Repeated Dietary Exposure to Low Levels of Domoic Acid and Problems with Everyday Memory: Research to Public Health Outreach
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Participants
5.2. Measures/Procedures
5.3. Dietary Exposure
5.4. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Glibert, P.M.; Anderson, D.M.; Gentien, P.; Graneli, E.; Sellner, K.G. The global complex phenomena of harmful algal blooms. Oceanography 2005, 18, 136–147. [Google Scholar] [CrossRef]
- Grattan, L.M.; Holobaugh, S.; Morris, J.G. Harmful algal blooms and public health. Harmful Algae 2016, 57, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Grattan, L.M.; Holobaugh, S.; Morris, J.G. Seafood Intoxications: Chapter 31. In Foodborne Infections and Intoxications, 4th ed.; Morris, J.G., Jr., Potter, M.E., Eds.; Academic Press: London, UK, 2013; pp. 419–434. ISBN 978-0-12-416041-5. [Google Scholar]
- Van Vorhees, D. Fisheries of the United States 2015: Current Fishery Statistics No. 2015. Available online: https://www.st.nmfs.noaa.gov/Assets/commercial/fus/fus15/documents/FUS2015.pdf (accessed on 29 January 2018).
- Perl, T.M.; Bédard, L.; Kosatsky, T.; Hockin, J.C.; Todd, E.C.; Remis, R.S. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N. Engl. J. Med. 1990, 322, 1775–1780. [Google Scholar] [CrossRef] [PubMed]
- Teitelbaum, J.S.; Zatorre, R.J.; Carpenter, S.; Gendron, D.; Evans, A.C.; Gjedde, A.; Cashman, N.R. Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N. Engl. J. Med. 1990, 322, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- Perl, T.M.; Bedard, L.; Kosatsky, T.; Hockin, J.C.; Todd, E.C.; McNutt, L.A.; Remis, R.S. Amnesic shellfish poisoning: A new clinical syndrome due to domoic acid. Can. Dis. Wkly. Rep. 1990, 1E, 7–8. [Google Scholar]
- Wekell, J.C.; Hurst, J.; Lefebvre, K.A. The origin of the regulatory limits for PSP and ASP toxins in shellfish. J. Shellfish Res. 2004, 23, 927–930. Available online: http://www.biomedsearch.com/article/origin-regulatory-limits-PSP-ASP/130777682.html (accessed on 19 February 2018).
- Daigo, K. Studies on the constituents of Chondria armata, I. Detection of the Anthelmintical Constituents. Yakugaku Zasshi 1959, 79, 350–353. [Google Scholar] [CrossRef]
- Cook, P.F.; Reichmuth, C.; Rouse, A.A.; Libby, L.A.; Dennison, S.E.; Carmichael, O.T.; Kruse-Elliott, K.T.; Bloom, J.; Singh, B.; Fravel, V.A.; et al. Algal toxin impairs sea lion memory and hippocampal connectivity, with implications for strandings. Science 2015, 350, 1545–1547. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, T.; Mazet, J.A.; Zabka, T.S.; Langlois, G.; Colegrove, K.M.; Silver, M.; Bargu, S.; Van Dolah, F.; Leighfield, T.; Conrad, P.A.; et al. Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): An increasing risk to marine mammal health. Proc. R. Soc. B 2008, 275, 267–276. [Google Scholar] [PubMed]
- Wright, J.L. Domoic acid-ten years after. Nat. Toxins 1998, 6, 91–92. [Google Scholar] [CrossRef]
- Scholin, C.A.; Gulland, F.; Doucette, G.J.; Benson, S.; Busman, M.; Chavez, F.P.; Cordaro, J.; DeLong, R.; De Vogelaere, R.; Harvey, J.; et al. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 2000, 403, 80–84. [Google Scholar] [PubMed]
- McCabe, R.M.; Hickey, B.M.; Kudela, R.M.; Lefebvre, K.A.; Adams, N.G.; Bill, B.D.; Gulland, F.M.; Thomson, R.E.; Cochlan, W.P.; Trainer, V.L. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. 2016, 43, 10366–10376. [Google Scholar] [CrossRef] [PubMed]
- McKibben, S.M.; Peterson, W.; Wood, M.; Trainer, V.L.; Hunter, M.; White, A.E. Climatic regulation of the neurotoxin domoic acid. Proc. Natl. Acad. Sci. USA 2017, 114, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Wekell, J.C.; Gauglitz, E.J., Jr.; Barnett, H.J.; Hatfield, C.L.; Simons, D.; Ayres, D. Occurrence of domoic acid in Washington state razor clams (Siliqua patula) during 1991–1993. Nat. Toxins 1994, 2, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Marien, K. Establishing tolerable Dungeness crab (Cancer magister) and razor clam (Siliqua patula) domoic acid contaminant levels. Environ. Health Perspect. 1996, 104, 1230–1236. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469507/pdf/envhper00342-0102.pdf (accessed on 28 January 2018). [CrossRef] [PubMed]
- Grattan, L.M.; Schumacker, J.; Reich, A.; Holobaugh, S. Epidemiology and Public Health, Ch 6 Management of Harmful Algal Blooms, 2018; Elsevier: Amsterdam, The Netherlands, in press.
- Reddy, S.N. Feeding family and ancestors: Persistence of traditional Native American lifeways during the Mission Period in coastal Southern California. J. Anthropol. Archaeol. 2015, 37, 48–66. [Google Scholar] [CrossRef]
- Schuster, R.C.; Wein, E.E.; Dickson, C.; Chan, H.M. Importance of traditional foods for the food security of two First Nations communities in the Yukon, Canada. Int. J. Circumpolar Health 2011, 70, 286–300. [Google Scholar] [CrossRef] [PubMed]
- Grattan, L.M.; Boushey, C.J.; Tracy, K.; Trainer, V.L.; Roberts, S.M.; Schluterman, N.; Morris, J.G., Jr. The association between razor clam consumption and memory in the CoASTAL Cohort. Harmful Algae 2016, 57, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Grattan, L.M. Chronic, low-level domoic acid exposure in humans: The CoASTAL cohort. In Proceedings of the Domoic Acid Workshop, David, CA, USA, 4 May 2017. [Google Scholar]
- Grattan, L.M. Impacts of chronic exposure to low levels of domoic acid in Native Americans. In Proceedings of the Gordon Research Conference: Mycotoxins and Phycotoxins, Brockton, MA, USA, 16–21 June 2017. [Google Scholar]
- Lefebvre, K.A.; Kendrick, P.S.; Ladiges, W.; Hiolski, E.M.; Ferriss, B.E.; Smith, D.R.; Marcinek, D. Chronic low level DA exposure to the common seafood toxin domoic acid causes cognitive deficits in mice. Harmful Algae 2017, 64, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Royle, J.; Lincoln, N.B. The everyday memory questionnaire-revised: Development of a 13-item scale. Disabil. Rehabil. 2008, 30, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.P.; Garcia, J.F.; Guerrero, N.V.; Triguero, J.A.; Puente, A.E. Neuropsychological evaluation of everyday memory. Neuropsychol. Rev. 1998, 8, 203–227. [Google Scholar] [CrossRef]
- Kumar, K.P.; Kumar, K.S.; Nair, A.G. Risk assessment of the amnesic shellfish poison, domoic acid, on animals and humans. J. Environ. Biol. 2009, 30, 319–325. Available online: http://www.jeb.co.in/journal_issues/200905_may09/paper_01.pdf (accessed on 19 February 2018).
- Szajer, J.; Murphy, C. Education level predicts retrospective metamemory accuracy in healthy aging and Alzheimer’s disease. J. Clin. Exp. Neuropsychol. 2013, 35, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Bjornebekk, A.; Westlye, L.T.; Walhovd, K.B.; Fjell, A.M. Everyday memory: Self-perception and structural brain correlates in a healthy elderly population. J. Int. Neuropsychol. Soc. 2010, 16, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, A.; Walker, C.M.; Walker, M.F. Action errors and dressing disability after stroke: An ecological approach to neuropsychological assessment and intervention. Neuropsychol. Rehabil. 2008, 16, 666–683. [Google Scholar] [CrossRef] [PubMed]
- Tracy, K.; Boushey, C.J.; Roberts, S.M.; Morris, J.G., Jr.; Grattan, L.M. Communities advancing the studies of Tribal nations across the lifespan: Design, methods, and baseline of the CoASTAL cohort study. Harmful Algae 2016, 57, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Washington Department State of Health (DOH). Domoic Acid in Razor Clams (DOH No. 332–169). Available online: http://www.doh.wa.gov/Portals/1/Documents/Pubs/332-169.pdf (accessed on 29 January 2018).
- Fialkowski, M.K.; McCrory, M.A.; Roberts, S.M.; Tracy, K.; Grattan, L.M.; Boushey, C.J. Evaluation of dietary assessment tools used to assess the diet of adults participating in the communities advancing the studies of tribal nations across the lifespan cohort. J. Am. Diet. Assoc. 2010, 110, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Quilliam, M.A.; Xie, M.; Hardstaff, W.R. A Rapid Extraction and Clean-Up Procedure for the Determination of Domoic Acid in Tissue Samples; Technical Report 64; National Research Council of Canada, Institute for Marine Biosciences: Ottawa, ON, Canada, 1991. Available online: http://nparc.nrc-cnrc.gc.ca/eng/view/fulltext/?id=d2a329d1-0a11-4b06-9931-b2afe7c4c276 (accessed on 19 February 2018).
Variables | Entire Sample (n = 60) | Exposure: Target Week | Exposure: Past Year | ||||
---|---|---|---|---|---|---|---|
High (n = 27) | Low (n = 33) | p Value | High (n = 30) | Low (n = 30) | p Value | ||
Demographics | |||||||
Age, year | 0.17 a | 0.31 a | |||||
Median [Q1, Q2] | 42 [30, 55.25] | 38 [29, 55] | 49 [30, 56] | 41 [30.25, 54.75] | 44 [30, 55.75] | ||
Gender, n(%) | 0.68 b | 0.79 b | |||||
Female | 34 (56.67) | 14 (51.85) | 20 (60.61) | 16 (53.33) | 18 (60) | ||
Male | 26 (43.33) | 13 (48.15) | 13 (39.39) | 14 (46.67) | 12 (40) | ||
Education, n(%) | 0.71 c | 0.37 c | |||||
>/=High School | 40 (66.67) | 18 (66.67) | 22 (66.67) | 20 (66.67) | 20 (66.67) | ||
<High School | 15 (25) | 6 (22.22) | 9 (27.27) | 6 (20) | 9 (30) | ||
Missing | 5 (8.33) | 3 (11.11) | 2 (6.06) | 4 (13.33) | 1 (3.33) | ||
Outcome measures | |||||||
EM (Everyday Memory) Score | 0.003 a,* | 0.01 a,* | |||||
Median [Q1, Q2] | 3 [0, 8] | 4 [3, 9.5] | 1 [0, 4] | 4 [3, 10.25] | 1.5 [0, 3.75] | ||
EM Score Median Split, n(%) | 0.01 b,* | 0.01 b,* | |||||
High | 27 (45) | 18 (66.67) | 9 (27.27) | 19 (63.33) | 8 (26.67) | ||
Low | 33 (55) | 9 (33.33) | 24 (72.73) | 11 (36.67) | 22 (73.33) | ||
EM Problems, n(%) | 0.02 b,* | 0.12 b | |||||
1 or more | 31 (51.67) | 19 (70.37) | 12 (36.36) | 19 (63.33) | 12 (40) | ||
None | 29 (48.33) | 8 (29.63) | 21 (63.64) | 11 (36.67) | 18 (60) |
Variable | Full Model | Reduced Model | ||||
---|---|---|---|---|---|---|
Coefficient | 95% CI | p Value | Coefficient | 95% CI | p Value | |
DA Exposure: Target Week | ||||||
High vs. Low | 1.27 | [−3.63, 6.17] | 0.60 | 1.09 | [−3.66, 5.85] | 0.65 |
Age | ||||||
Per 1-year increase | 0.05 | [−0.11, 0.20] | 0.53 | - | ||
Gender | ||||||
Female vs. Male | −0.99 | [−5.97, 3.99] | 0.69 | - | ||
Education | ||||||
>/=H.S. vs. <H.S | 4.90 | [−0.60, 10.40] | 0.08 | 5.10 | [−0.19, 10.40] | 0.06 |
DA Exposure: Past Year | ||||||
High vs. Low | 4.94 | [0.28, 9.60] | 0.04 * | 4.70 | [0.13, 9.26] | 0.04 * |
Age | ||||||
Per 1-year increase | 0.06 | [−0.08, 0.21] | 0.40 | - | ||
Gender | ||||||
Female vs. Male | −1.04 | [−5.81, 3.73] | 0.66 | - | [−0.43, 9.81] | 0.07 |
Education | ||||||
>/=H.S vs. <H.S. | 4.39 | [−0.91, 9.68] | 0.10 | 4.69 |
Variable | Full Model | Reduced Model | ||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p Value | Odds Ratio | 95% CI | p Value | |
DA Exposure: Target Week | ||||||
High vs. Low | 5.75 | [1.70, 19.50] | 0.005 * | 5.33 | ||
Age | ||||||
Per 1-year increase | 1.02 | [0.98, 1.06] | 0.29 | - | [1.76, 16.14] | 0.003 * |
Gender | ||||||
Female vs. Male | 1.29 | [0.38, 4.32] | 0.68 | - | ||
Education | ||||||
>/=H.S. vs. <H.S | 1.11 | [0.29, 4.16] | 0.88 | - | ||
DA Exposure: Past Year | ||||||
High vs. Low | 5.5 | [1.66, 18.22] | 0.005 * | 4.75 | ||
Age | ||||||
Per 1-year increase | 1.02 | [0.98, 1.06] | 0.33 | 0.005 * | ||
Gender | ||||||
Female vs. Male | 1.16 | [0.35, 3.87] | 0.81 | [1.58, 14.25] | ||
Education | ||||||
>/=H.S. vs. <H.S | 1.03 | [0.27, 3.90] | 0.97 |
Variable | Full Model | Reduced Model | ||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p Value | Odds Ratio | 95% CI | p Value | |
DA Exposure: Target Week | ||||||
High Consumption | 3.92 | [1.19, 12.96] | 0.03 * | 3.99 | [1.23, 13.01] | 0.02 * |
Age | ||||||
Per 1-year increase | 1.00 | [0.96, 1.03] | 0.84 | - | ||
Gender | ||||||
Female vs. Male | 1.01 | [0.31, 3.32] | 0.99 | |||
Education | ||||||
>/=H.S. vs. <H.S | 3.26 | [0.83, 12.78] | 0.09 | 3.17 | [0.84, 11.91] | 0.09 |
DA Exposure: Past Year | ||||||
High vs. Low | 2.52 | [0.81, 7.82] | 0.11 | 2.59 | [0.84, 7.96] | 0.10 |
Age | ||||||
Per 1-year increase | 0.99 | [0.95, 1.03] | 0.72 | - | - | - |
Gender | ||||||
Female vs. Male | 0.94 | [0.29, 3.00] | 0.91 | - | - | - |
Education | ||||||
>/=H.S. vs. <H.S | 3.06 | [0.82, 11.47] | 0.10 | 2.89 | [0.80, 10.37] | 0.10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grattan, L.M.; Boushey, C.J.; Liang, Y.; Lefebvre, K.A.; Castellon, L.J.; Roberts, K.A.; Toben, A.C.; Morris, J.G. Repeated Dietary Exposure to Low Levels of Domoic Acid and Problems with Everyday Memory: Research to Public Health Outreach. Toxins 2018, 10, 103. https://doi.org/10.3390/toxins10030103
Grattan LM, Boushey CJ, Liang Y, Lefebvre KA, Castellon LJ, Roberts KA, Toben AC, Morris JG. Repeated Dietary Exposure to Low Levels of Domoic Acid and Problems with Everyday Memory: Research to Public Health Outreach. Toxins. 2018; 10(3):103. https://doi.org/10.3390/toxins10030103
Chicago/Turabian StyleGrattan, Lynn M., Carol J. Boushey, Yuanyuan Liang, Kathi A. Lefebvre, Laura J. Castellon, Kelsey A. Roberts, Alexandra C. Toben, and J. G. Morris. 2018. "Repeated Dietary Exposure to Low Levels of Domoic Acid and Problems with Everyday Memory: Research to Public Health Outreach" Toxins 10, no. 3: 103. https://doi.org/10.3390/toxins10030103
APA StyleGrattan, L. M., Boushey, C. J., Liang, Y., Lefebvre, K. A., Castellon, L. J., Roberts, K. A., Toben, A. C., & Morris, J. G. (2018). Repeated Dietary Exposure to Low Levels of Domoic Acid and Problems with Everyday Memory: Research to Public Health Outreach. Toxins, 10(3), 103. https://doi.org/10.3390/toxins10030103