionnaire. Nutr. Health 1999, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shearer, M.J.; Newman, P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. J. Lipid. Res. 2014, 55, 345–362. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.W.; Van Der A, A.D.L.; Grobbee, D.E.; Sluijs, I.; Spijkerman, A.M.W.; Van Der Schouw, Y.T. Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 2010, 33, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Geleijnse, J.M.; Vermeer, C.; Grobbee, D.E.; Schurgers, L.J.; Knapen, M.H.; van der Meer, I.M.; Hofman, A.; Witteman, J.C. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. J Nutr. 2004, 134, 3100–3105. [Google Scholar] [PubMed]
- Gast, G.C.M.; de Roos, N.M.; Sluijs, I.; Bots, M.L.; Beulens, J.W.J.; Geleijnse, J.M.; Witteman, J.C.; Grobbee, D.E.; Peeters, P.H.; van der Schouw, Y.T. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Nimptsch, K.; Rohrmann, S.; Linseisen, J. Dietary intake of vitamin K and risk of prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am. J. Clin. Nutr. 2008, 87, 985–992. [Google Scholar] [PubMed]
- Zwakenberg, S.R.; den Braver, N.R.; Engelen, A.I.; Feskens, E.J.; Vermeer, C.; Boer, J.M.; Verschuren, W.M.; van der Schouw, Y.T.; Beulens, J.W. Vitamin K intake and all-cause and cause specific mortality. Clin. Nutr. 2016. [Google Scholar] [CrossRef] [PubMed]
- Juanola-Falgarona, M.; Salas-Salvadó, J.; Martínez-González, M.Á.; Corella, D.; Estruch, R.; Ros, E.; Fitó, M.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Dietary intake of vitamin K is inversely associated with mortality risk. J. Nutr. 2014, 144, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.L.; Sahni, S.; Cheung, B.M.; Sing, C.W.; Wong, I.C. Vitamin K intake and mortality in people with chronic kidney disease from NHANES III. Clin. Nutr. 2015, 34, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Booth, S.L.; Dallal, G.; Shea, M.K.; Gundberg, C.; Peterson, J.W.; Dawson-Hughes, B. Effect of vitamin K supplementation on bone loss in elderly men and women. J. Clin. Endocrinol. Metab. 2008, 93, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Fusaro, M.; D’Alessandro, C.; Noale, M.; Tripepi, G.; Plebani, M.; Veronese, N.; Iervasi, G.; Giannini, S.; Rossini, M.; Tarroni, G.; et al. Low vitamin K1 intake in haemodialysis patients. Clin. Nutr. 2016. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Gallieni, M.; Jamal, S.A. Fractures in chronic kidney disease: Neglected, common, and associated with sickness and death. Kidney Int. 2014, 85, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Tentori, F.; McCullough, K.; Kilpatrick, R.D.; Bradbury, B.D.; Robinson, B.M.; Kerr, P.G.; Pisoni, R.L. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014, 85, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Noale, M.; Viola, V.; Galli, F.; Tripepi, G.; Vajente, N.; Plebani, M.; Zaninotto, M.; Guglielmi, G.; Miotto, D.; et al. Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis study. J. Bone Miner. Res. 2012, 27, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Gallieni, M.; Noale, M.; Tripepi, G.; Miozzo, D.; Plebani, M.; Zaninotto, M.; Guglielmi, G.; Miotto, D.; Fabris, F.; et al. The relationship between the Spine Deformity Index, biochemical parameters of bone metabolism and vascular calcifications: Results from the Epidemiological VERtebral FRACtures iTalian Study (EVERFRACT) in dialysis patients. Clin. Chem. Lab. Med. 2014, 52, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.M.; Tile, L.; Lee, Y.; Tomlinson, G.; Hawker, G.; Scher, J.; Hu, H.; Vieth, R.; Thompson, L.; Jamal, S.; et al. Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): A randomized controlled trial. PLoS Med. 2008, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shiraki, M.; Shiraki, Y.; Aoki, C.; Miura, M. Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J. Bone Miner. Res. 2000, 15, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Shen, X.; Finnan, E.G.; Haytowitz, D.B.; Booth, S.L. Measurement of multiple vitamin K forms in processed and fresh-cut pork products in the U.S. food supply. J. Agric. Food. Chem. 2016, 64, 4531–4535. [Google Scholar] [CrossRef] [PubMed]
- Fouque, D.; Chen, J.; Chen, W.; Garneata, L.; Hwang, S.J.; Kalantar-Zadeh, K.; Kopple, J.D.; Mitch, W.E.; Piccoli, G.; Teplan, V.; et al. Adherence to ketoacids/essential amino acids-supplemented low protein diets and new indications for patients with chronic kidney disease. BMC Nephrol. 2016, 17, 63. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Abe, M.; Okada, K.; Tei, R.; Maruyama, N.; Kikuchi, F.; Higuchi, T.; Soma, M. Oral zinc supplementation reduces the erythropoietin responsiveness Index in patients on hemodialysis. Nutrients 2015, 7, 3783–3795. [Google Scholar] [CrossRef] [PubMed]
- Aliani, M.; Udenigwe, C.C.; Girgih, A.T.; Pownall, T.L.; Bugera, J.L.; Eskin, M.N. Zinc deficiency and taste perception in the elderly. Crit. Rev. Food Sci. Nutr. 2013, 53, 245–250. [Google Scholar] [CrossRef] [PubMed]
Normal Diet | Low Protein Diet | Vegan Diet | Very Low Protein Diet | |
---|---|---|---|---|
Grains (bread, pasta, rice, barley, etc.) | 6–8 servings per day: e.g., 1 serving at breakfast, 2 servings at lunch and dinner, 1 serving at snack | Replaced by protein-free products. 6–8 servings per day: e.g., 1 serving at breakfast, 2 servings at lunch and dinner, 1 serving at snack | 6–8 servings per day: e.g., 1 serving at breakfast, 2 servings at lunch and dinner, 1 serving at snack | Replaced by protein-free products. 1 serving per day of grains is allowed to give variety to the diet. The amount is defined to obtain a daily protein intake of 0.3 g protein/kg body weight |
Vegetables and fruits * | 4–5 servings per day with suggestion to control potassium level | 4–5 servings per day with suggestion to control potassium level | 4–5 servings per day with suggestion to control potassium level | More than 4–5 servings per day with suggestion to control potassium level |
Meat and Poultry | 1 serving 1–2 times per week in the amount defined by the dietitian | 1 serving per day as they represent the only source of proteins with high biological value. The daily amount is defined according to ideal/adjusted body weight and clinic | Excluded | Excluded |
Fish | 1 serving 2–3 times per week in the amount defined by the dietitian | Used as an alternative to meat and poultry | Excluded | Excluded |
Beans (beans, chickpeas, peas, lentils, etc.) | At least 3 servings per week as a substitute for meat, fish etc., together with grains and not as a side dish | 1–2 servings per week use together with rice, corn or regular bread and pasta (not with protein free products) | 1 serving per day. Mandatory at least in one meal | 1 serving 2–3 times per week, the amount is defined to obtain a daily protein intake of 0.3 g protein/kg body weight |
Dairy products | 1 serving of soft cheese (i.e., Mozzarella or ricotta cheese) every 7–10 days; 1 serving per day of milk or yogurt is allowed according to patient’s clinic. Avoid hard cheese | Excluded | Excluded | Excluded |
Eggs | 1 whole egg every 7–10 days. 2 egg whites in place of 35 g of meat or 50 g of fish 1–2 times per week | 2 egg whites in place of 35 g of meat or 50 g of fish | Excluded | Excluded |
Oil and fats # | Olive oil intake is preferable in respect to animal fats | Olive oil intake is preferable in respect to animal fats | Olive oil intake is preferable in respect to animal fats | Olive oil intake is preferable respect to animal fats |
ND | LPD | VD | VLPD | p | |
---|---|---|---|---|---|
Energy, Kcal | 1995 ± 63 | 2234 ± 123 a | 2190 ± 88 b | 2166 ± 197 c | <0.001 |
Protein, g | 57.6 ± 2.4 | 42.4 ± 2.5 a | 45.9 ± 3.5 b,d,e | 20.0 ± 3.2 c,f | <0.001 |
Animal protein, g | 16.8 ± 7.4 | 26 ± 9.6 a | 0.9 ± 1.6 b,d | 0.6 ± 1.0 c,f | <0.001 |
Vegetable protein, g | 35.0 ± 6.4 | 11 ± 3.5 a | 45 ± 5.5 b,d,e | 19.1 ± 1.9 c,f | <0.001 |
Total fat, g | 72.5 ± 5.4 | 91 ± 13 a | 79 ± 9.8 | 84 ± 14 | <0.01 |
Saturated fat, g | 14.6 ± 3.7 | 19 ± 5.4 | 17.4 ± 6.6 | 17 ± 4.5 | n.s. |
Unsaturated fat, g | 50.7 ± 3.5 | 55.6 ± 8.2 | 55.4 ± 8.7 | 52 ± 11 | n.s. |
Cholesterol, mg | 105 ± 83 | 107 ± 21 | 34 ± 39 b,d | 38 ± 29 c,f | <0.01 |
Total carbohydrates, g | 297 ± 16.4 | 331 ± 40 | 341 ± 23 | 351 ± 41 | <0.01 |
Sugars, g | 93.0 ± 11.4 | 84 ± 18 | 96 ± 11 | 104 ± 10 f | <0.01 |
Starch, g | 194 ± 11 | 172 ± 36 | 235 ± 18 b,d,e | 176 ± 50 | <0.001 |
Fiber, g | 28 ± 4.6 | 17 ± 3.4 | 35 ± 4.2 b,d,e | 25 ± 4.6 f | <0.001 |
Sodium, mg | 649 ± 185 | 410 ± 229 | 647 ± 653 | 303 ± 218 | n.s. |
Potassium, mg | 2265 ± 406 | 1969 ± 268 | 3152 ± 685 b,d | 2590 ± 645 f | <0.001 |
Calcium, mg | 476 ± 136 | 192 ± 53 a | 334 ± 73 b | 317 ± 74 c,f | <0.001 |
Phosphorus, mg | 884 ± 85 | 531 ± 72 a | 745 ± 56 b,d,e | 428 ± 87 c,f | <0.001 |
Magnesium, mg | 179.5 ± 37.1 | 109.5 ± 31.8 | 248.5 ± 56.9 b,d,e | 160.6 ± 72.1 | <0.001 |
Iron, mg | 9.60 ± 1.44 | 5.91 ± 1.23 a | 10.5 ± 1.65 c,d,f | 7.15 ± 2.20 | <0.01 |
Copper | 2.18 ± 1.45 | 1.10 ± 0.52 | 1.68 ± 0.93 | 1.55 ± 1.15 | n.s. |
Zinc, mg | 6.40 ± 0.50 | 5.46 ± 1.38 | 5.36 ± 0.87 | 3.31 ± 1.11 c,e,f | <0.001 |
Vitamin K1, μg | 381.3 ± 220.2 | 185.7 ± 151.2 | 447.3 ± 410.0 | 441.6 ± 463.8 | n.s. |
Vitamin A, μg | 590.3 ± 232.5 | 562.2 ± 384.5 | 951.4 ± 829.4 | 1214 ± 970.1 | n.s. |
Vitamin D, μg | 0.52 ± 0.48 | 0.71 ± 0.66 | 0.51 ± 0.66 | 0.22 ± 0.27 | n.s. |
Vitamin B12, μg | 1.51 ± 0.80 | 2.16 ± 1.42 | 0.03 ± 0.05 b,d | 0.02 ± 0.03 c,f | <0.001 |
ND | LPD | VD | VLPD | p | |
---|---|---|---|---|---|
Fiber, g/1000 Kcal | 10.4 ± 2.27 | 7.66 ± 1.60 a | 15.9 ± 2.21 d,e | 11.4 ± 2.15 c,f | 0.001 |
Vitamin K1, μg/1000 Kcal | 190.8 ± 108.9 | 82.3 ± 65.6 | 206.5 ± 192.2 | 200.6 ± 203.1 | n.s. |
Potassium, mg/1000 Kcal | 1135 ± 201.2 | 884.1 ± 132.8 | 1440 ± 306.3 b,d | 1200 ± 294.1 f | 0.001 |
Magnesium, mg/1000 Kcal | 90.0 ± 18.9 | 49.2 ± 14.6 a | 113.4 ± 25.5 d,e | 74.5 ± 32.9 | 0.001 |
LARN | NKF | |||
---|---|---|---|---|
General Population | CKD (stage 1–5 ND) | HD | PD | |
Fiber | 12.6–16.7 g/1000 kcal | 20–30 g/day | 20–25 g/day | 20–25 g/day |
Vitamin K | 30–59 years : 140 μg/day >60 years: 170 μg/day | 90–120 μg/day (10 mg/day with antibiotic therapy) | ||
Potassium | 3.9 g/day | Unrestricted unless serum level is high | Up to 2.7–3.1 g/day; adjust to serum levels | 3–4 g/day; adjust to serum levels |
Magnesium | 240 mg/day | Not available | 200–300 mg/day | Not available |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cupisti, A.; D'Alessandro, C.; Gesualdo, L.; Cosola, C.; Gallieni, M.; Egidi, M.F.; Fusaro, M. Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake. Nutrients 2017, 9, 444. https://doi.org/10.3390/nu9050444
Cupisti A, D'Alessandro C, Gesualdo L, Cosola C, Gallieni M, Egidi MF, Fusaro M. Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake. Nutrients. 2017; 9(5):444. https://doi.org/10.3390/nu9050444
Chicago/Turabian StyleCupisti, Adamasco, Claudia D'Alessandro, Loreto Gesualdo, Carmela Cosola, Maurizio Gallieni, Maria Francesca Egidi, and Maria Fusaro. 2017. "Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake" Nutrients 9, no. 5: 444. https://doi.org/10.3390/nu9050444
APA StyleCupisti, A., D'Alessandro, C., Gesualdo, L., Cosola, C., Gallieni, M., Egidi, M. F., & Fusaro, M. (2017). Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake. Nutrients, 9(5), 444. https://doi.org/10.3390/nu9050444