The Effect of a 12-Week Beta-hydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.2.1. Supplementation Characteristics
2.2.2. Anthropometry and Body Composition
2.2.3. Aerobic Capacity
2.2.4. Anaerobic Capacity
2.2.5. Blood Sampling and Biochemical Analyses
2.2.6. Statistical Analysis
3. Results
3.1. Body Composition
3.2. Aerobic Capacity
3.3. Biochemical Blood Markers
3.4. Anaerobic Capacity
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Van Koevering, M.; Nissen, S. Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo. Am. J. Physiol. 1992, 262, E27–E31. [Google Scholar] [PubMed]
- Nissen, S.; Sharp, R.; Ray, M.; Rathmacher, J.A.; Rice, D.; Fuller, J.C., Jr.; Connelly, A.S.; Abumrad, N. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J. Appl. Physiol. 1996, 81, 2095–2104. [Google Scholar] [PubMed]
- Portal, S.; Eliakim, A.; Nemet, D.; Halevy, O.; Zadik, Z. The effect of HMB supplementation on body composition, fitness, hormonal and inflammatory mediators in elite adolescent volleyball players: A prospective randomized, double-blind, placebo-controlled study. Eur. J. Appl. Physiol. 2011, 111, 2261–2269. [Google Scholar] [CrossRef] [PubMed]
- Zanchi, N.E.; Gerlinger-Romero, F.; Guimarães-Ferreira, L.; de Siqueira Filho, M.A.; Felitti, V.; Lira, F.S.; Seelaender, M.; Lancha, A.H., Jr. HMB supplementation: Clinical and athletic performance-related effects and mechanisms of action. Amino Acids 2011, 40, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Gepner, Y.; Stout, J.R.; Hoffman, M.W.; Ben-Dov, D.; Funk, S.; Daimont, I.; Jajtner, A.R.; Townsend, J.R.; Church, D.D.; et al. β-Hydroxy-β-methylbutyrate attenuates cytokine response during sustained military training. Nutr. Res. 2016, 36, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Durkalec-Michalski, K.; Jeszka, J. The efficacy of a β-hydroxy-β-methylbutyrate supplementation on physical capacity, body composition and biochemical markers in elite rowers: A randomised, double-blind, placebo-controlled crossover study. J. Int. Soc. Sports Nutr. 2015, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.R.; Hoffman, J.R.; Gonzalez, A.M.; Jajtner, A.R.; Boone, C.H.; Robinson, E.H.; Mangine, G.T.; Wells, A.J.; Fragala, M.S.; Fukuda, D.H.; et al. Effects of β-hydroxy-β-methylbutyrate free acid ingestion and resistance exercise on the acute endocrine response. Int. J. Endocrinol. 2015, 2015, 856708. [Google Scholar] [CrossRef] [PubMed]
- Durkalec-Michalski, K.; Jeszka, J. The effect of Hmb on aerobic capacity and body composition in trained athletes. J. Strength Condit. Res. 2016, 30, 2617–2626. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, G.D.; Rosa, J.C.; Lira, F.S.; Zanchi, N.E.; Ropelle, E.R.; Oyama, L.M.; Oller do Nascimento, C.M.; de Mello, M.T.; Tufik, S.; Santos, R.V.T. β-Hydroxy-β-methylbutyrate (HMβ) supplementation stimulates skeletal muscle hypertrophy in rats via the mTOR pathway. Nutr. Metab. (Lond.) 2011, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Grant, S.C.; Lee, S.R.; Masad, I.; Park, Y.M.; Henning, P.C.; Stout, J.R.; Loenneke, J.P.; Arjmandi, B.H.; Panton, L.B.; et al. Beta-hydroxy-beta-methyl-butyrate blunts negative age-related changes in body composition, functionality and myofiber dimensions in rats. J. Int. Soc. Sports Nutr. 2012, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Aversa, Z.; Bonetto, A.; Costelli, P.; Minero, V.G.; Penna, F.; Baccino, F.M.; Lucia, S.; Rossi Fanelli, F.; Muscaritoli, M. β-hydroxy-β-methylbutyrate (HMB) attenuates muscle and body weight loss in experimental cancer cachexia. Int. J. Oncol. 2011, 38, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Nunes, E.A.; Kuczera, D.; Brito, G.A.; Bonatto, S.J.; Yamazaki, R.K.; Tanhoffer, R.A.; Mund, R.C.; Kryczyk, M.; Fernandes, L.C. Beta-hydroxy-beta-methylbutyrate supplementation reduces tumor growth and tumor cell proliferation ex vivo and prevents cachexia in Walker 256 tumor-bearing rats by modifying nuclear factor-kappaB expression. Nutr. Res. 2008, 28, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.J.; Mukerji, P.; Tisdale, M.J. Attenuation of proteasome-induced proteolysis in skeletal muscle by beta-hydroxy-beta-methylbutyrate in cancer-induced muscle loss. Cancer Res. 2005, 65, 277–283. [Google Scholar] [PubMed]
- Marcora, S.; Lemmey, A.; Maddison, P. Dietary treatment of rheumatoid cachexia with beta-hydroxy-beta-methylbutyrate, glutamine and arginine: A randomised controlled trial. Clin. Nutr. 2005, 24, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Vandenburgh, H.; Shansky, J.; Benesch-Lee, F.; Skelly, K.; Spinazzola, J.M.; Saponjian, Y.; Tseng, B.S. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. FASEB J. 2009, 23, 3325–3334. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Wilson, J.M.; Lee, S.R. Dietary implications on mechanisms of sarcopenia: Roles of protein, amino acids and antioxidants. J. Nutr. Biochem. 2010, 21, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.; Pereira, S.L.; Hays, N.P.; Oliver, J.S.; Edens, N.K.; Evans, C.M.; Wolfe, R.R. Effect of β-hydroxy-β-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin. Nutr. 2013, 32, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.H.; Feleke, G.; Din, M.; Yasmin, T.; Singh, G.; Khan, F.A.; Rathmacher, J.A. Nutritional treatment for acquired immunodeficiency virus-associated wasting using beta-hydroxy-beta-methylbutyrate, glutamine, and arginine: A randomized, double-blind, placebo-controlled study. JPEN J. Parenter. Enter. Nutr. 2000, 24, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, L.C.; Chien, S.L.; Huang, M.S.; Tseng, H.F.; Chang, C.K. Anti-inflammatory and anticatabolic effects of short-term beta-hydroxy-beta-methylbutyrate supplementation on chronic obstructive pulmonary disease patients in intensive care unit. Asia Pac. J. Clin. Nutr. 2006, 15, 544–550. [Google Scholar] [PubMed]
- Hsieh, L.C.; Chow, C.J.; Chang, W.C.; Liu, T.H.; Chang, C.K. Effect of beta-hydroxy-beta-methylbutyrate on protein metabolism in bed-ridden elderly receiving tube feeding. Asia Pac. J. Clin. Nutr. 2010, 19, 200–208. [Google Scholar] [PubMed]
- Kuhls, D.A.; Rathmacher, J.A.; Musngi, M.D.; Frisch, D.A.; Nielson, J.; Barber, A.; MacIntyre, A.D.; Coates, J.E.; Fildes, J.J. Beta-hydroxy-beta-methylbutyrate supplementation in critically ill trauma patients. J. Trauma 2007, 62, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.M.C.; Póvoas, S.; Neuparth, M.J.; Duarte, J.A. The effects beta-hydroxy-beta-methylbutyrate (HMB) on muscle atrophy induced by immobilization. Med. Sci. Sports Exerc. 2001, 33, 140. [Google Scholar] [CrossRef]
- Eley, H.L.; Russell, S.T.; Tisdale, M.J. Attenuation of depression of muscle protein synthesis induced by lipopolysaccharide, tumor necrosis factor, and angiotensin II by beta-hydroxy-beta-methylbutyrate. Am. J. Physiol. Endocrinol. Metab. 2008, 295, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.R.; Fragala, M.S.; Jajtner, A.R.; Gonzalez, A.M.; Wells, A.J.; Mangine, G.T.; Robinson, E.H.; McCormack, W.P.; Beyer, K.S.; Pruna, G.J.; et al. β-Hydroxy-β-methylbutyrate (HMB)-free acid attenuates circulating TNF-α and TNFR1 expression postresistance exercise. J. Appl. Physiol. 2013, 115, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Holecek, M.; Muthny, T.; Kovarik, M.; Sispera, L. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues. Food Chem. Toxicol. 2009, 47, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, M.; Muthny, T.; Sispera, L.; Holecek, M. Effects of β-hydroxy-β-methylbutyrate treatment in different types of skeletal muscle of intact and septic rats. J. Physiol. Biochem. 2010, 66, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Girón, M.D.; Vílchez, J.D.; Shreeram, S.; Salto, R.; Manzano, M.; Cabrera, E.; Campos, N.; Edens, N.K.; Rueda, R.; López-Pedrosa, J.M. β-Hydroxy-β-methylbutyrate (HMB) normalizes dexamethasone-induced autophagy-lysosomal pathway in skeletal muscle. PLoS ONE 2015, 10, e0117520. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Henning, P.C.; Grant, S.C.; Lee, W.J.; Lee, S.R.; Arjmandi, B.H.; Kim, J.S. HMB attenuates muscle loss during sustained energy deficit induced by calorie restriction and endurance exercise. Metabolism 2013, 62, 1718–1729. [Google Scholar] [CrossRef] [PubMed]
- Kornasio, R.; Riederer, I.; Butler-Browne, G.; Mouly, V.; Uni, Z.; Halevy, O. Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways. Biochim. Biophys. Acta 2009, 1793, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Gerlinger-Romero, F.; Guimarães-Ferreira, L.; Giannocco, G.; Nunes, M.T. Chronic supplementation of beta-hydroxy-beta methylbutyrate (HMβ) increases the activity of the GH/IGF-I axis and induces hyperinsulinemia in rats. Growth Horm. IGF Res. 2011, 21, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Tatara, M.R.; Sliwa, E.; Krupski, W. Prenatal programming of skeletal development in the offspring: Effects of maternal treatment with beta-hydroxy-beta-methylbutyrate (HMB) on femur properties in pigs at slaughter age. Bone 2007, 40, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.; Sharp, R.L.; Panton, L.; Vukovich, M.; Trappe, S.; Fuller, J.C., Jr. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation in humans is safe and may decrease cardiovascular risk factors. J. Nutr. 2000, 130, 1937–1945. [Google Scholar] [PubMed]
- Bruckbauer, A.; Zemel, M.B.; Thorpe, T.; Akula, M.R.; Stuckey, A.C.; Osborne, D.; Martin, E.B.; Kennel, S.; Wall, J.S. Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. Nutr. Metab. (Lond.) 2012, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zemel, M.B. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr. Metab. (Lond.) 2009, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, P.M.; Carrithers, J.A.; Godard, M.P.; Schulze, K.E.; Trappe, S.W. Beta-hydroxy-beta-methylbutyrate ingestion, Part I: Effects on strength and fat free mass. Med. Sci. Sports Exerc. 2000, 32, 2109–2115. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Hatfield, D.L.; Volek, J.S.; Fragala, M.S.; Vingren, J.L.; Anderson, J.M.; Spiering, B.A.; Thomas, G.A.; Ho, J.Y.; Quann, E.E.; et al. Effects of amino acids supplement on physiological adaptations to resistance training. Med. Sci. Sports Exerc. 2009, 41, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.S.; Watson, P.E.; Rowlands, D.S. Effects of nine weeks of beta-hydroxy-beta-methylbutyrate supplementation on strength and body composition in resistance trained men. J. Strength Cond. Res. 2009, 23, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Lowery, R.P.; Joy, J.M.; Andersen, J.C.; Wilson, S.M.; Stout, J.R.; Duncan, N.; Fuller, J.C.; Baier, S.M.; Naimo, M.A.; et al. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: A randomized, double-blind, placebo-controlled study. Eur. J. Appl. Physiol. 2014, 114, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Van Someren, K.A.; Edwards, A.J.; Howatson, G. Supplementation with beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Stout, J.R.; Smith-Ryan, A.E.; Fukuda, D.H.; Kendall, K.L.; Moon, J.R.; Hoffman, J.R.; Wilson, J.M.; Oliver, J.S.; Mustad, V.A. Effect of calcium β-hydroxy-β-methylbutyrate (CaHMB) with and without resistance training in men and women 65+ years: A randomized, double-blind pilot trial. Exp. Gerontol. 2013, 48, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.L.; Sharp, R.L. Effect of dietary supplements on lean mass and strength gains with resistance exercise: A meta-analysis. J. Appl. Physiol. 2003, 94, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Ferreira, M.; Greenwood, M.; Wilson, M.; Grindstaff, P.; Plisk, S.; Reinardy, J.; Cantler, E.; Almada, A.L. Effects of calcium (beta)-HMB supplementation during training on markers of catabolism, body composition, strength and sprint performance. J. Exerc. Physiol. Online 2000, 3, 48–59. [Google Scholar]
- Ransone, J.; Neighbors, K.; Lefavi, R.; Chromiak, J. The effect of beta-hydroxy beta-methylbutyrate on muscular strength and body composition in collegiate football players. J. Strength Cond. Res. 2003, 17, 34–39. [Google Scholar] [PubMed]
- Hoffman, J.R.; Cooper, J.; Wendell, M.; Im, J.; Kang, J. Effects of beta-hydroxy beta-methylbutyrate on power performance and indices of muscle damage and stress during high-intensity training. J. Strength Cond. Res. 2004, 18, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.; Liu, T.H.; Chen, C.Y.; Chang, C.K. Effect of β-hydroxy-β-methylbutyrate supplementation during energy restriction in female judo athletes. J. Exerc. Sci. Fit. 2010, 8, 50–53. [Google Scholar] [CrossRef]
- Crowe, M.J.; O’Connor, D.M.; Lukins, J.E. The effects of beta-hydroxy-beta-methylbutyrate (HMB) and HMB/creatine supplementation on indices of health in highly trained athletes. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Knitter, A.E.; Panton, L.; Rathmacher, J.A.; Petersen, A.; Sharp, R. Effects of beta-hydroxy-beta-methylbutyrate on muscle damage after a prolonged run. J. Appl. Physiol. 2000, 89, 1340–1344. [Google Scholar] [PubMed]
- Lamboley, C.R.; Royer, D.; Dionne, I.J. Effects of beta-hydroxy-beta-methylbutyrate on aerobic-performance components and body composition in college students. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.H.; Stout, J.R.; Miramonti, A.A.; Fukuda, D.H.; Wang, R.; Townsend, J.R.; Mangine, G.T.; Fragala, M.S.; Hoffman, J.R. High-intensity interval training and β-hydroxy-β-methylbutyric free acid improves aerobic power and metabolic thresholds. J. Int. Soc. Sports Nutr. 2014, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Miramonti, A.A.; Stout, J.R.; Fukuda, D.H.; Robinson, E.H.; Wang, R.; La Monica, M.B.; Hoffman, J.R. Effects of 4 weeks of high-intensity interval training and β-Hydroxy-β-Methylbutyric free acid supplementation on the onset of neuromuscular fatigue. J. Strength Cond. Res. 2016, 30, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Vukovich, M.D.; Dreifort, G.D. Effect of beta-hydroxy beta-methylbutyrate on the onset of blood lactate accumulation and V(O)(2) peak in endurance-trained cyclists. J. Strength Cond. Res. 2001, 15, 491–497. [Google Scholar] [PubMed]
- Nunan, D.; Howatson, G.; van Someren, K.A. Exercise-induced muscle damage is not attenuated by beta-hydroxy-beta-methylbutyrate and alpha-ketoisocaproic acid supplementation. J. Strength Cond. Res. 2010, 24, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Vukovich, M.D.; Slater, G.; Macchi, M.B.; Turner, M.J.; Fallon, K.; Boston, T.; Rathmacher, J. Beta-hydroxy-beta-methylbutyrate (HMB) kinetics and the influence of glucose ingestion in humans. J. Nutr. Biochem. 2001, 12, 631–639. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; de Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis-part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Erceg, D.N.; Dieli-Conwright, C.M.; Rossuello, A.E.; Jensky, N.E.; Sun, S.; Schroeder, E.T. The stayhealthy bioelectrical impedance analyzer predicts body fat in children and adults. Nutr. Res. 2010, 30, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Winter, E.M.; Jones, A.M.; Davison, R.C.R.; Bromley, P.D.; Mercer, T. Sport testing. In Sport and Exercise Physiology Testing Guidelines: The British Association of Sport and Exercise Sciences Guide; Routledge: Abingdon, UK, 2007; Volume 2, pp. 112–119. [Google Scholar]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting the anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [PubMed]
- Bar-Or, O. The wingate anaerobic test: An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J. A simple, rapid method for the determination of glucose, lactate, pyruvate, alanine, 3-hydroxybutyrate and acetoacetate on a single 20-mul blood sample. Clin. Chim. Acta 1982, 122, 231–240. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Podgórski, T.; Sokołowski, M.; Jeszka, J. Relationship between body composition indicators and physical capacity of the combat sports athletes. Arch. Budo 2016, 12, 247–256. Available online: http://archbudo.com/view/abstract/id/11240 (accessed on 15 May 2017).
- Franchini, E.; Nunes, A.V.; Moraes, J.M.; Del Vecchio, F.B. Physical fitness and anthropometrical profile of the Brazilian male judo team. J. Physiol. Anthropol. 2007, 26, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Durkalec-Michalski, K.; Gościańska, I.; Jeszka, J. Does conventional body weight reduction reduce anaerobic capacity of boxers in the competition period? Arch. Budo 2015, 11, 251–258. Available online: http://archbudo.com/view/abstract/id/10806 (accessed on 15 May 2017).
- Gentles, J.A.; Phillips, S.M. Discrepancies in publications related to HMB-FA and ATP supplementation. Nutr. Metab. 2017, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, K.; Sakamoto, K.; Newton, M.; Sacco, P. How long does the protective effect on eccentric exercise-induced muscle damage last? Med. Sci. Sports Exerc. 2001, 33, 1490–1495. [Google Scholar] [CrossRef] [PubMed]
- Caperuto, E.C.; Tomatieli, R.V.; Colquhoun, A.; Seelaender, M.C.; Costa Rosa, L.F. Beta-hydoxy-beta-methylbutyrate supplementation affects Walker 256 tumor-bearing rats in a time-dependent manner. Clin. Nutr. 2007, 26, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, C.H.; Gerlinger-Romero, F.; Guimarães-Ferreira, L.; de Souza-Jr, A.L.; Vitzel, K.F.; Nachbar, R.T.; Nunes, M.T.; Curi, R. Metabolic and functional effects of beta-hydroxy-beta-methylbutyrate (HMB) supplementation in skeletal muscle. Eur. J. Appl. Physiol. 2012, 112, 2531–2537. [Google Scholar] [CrossRef] [PubMed]
- Albert, F.J.; Morente-Sánchez, J.; Ortega, F.B.; Castillo, M.J.; Gutiérrez, Á. Usefulness of β-hydroxy-β-methylbutyrate (HMB) supplementation in different sports: An update and practical implications. Nutr. Hosp. 2015, 32, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Dedkova, E.N.; Blatter, L.A. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front. Physiol. 2014, 5, 260. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Honda, A.; Ikegami, T.; Iwamoto, J.; Monma, T.; Hirayama, T.; Saito, Y.; Yamashita, K.; Matsuzaki, Y. Simultaneous quantification of salivary 3-hydroxybutyrate, 3-hydroxyisobutyrate, 3-hydroxy-3-methylbutyrate, and 2-hydroxybutyrate as possible markers of amino acid and fatty acid catabolic pathways by LC-ESI-MS/MS. SpringerPlus 2015, 4, 494. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Cogan, K.E.; Egan, B. Metabolism of ketone bodies during exercise and training: Physiological basis for exogenous supplementation. J. Physiol. 2017, 595, 2857–2871. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.J.; Clarke, K. Acute nutritional ketosis: Implications for exercise performance and metabolism. Extrem. Physiol. Med. 2014, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Kim, J.S.; Lee, S.R.; Rathmacher, J.A.; Dalmau, B.; Kingsley, J.D.; Koch, H.; Manninen, A.H.; Saadat, R.; Panton, L.B. Acute and timing effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage. Nutr. Metab. (Lond.) 2009, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Fuller, J.C., Jr.; Sharp, R.L.; Angus, H.F.; Baier, S.M.; Rathmacher, J.A. Free acid gel form of beta-hydroxy-beta-methylbutyrate (HMB) improves HMB clearance from plasma in human subjects compared with the calcium HMB salt. Br. J. Nutr. 2011, 105, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Fuller, J.C.; Sharp, R.L.; Angus, H.F.; Khoo, P.Y.; Rathmacher, J.A. Comparison of availability and plasma clearance rates of β-hydroxy-β-methylbutyrate delivery in the free acid and calcium salt forms. Br. J. Nutr. 2015, 114, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
Variable | Unit | HMB | PLA | p Value a (HMB vs. PLA) |
---|---|---|---|---|
Age | (year) | 22.8 ± 6.1 | ||
Body mass | (kg) | 81.2 ± 12.8 | ||
Height | (cm) | 179 ± 6 | ||
Years training | (year) | 7.5 ± 3.6 | ||
Energy intake * | kcal | 3081 ± 841 | 3141 ± 789 | 0.2965 |
(kcal/kg/day) | 37.7 ± 6.5 | 38.4 ± 5.6 | 0.1800 | |
Protein intake * | g | 141 ± 40 | 145 ± 44 | 0.1054 |
(g/kg/day) | 1.7 ± 0.3 | 1.8 ± 0.3 | 0.1181 | |
% | 18.5 ± 3.5 | 18.6 ± 3.3 | 0.8175 | |
Carbohydrate intake * | g | 359 ± 112 | 374 ± 97 | 0.1683 |
(g/kg/day) | 4.4 ± 1.0 | 4.6 ± 0.8 | 0.0938 | |
% | 46.6 ± 6.6 | 47.7 ± 5.2 | 0.1535 | |
Fat intake * | g | 120 ± 44 | 118 ± 41 | 0.3202 |
(g/kg/day) | 1.5 ± 0.4 | 1.4 ± 0.4 | 0.2135 | |
% | 34.9 ± 7.2 | 33.7 ± 6.2 | 0.1109 | |
Combat sports training * | (session/week) | 5.2 ± 1.4 | 5.2 ± 1.3 | 0.8446 |
Supporting endurance training (running, cycling and other) * | (session/week) | 1.3 ± 0.9 | 1.4 ± 0.8 | 0.3942 |
Supporting strength and power training * | (session/week) | 1.9 ± 0.8 | 1.8 ± 0.7 | 0.4080 |
The total amount of all trainings * | (session/week) | 8.3 ± 2.3 | 8.3 ± 2.1 | 0.8734 |
Parameter | PRE: HMB vs. PLA | HMB | HMB: Pre vs. Post | PLACEBO | PLA: Pre vs. Post | POST: HMB vs. PLA | SO (HMB➔PLA vs. PLA➔HMB) | |
---|---|---|---|---|---|---|---|---|
p Value a | p Value b | p Value b | p Value a | p Value c | ||||
Body composition indices | ||||||||
Body mass (kg) | Pre | 0.978 | 81.1 ± 12.7 | 0.905 | 81.0 ± 12.6 | 0.627 | 0.936 | 0.690 |
Post | 81.0 ± 12.2 | 81.2 ± 12.1 | ||||||
TBW (L) | Pre | 0.821 | 49.6 ± 6.1 | 0.079 | 49.9 ± 6.2 | 0.208 | 0.626 | 0.938 |
Post | 50.1 ± 5.8 | 49.5 ± 5.9 | ||||||
FFM (kg) | Pre | 0.817 | 67.7 ± 8.4 | 0.071 | 68.1 ± 8.4 | 0.146 | 0.599 | 0.937 |
Post | 68.5 ± 8.0 | 67.6 ± 8.0 | ||||||
FFM (%) | Pre | 0.558 | 84.0 ± 4.6 | 0.014 | 84.6 ± 5.0 | 0.019 | 0.213 | 0.146 |
Post | 85.0 ± 5.1 | 83.7 ± 4.6 | ||||||
FM (kg) | Pre | 0.639 | 13.4 ± 5.5 | 0.029 | 12.9 ± 5.8 | 0.011 | 0.334 | 0.317 |
Post | 12.6 ± 5.7 | 13.6 ± 5.4 | ||||||
FM (%) | Pre | 0.568 | 16.0 ± 4.6 | 0.019 | 15.4 ± 5.0 | 0.020 | 0.224 | 0.153 |
Post | 15.0 ± 5.0 | 16.3 ± 4.5 |
Parameter | PRE: HMB vs. PLA | HMB | HMB: Pre vs. Post | PLACEBO | PLA: Pre vs. Post | POST: HMB vs. PLA | SO (HMB➔PLA vs. PLA➔HMB) | |
---|---|---|---|---|---|---|---|---|
p Value a | p Value b | p Value b | p Value a | p Value c | ||||
O2max (mL/min/kg) | Pre | 0.596 | 57.3 ± 7.3 | 0.083 | 58.2 ± 7.5 | 0.455 | 0.498 | 0.724 |
Post | 58.6 ± 6.1 | 57.7 ± 6.8 | ||||||
O2max (mL/min) | Pre | 0.598 | 4603 ± 624 | 0.115 | 4663 ± 625 | 0.537 | 0.523 | 0.350 |
Post | 4709 ± 591 | 4627 ± 581 | ||||||
Tref (s) | Pre | 0.623 | 719 ± 114 | 0.023 | 746 ± 139 | 0.851 | 0.567 | 0.085 |
Post | 753 ± 140 | 751 ± 171 | ||||||
Wmax (W) | Pre | 0.452 | 281 ± 33 | 0.040 | 290 ± 42 | 0.856 | 0.870 | 0.060 |
Post | 294 ± 42 | 292 ± 48 | ||||||
Wmax (W/kg) | Pre | 0.326 | 3.5 ± 0.5 | 0.051 | 3.6 ± 0.5 | 0.951 | 0.971 | 0.293 |
Post | 3.7 ± 0.5 | 3.6 ± 0.6 | ||||||
HRmax (bpm) | Pre | 0.459 | 181 ± 9 | 0.025 | 182 ± 10 | 0.325 | 0.922 | 0.129 |
Post | 183 ± 10 | 183 ± 10 | ||||||
TVT (s) | Pre | 0.074 | 505 ± 91 | <0.0001 | 543 ± 100 | 0.035 | 0.035 | 0.080 |
Post | 564 ± 89 | 518 ± 105 | ||||||
WVT (W) | Pre | 0.206 | 220 ± 29 | 0.006 | 231 ± 29 | 0.221 | 0.112 | 0.181 |
Post | 236 ± 28 | 225 ± 34 | ||||||
WVT (W/kg) | Pre | 0.111 | 2.7 ± 0.4 | 0.002 | 2.9 ± 0.4 | 0.098 | 0.202 | 0.625 |
Post | 2.9 ± 0.4 | 2.8 ± 0.4 | ||||||
HRVT (bpm) | Pre | 0.055 | 158 ± 10 | <0.0001 | 163 ± 12 | 0.105 | 0.069 | 0.111 |
Post | 165 ± 11 | 161 ± 11 | ||||||
Post | 13.1 ± 1.7 | 12.1 ± 1.4 |
Parameter | PRE: HMB vs. PLA | HMB | HMB: Pre vs. Post | PLACEBO | PLA: Pre vs. Post | POST: HMB vs. PLA | SO (HMB➔PLA vs. PLA➔HMB) | |
---|---|---|---|---|---|---|---|---|
p Value a | p Value b | p Value b | p Value a | p Value c | ||||
CK (U/L) | Pre | 0.737 | 310 ± 275 | 0.778 | 268 ± 165 | 0.198 | 0.400 | 0.591 |
Post | 302 ± 226 | 258 ± 194 | ||||||
LDH (U/L) | Pre | 0.817 | 320 ± 57 | 0.903 | 323 ± 61 | 0.013 | 0.114 | 0.721 |
Post | 321 ± 63 | 301 ± 53 | ||||||
Testosterone (nmol/L) | Pre | 0.940 | 16.5 ± 5.4 | 0.053 | 16.5 ± 4.4 | 0.336 | 0.403 | 0.116 |
Post | 18.5 ± 7.9 | 17.1 ± 4.4 | ||||||
Cortisol (nmol/L) | Pre | 0.895 | 499 ± 154 | 0.063 | 495 ± 160 | 0.009 | 0.900 | 0.968 |
Post | 545 ± 170 | 552 ± 168 | ||||||
T/C ratio (T/C·10) | Pre | 0.546 | 3.68 ± 1.94 | 0.886 | 3.75 ± 1.81 | 0.138 | 0.567 | 0.232 |
Post | 3.68 ± 1.88 | 3.37 ± 1.30 | ||||||
Lactate (mmol/L) | Pre | 0.886 | 1.7 ± 0.6 | 0.180 | 1.7 ± 0.7 | 0.282 | 0.854 | 0.350 |
Post | 2.0 ± 1.1 | 1.9 ± 0.8 |
Parameter | PRE: HMB vs. PLA | HMB | HMB: Pre vs. Post | PLACEBO | PLA: Pre vs. Post | POST: HMB vs. PLA | SO (HMB➔PLA vs. PLA➔HMB) | |
---|---|---|---|---|---|---|---|---|
p Value a | p Value b | p Value b | p Value a | p Value c | ||||
Peak Power (W) | Pre | 0.511 | 901 ± 197 | <0.0001 | 930 ± 208 | 0.240 | 0.251 | 0.468 |
Post | 998 ± 197 | 949 ± 184 | ||||||
Peak Power (W/kg) | Pre | 0.312 | 11.1 ± 1.6 | <0.0001 | 11.5 ± 1.7 | 0.236 | 0.045 | 0.692 |
Post | 12.3 ± 1.6 | 11.7 ± 1.6 | ||||||
Time at PP (s) | Pre | 0.761 | 2.98 ± 2.01 | 0.009 | 2.71 ± 1.49 | 0.975 | 0.301 | 0.826 |
Post | 2.36 ± 1.06 | 2.67 ± 1.34 | ||||||
Average Power (W) | Pre | 0.618 | 628 ± 109 | <0.001 | 640 ± 117 | 0.910 | 0.597 | 0.529 |
Post | 653 ± 108 | 641 ± 99 | ||||||
Average Power (W/kg) | Pre | 0.307 | 7.7 ± 0.7 | <0.0001 | 7.9 ± 0.7 | 0.811 | 0.265 | 0.865 |
Post | 8.1 ± 0.6 | 7.9 ± 0.6 | ||||||
Minimal Power (W) | Pre | 0.758 | 379 ± 70 | 0.581 | 374 ± 78 | 0.435 | 0.917 | 0.614 |
Post | 385 ± 65 | 383 ± 61 | ||||||
Minimal Power (W/kg) | Pre | 0.591 | 4.7 ± 0.7 | 0.604 | 4.7 ± 0.9 | 0.846 | 0.822 | 0.813 |
Post | 4.8 ± 0.6 | 4.7 ± 0.6 | ||||||
Max speed (rpm) | Pre | 0.265 | 129 ± 14 | <0.0001 | 132 ± 15 | 0.803 | 0.083 | 0.474 |
Post | 138 ± 13 | 133 ± 13 | ||||||
LactatePRE (mmol/L) | Pre | 0.664 | 1.6 ± 0.4 | 0.346 | 1.6 ± 0.5 | 0.153 | 0.851 | 0.150 |
Post | 1.5 ± 0.5 | 1.5 ± 0.6 | ||||||
LactatePOST (mmol/L) | Pre | 0.078 | 11.6 ± 1.7 | <0.0001 | 12.2 ± 1.6 | 0.482 | 0.002 | 0.978 |
Post | 13.1 ± 1.7 | 12.1 ± 1.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durkalec-Michalski, K.; Jeszka, J.; Podgórski, T. The Effect of a 12-Week Beta-hydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study. Nutrients 2017, 9, 753. https://doi.org/10.3390/nu9070753
Durkalec-Michalski K, Jeszka J, Podgórski T. The Effect of a 12-Week Beta-hydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study. Nutrients. 2017; 9(7):753. https://doi.org/10.3390/nu9070753
Chicago/Turabian StyleDurkalec-Michalski, Krzysztof, Jan Jeszka, and Tomasz Podgórski. 2017. "The Effect of a 12-Week Beta-hydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study" Nutrients 9, no. 7: 753. https://doi.org/10.3390/nu9070753
APA StyleDurkalec-Michalski, K., Jeszka, J., & Podgórski, T. (2017). The Effect of a 12-Week Beta-hydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study. Nutrients, 9(7), 753. https://doi.org/10.3390/nu9070753