Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach
Abstract
:1. Introduction
2. Results
2.1. Biomonitoring
2.1.1. Participant Characteristics
2.1.2. Mycotoxin Biomarkers in Urine
2.2. Settled Dust
2.3. Exposure Assessment and Risk Characterization—DON Case
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Fresh Bread Dough Company Studied and Production Workflow
5.2. Biomonitoring Approach
Urine Analysis
5.3. Settled Dust
5.3.1. Chemicals
5.3.2. Analysis of Settled Dust
5.4. Statistical Analysis
5.5. DON Exposure Assessment and Risk Characterization
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Mezes, M.; Melnichuk, S.D.; Fotina, T.I. Mycotoxins and animal health: From oxidative stress to gene expression. Krmiva 2008, 50, 35–43. [Google Scholar]
- Alborch, L.; Bragulat, M.R.; Abarca, M.L.; Cabañes, F.J. Effect of water activity, temperature and incubation time on growth and ochratoxin A production by Aspergillus niger and Aspergillus carbonarius on maize kernels. Int. J. Food Microbiol. 2011, 147, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Halstensen, A.S. Species-specific Fungal DNA in Airborne Dust as Surrogate for Occupational Mycotoxin Exposure? Int. J. Mol. Sci. 2008, 9, 2543–2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, C.; Pinheiro, A.C.; Sabino, R.; Viegas, S.; Brandão, J.; Veríssimo, C. (Eds.) Environmental Mycology in Public Health Fungi and Mycotoxins Risk Assessment and Management, Environmental Mycology in Public Health; Elsevier: New York, NY, USA, 2015. [Google Scholar]
- Peraica, M.; Radić, B.; Lucić, A.; Pavlović, M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 1999, 77, 754–766. [Google Scholar] [CrossRef] [PubMed]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, R.; Lima, N. Further mycotoxin effects from climate change. Food Res. Int. 2011, 44, 2555–2566. [Google Scholar] [CrossRef] [Green Version]
- Straumfors, A.; Uhlig, S.; Eriksen, G.S.; Heldal, K.K.; Eduard, W.; Krska, R.; Sulyok, M. Mycotoxins and other fungal metabolites in grain dust from Norwegian grain elevators and compound feed mills. World Mycotoxin J. 2014, 8, 361–373. [Google Scholar] [CrossRef]
- Viegas, C.; Faria, T.; Caetano, L.A.; Carolino, E.; Gomes, A.Q.; Viegas, S. Aspergillus spp. prevalence in different Portuguese occupational environments: What is the real scenario in high load settings? J. Occup. Environ. Hyg. 2017. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Faria, T.; Carolino, E.; Sabino, R.; Gomes, A.; Viegas, S. Occupational exposure to fungi and particles in animal feed industry. Med. Pr. 2016, 67, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health and Safety Executive. Statement of Evidence: Respiratory Hazards of Poultry Dust; Health and Safety Executive: Suffolk, UK, 2009. [Google Scholar]
- Viegas, S.; Veiga, L.; Figueiredo, P.; Almeida, A.; Carolino, E.; Sabino, R.; Verissimo, C.; Viegas, C. Occupational exposure to aflatoxin B1 in swine production and possible contamination sources. J. Toxicol. Environ. Heal. Part A 2013, 76, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Veiga, L.; Figueiredo, P.; Almeida, A.; Carolino, E.; Sabino, R.; Veríssimo, C.; Viegas, C. Occupational exposure to aflatoxin B 1: The case of poultry and swine production. World Mycotoxin J. 2013, 6, 309–315. [Google Scholar] [CrossRef]
- Viegas, S.; Veiga, L.; Malta-Vacas, J.; Sabino, R.; Figueiredo, P.; Almeida, A.; Viegas, C.; Carolino, E. Occupational exposure to aflatoxin (AFB(1)) in poultry production. J. Toxicol. Environ. Heal. Part A 2012, 75, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Veiga, L.; Almeida, A.; dos Santos, M.; Carolino, E.; Viegas, C. Occupational Exposure to Aflatoxin B1 in a Portuguese Poultry Slaughterhouse. Ann. Occup. Hyg. 2016, 60, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, G.; Müller, T.; Ostrowski, R.; Dott, W. Mycotoxins of Aspergillus fumigatus in pure culture and in native bioaerosols from compost facilities. Chemosphere 1999, 38, 1745–1755. [Google Scholar] [CrossRef]
- Mayer, S.; Vishwanath, V.; Sulyok, M. Airborne Workplace Exposure to Microbial Metabolites in Waste Sorting Plants. In Bioaerosols; Johanning, E., Morrey, P.R., Auger, P., Eds.; Fungal Research Group Foundation Inc.: Albany, NY, USA, 2012. [Google Scholar]
- Viegas, C.; Faria, T.; dos Santos, M.; Carolino, E.; Gomes, A.Q.; Sabino, R.; Viegas, S. Fungal burden in waste industry: An occupational risk to be solved. Environ. Monit. Assess. 2015, 187, 199. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Faria, T.; Viegas, C. Bakers exposure to flour dust: A exploratory study in a Portuguese bakery. In Occupational Safety and Hygiene SHO2017—Proceedings Book; Arezes, P., Baptista, J.S., Barroso, M.P., Carneiro, P., Cordeiro, P., Costa, N., Melo, R., Miguel, A.S., Perestrelo, G.P., Eds.; Sociedade Portuguesa de Segurança e Higiene Ocupacionais (SPOSHO): Guimarães, Portugal, 2017; pp. 116–117. [Google Scholar]
- Viegas, S.; Veiga, L.; Figueiredo, P.; Almeida, A.; Carolino, E.; Viegas, C. Assessment of Workers’ Exposure to Aflatoxin B1 in a Portuguese Waste Industry. Ann. Occup. Hyg. 2015, 59, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Pacifico, C.; Faria, T.; de Oliveira, A.C.; Caetano, L.A.; Carolino, E.; Gomes, A.Q.; Viegas, S. Fungal contamination in green coffee beans samples: A public health concern. J. Toxicol. Environ. Heal. Part A 2017, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.; Twarużek, M.; Błajet-Kosicka, A.; Grajewski, J. Occupational exposure to mould and microbial metabolites during onion sorting—Insights into an overlooked workplace. Environ. Monit. Assess. 2016, 188, 154. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Viegas, C.; Oppliger, A. Occupational exposure to mycotoxins: current knowledge and prospects. Ann. Work Expo. Health 2018, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S. Occupational Exposure to Mycotoxins and Preventive Measures. In Environmental Mycology in Public Health; Viegas, C., Pinheiro, C., Sabino, R., Viegas, S., Brandão, J., Veríssimo, C., Eds.; Elsevier: New York, NY, USA, 2015; pp. 325–341. [Google Scholar]
- Miller, J.D. Mycotoxins in small grains and maize: Old problems, new challenges. Food Addit. Contam. 2008, 25, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croft, W.A.; Jarvis, B.B.; Yatawara, C.S. Airborne outbreak of trichothecene toxicosis. Atmos. Environ. 1986, 20, 549–552. [Google Scholar] [CrossRef]
- Flannigan, B. Mycotoxins in the air. Int. Biodeterior. 1987, 23, 73–78. [Google Scholar] [CrossRef]
- Huttunen, K.; Korkalainen, M. Microbial Secondary Metabolites and Knowledge on Inhalation Effects. In Exposure to Microbiological Agents in Indoor and Occupational Environments; Viegas, C., Viegas, S., Gomes, A., Täubel, M., Sabino, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 213–234. [Google Scholar]
- Brera, C.; Caputi, R.; Miraglia, M.; Iavicoli, I.; Salerno, A.; Carelli, G. Exposure assessment to mycotoxins in workplaces: Aflatoxins and ochratoxin A occurrence in airborne dusts and human sera. Microchem. J. 2002, 167–173. [Google Scholar] [CrossRef]
- Iavicoli, I.; Brera, C.; Carelli, G.; Caputi, R.; Marinaccio, A.; Miraglia, M. External and internal dose in subjects occupationally exposed to ochratoxin A. Int. Arch. Occup. Environ. Health 2002, 75, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.; Curtui, V.; Usleber, E.; Gareis, M. Airborne mycotoxins in dust from grain elevators. Mycotoxin Res. 2007, 23, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Assunção, R.; Silva, M.J.; Alvito, P. Challenges in risk assessment of multiple mycotoxins in food. World Mycotoxin J. 2016, 9, 791–811. [Google Scholar] [CrossRef] [Green Version]
- Degen, G. Tools for investigating workplace-related risks from mycotoxin exposure. World Mycotoxin J. 2011, 4, 315–327. [Google Scholar] [CrossRef]
- Gerding, J.; Cramer, B.; Humpf, H.-U. Determination of mycotoxin exposure in Germany using an LC-MS/MS multibiomarker approach. Mol. Nutr. Food Res. 2014, 58, 2358–2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warth, B.; Sulyok, M.; Fruhmann, P.; Mikula, H.; Berthiller, F.; Schuhmacher, R.; Hametner, C.; Abia, W.A.; Adam, G.; Frohlich, J.; et al. Development and validation of a rapid multi-biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. Rapid Commun. Mass Spectrom. 2012, 26, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Föllmann, W.; Ali, N.; Blaszkewicz, M.; Degen, G.H. Biomonitoring of Mycotoxins in Urine: Pilot Study in Mill Workers. J. Toxicol. Environ. Heal. Part A 2016, 79, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Warth, B.; Sulyok, M.; Krska, R. LC-MS/MS-based multi-biomarker approaches for the assessment of human exposure to mycotoxins. Anal. Bioanal. Chem. 2013, 405, 5687–5695. [Google Scholar] [CrossRef] [PubMed]
- Heyndrickx, E.; Sioen, I.; Bellemans, M.; De Maeyer, M.; Callebaut, A.; De Henauw, S.; De Saeger, S. Assessment of mycotoxin exposure in the Belgian population using biomarkers: Aim, design and methods of the BIOMYCO study. Food Addit. Contam. Part A 2014, 31, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Osteresch, B.; Viegas, S.; Cramer, B.; Humpf, H.-U. Multi-mycotoxin analysis using dried blood spots and dried serum spots. Anal. Bioanal. Chem. 2017, 409, 3369–3382. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Osteresch, B.; Almeida, A.; Cramer, B.; Humpf, H.-U.; Viegas, C. Enniatin B and ochratoxin A in the blood serum of workers from the waste management setting. Mycotoxin Res. 2017, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Abrunhosa, L.; Morales, H.; Soares, C.; Calado, T.; Vila-Chã, A.S.; Pereira, M.; Venâncio, A. A Review of Mycotoxins in Food and Feed Products in Portugal and Estimation of Probable Daily Intakes. Crit. Rev. Food Sci. Nutr. 2016, 56, 249–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burstyn, I.; Teschke, K.; Kennedy, S. Exposure levels and determinants of inhalable dust exposure in bakeries. Ann. Occup. Hyg. 1997, 41, 609–624. [Google Scholar] [CrossRef]
- Roberge, B.; Aubin, S.; Cloutier, Y. Characterization of Dusts in Traditional Bakeries; Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST): Montreal, QC, Canada, 2012. [Google Scholar]
- Halstensen, A.S.; Nordby, K.-C.; Eduard, W.; Klemsdal, S.S. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. J. Environ. Monit. 2006, 8, 1235. [Google Scholar] [CrossRef] [PubMed]
- Niculita-Hirzel, H.; Hantier, G.; Storti, F.; Plateel, G.; Roger, T. Frequent occupational exposure to fusarium mycotoxins of workers in the swiss grain industry. Toxins 2016, 8, 370. [Google Scholar] [CrossRef] [PubMed]
- Nordby, K.-C.; Halstensen, A.S.; Elen, O.; Clasen, P.-E.; Langseth, W.; Kristensen, P.; Eduard, W. Trichothecene mycotoxins and their determinants in settled dust related to grain production. Ann. Agric. Environ. Med. 2004, 11, 75–83. [Google Scholar] [PubMed]
- Selim, M.I.; Juchems, A.M.; Popendorf, W. Assessing Airborne Aflatoxin B1 During On-Farm Grain Handling Activities. Am. Ind. Hyg. Assoc. J. 1998, 59, 252–256. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Deoxynivalenol in food and feed: Occurrence and exposure. EFSA J. 2013, 11, 3379. [Google Scholar] [CrossRef]
- Sirot, V.; Fremy, J.M.; Leblanc, J.C. Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food Chem. Toxicol. 2013, 52, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Brera, C.; de Santis, B.; Debegnach, F.; Miano, B.; Moretti, G.; Lanzone, A.; Del Sordo, G.; Buonsenso, D.; Chiaretti, A.; Hardie, L.; et al. Experimental Study of Deoxynivalenol Biomarkers in Urine; EFSA supporting publication 2015: EN-818; European Food Safety Authority: Parma, Italy, 2015; p. 136. [Google Scholar]
- Bergamini, E.; Catellani, D.; Dall’asta, C.; Galaverna, G.; Dossena, A.; Marchelli, R.; Suman, M. Fate of Fusarium mycotoxins in the cereal product supply chain: The deoxynivalenol (DON) case within industrial bread-making technology. Food Addit. Contam. Part A 2010, 27, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J. Mechanisms of Deoxynivalenol-Induced Gene Expression and Apoptosis. Food Addit. Contam. Part A 2008, 25, 1128–1140. [Google Scholar] [CrossRef]
- Langseth, W.; Elen, O. The occurrence of deoxynivalenol in Norwegian cereals—Differences between years and districts, 1988–1996. Acta Agric. Scand. Sect. B Soil Plant Sci. 1997, 47, 176–184. [Google Scholar] [CrossRef]
- Kristensen, P.; Irgens, L.M.; Andersen, A.; Bye, A.S.; Sundheim, L. Gestational Age, Birth Weight, and Perinatal Death among Births to Norwegian Farmers, 1967–1991. Am. J. Epidemiol. 1997, 146, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, P.; Andersen, A.; Irgens, L.M. Hormone-dependent cancer and adverse reproductive outcomes in farmers’ families—Effects of climatic conditions favoring fungal growth in grain. Scand. J. Work Environ. Health 2000. [Google Scholar] [CrossRef]
- Duarte, S.; Bento, J.; Pena, A.; Lino, C.M.; Delerue-Matos, C.; Oliva-Teles, T.; Morais, S.; Correia, M.; Oliveira, M.B.P.P.; Alves, M.R.; et al. Monitoring of ochratoxin A exposure of the Portuguese population through a nationwide urine survey—Winter 2007. Sci. Total Environ. 2010, 408, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Aflatoxin. In IARC Monograph on the Evaluation of Carcinogenic Risk to Humans: Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene; World Health Organization: Lyon, France, 2002; pp. 171–176. [Google Scholar]
- International Agency for Research on Cancer. Ochratoxin A. In IARC Monograph on the Evaluation of Carcinogenic Risk to Humans: Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; World Health Organization: Lyon, France, 1993; pp. 489–521. [Google Scholar]
- Nehad, E.A.; Farag, M.M.; Kawther, M.S.; Abdel-Samed, A.K.; Naguib, K. Stability of ochratoxin A (OTA) during processing and decaffeination in commercial roasted coffee beans. Food Addit. Contam. 2005, 22, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Lino, C.M.; Baeta, M.L.; Henri, M.; Dinis, A.M.P.; Pena, A.S.; Silveira, M.I.N. Levels of ochratoxin A in serum from urban and rural Portuguese populations and estimation of exposure degree. Food Chem. Toxicol. 2008, 46, 879–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pena, A.; Seifrtová, M.; Lino, C.; Silveira, I.; Solich, P. Estimation of ochratoxin A in portuguese population: New data on the occurrence in human urine by high performance liquid chromatography with fluorescence detection. Food Chem. Toxicol. 2006, 44, 1449–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramer, B.; Osteresch, B.; Muñoz, K.A.; Hillmann, H.; Sibrowski, W.; Humpf, H.U. Biomonitoring using dried blood spots: Detection of ochratoxin A and its degradation product 2’R-ochratoxin A in blood from coffee drinkers. Mol. Nutr. Food Res. 2015, 59, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 2014, 12, 3802. [Google Scholar] [CrossRef]
- Blesa, J.; Marín, R.; Lino, C.M.; Mañes, J. Evaluation of enniatins A, A1, B, B1 and beauvericin in Portuguese cereal-based foods. Food Addit. Contam. Part A 2012, 29, 1727–1735. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, L.; Skjerve, E.; Eriksen, G.S.; Uhlig, S. Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from Fusarium avenaceum. Toxicon 2006, 47, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Doughari, J. The occurrence, properties and significance of citrinin mycotoxin. J. Plant Pathol. Microbiol. 2015, 6, 1–6. [Google Scholar] [CrossRef]
- Martins, M.L.; Gimeno, A.; Martins, H.M.; Bernardo, F. Co-occurrence of patulin and citrinin in Portuguese apples with rotten spots. Food Addit. Contam. 2002, 19, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Föllmann, W.; Behm, C.; Degen, G.H. Toxicity of the mycotoxin citrinin and its metabolite dihydrocitrinone and of mixtures of citrinin and ochratoxin A in vitro. Arch. Toxicol. 2014, 88, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Assunção, R.; Vasco, E.; Nunes, B.; Loureiro, S.; Martins, C.; Alvito, P. Single-compound and cumulative risk assessment of mycotoxins present in breakfast cereals consumed by children from Lisbon region, Portugal. Food Chem. Toxicol. 2015, 86, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Assunção, R.; Cunha, S.C.; Fernandes, J.O.; Jager, A.; Petta, T.; Oliveira, C.A.; Alvito, P. Assessment of multiple mycotoxins in breakfast cereals available in the Portuguese market. Food Chem. 2018, 239, 132–140. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Caetano, L.A.; Faria, T.; Batista, A.C.; Viegas, S.; Viegas, C. Assessment of occupational exposure to azole resistant fungi in 10 Portuguese bakeries. AIMS Microbiol. 2017, 3, 960–975. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Microbiology of Food and Animal Feeding Stuffs: Horizontal Method for the Enumeration of Yeasts and Moulds; Part 1: Colony count technique in products with water activity greater than 0.95, 21527-1; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- International Organization for Standardization (ISO). Microbiology of Food and Animal Feeding Stuffs: Horizontal Method for the Enumeration of Yeasts and Moulds; Part 2: Colony count technique in products with water activity greater than 0.95, 21527-2; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- European Food Safety Authority. Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 2010, 8, 96. [Google Scholar] [CrossRef]
- Choi, J.; Aarøe Mørck, T.; Polcher, A.; Knudsen, L.E.; Joas, A. Review of the state of the art of human biomonitoring for chemical substances and its application to human exposure assessment for food safety. EFSA Support. Publ. 2015, 12, 321. [Google Scholar] [CrossRef]
Groups | Female | Male | Age (Mean; SD) | Years of Activity (Mean; SD) |
---|---|---|---|---|
Workers (n = 21) | 9 | 12 | 35.2; 11.1 | 5.4; 5.1 |
Controls (n = 19) | 6 | 12 | 41.3; 5 | - |
Groups | DON-GlcA | AFM1 | EnB | CIT | DH-CIT | OTA | 2′R-OTA |
---|---|---|---|---|---|---|---|
LOD (µg/L) | 1.24 | 0.11 | 0.006 | 0.61 | 0.115 | 0.011 | 0.036 |
LOQ (µg/L) | 4.14 | 0.38 | 0.020 | 2.00 | 0.383 | 0.036 | 0.120 |
Workers (n = 21) | |||||||
>LOQ (n, %) | 3, 14% | - | - | - | - | - | - |
LOD-LOQ (n, %) | 17, 81% | 3, 14% | 3, 14% | 6, 29% | 3, 14% | 10, 48% | 2, 10% |
<LOD (n, %) | 1, 5% | 18, 86% | 18, 86% | 17, 71% | 18, 86% | 11, 52% | 19, 90% |
Controls (n = 19) | |||||||
>LOQ (n, %) | - | - | - | 1, 5% | - | - | - |
LOD-LOQ (n, %) | 11, 58% | 1, 5% | 2, 11% | 10, 53% | 2, 11% | 13, 68% | 4, 21% |
<LOD (n, %) | 8, 42% | 18, 95% | 17, 89% | 8, 42% | 17, 89% | 6, 32% | 15, 79% |
Groups | DON-GlcA LOD = 1.24 LOQ = 4.14 | AFM1 LOD = 0.11 LOQ = 0.38 | EnB LOD = 0.0059 LOQ = 0.020 | CIT LOD = 0.61 LOQ = 2 | DH-CIT LOD = 0.115 LOQ = 0.383 | OTA LOD = 0.011 LOQ = 0.036 | 2′R-OTA LOD = 0.036 LOQ = 0.12 |
---|---|---|---|---|---|---|---|
Workers (n = 21) | >LOQ = 9 (43%) <LOQ = 5 (24%) | >LOQ = 2 (10%) | <LOQ = 19 (90.5%) | ||||
Controls (n = 19) | <LOQ = 11 (58%) | <LOQ = 1 (5%) | <LOQ = 2 (11%) | >LOQ = 1 (5%) <LOQ = 10 (53%) | <LOQ = 10 (53%) | <LOQ = 13 (68%) | <LOQ = 4 (21%) |
Groups | DON-GlcA | AFM1 | CIT |
---|---|---|---|
Workers (µg/g Crea) | |||
Range | 12.60–64.51 | 3.40–5.01 | |
Mean | 34.87 | 4.21 | |
SD | 17.45 | 1.14 | |
Controls (ng/mL) | |||
Single value | 24.2 * |
Mycotoxins | Concentration |
---|---|
D3G | <LOQ |
DON | 58.2 |
ZEN | <LOQ |
MAS | 0.54 |
OTA | <LOQ |
MA | 0.84 |
Participants | DON Estimated Daily Exposure (µg/kg b.w./day) | Percentage of TDI |
---|---|---|
Control 1 | 0.12 | 12 |
Control 2 | 0.12 | 12 |
Control 3 | 0.12 | 12 |
Control 4 | 0.40 | 40 |
Control 5 | 0.40 | 40 |
Control 6 | 0.40 | 40 |
Control 7 | 0.40 | 40 |
Control 8 | 0.12 | 12 |
Control 9 | 0.40 | 40 |
Control 10 | 0.12 | 12 |
Control 11 | 0.12 | 12 |
Control 12 | 0.40 | 40 |
Control 13 | 0.40 | 40 |
Control 14 | 0.12 | 12 |
Control 15 | 0.40 | 40 |
Control 16 | 0.12 | 12 |
Control 17 | 0.40 | 40 |
Control 18 | 0.40 | 40 |
Control 19 | 0.40 | 40 |
Worker 1 | 0.71 | 71 |
Worker 2 | 0.12 | 12 |
Worker 3 | 0.12 | 12 |
Worker 4 | 0.97 | 97 |
Worker 5 | 0.40 | 40 |
Worker 6 | 0.54 | 54 |
Worker 7 | 0.43 | 43 |
Worker 8 | 0.40 | 40 |
Worker 9 | 1.04 | 104 |
Worker 10 | 0.12 | 12 |
Worker 11 | 0.12 | 12 |
Worker 12 | 0.40 | 40 |
Worker 13 | 0.81 | 81 |
Worker 14 | 0.12 | 12 |
Worker 15 | 0.12 | 12 |
Worker 16 | 0.12 | 12 |
Worker 17 | 0.71 | 71 |
Worker 18 | 0.40 | 40 |
Worker 19 | 0.40 | 40 |
Worker 20 | 0.65 | 65 |
Worker 21 | 1.02 | 102 |
Tolerable daily intake of DON = 1 µg/kg b.w./day |
Compound | Precursor Ion (m/z) | Declustering Potential (V) | Product ions (m/z) * | Collision Energy (V) | Cell Exit Potential (V) |
---|---|---|---|---|---|
Patulin | 152.9 | −55 | 108.9/81.0 | −12/−16 | −5/−3 |
Nivalenol | 371.1 | −60 | 281.0/59.0 | −22/−38 | −5/−1 |
Deoxynivalenol−3-Glucoside | 517.2 | −70 | 427.1/457.2 | −28/−20 | −9/−11 |
Deoxynivalenol | 355.1 | −55 | 265.0/59.0 | −22/−38 | −11/−10 |
Fusarenon X | 413.1 | −35 | 263.1/186.9 | −22/−36 | −10/−11 |
Deepoxy-deoxynivalenol | 339.1 | −50 | 249.2/59.0 | −16/−34 | −15/−10 |
α-Zearalanol | 321.1 | −110 | 277.0/303.1 | −30/−30 | −5/−7 |
β-Zearalanol | 321.1 | −110 | 277.0/303.1 | −30/−30 | −5/−7 |
β-Zearalenol | 319.0 | −110 | 159.8/173.9 | −42/−36 | −11/−11 |
α-Zearalenol | 319.0 | −110 | 159.8/173.9 | −42/−36 | −11/−11 |
Zearalanon | 319.0 | −105 | 204.8/161.0 | −32/−38 | −13/−9 |
Zearalenon | 317.1 | −110 | 131.0/174.9 | −40/−34 | −7/−11 |
T2 Tetraol | 361.2 | 56 | 215.0/281.1 | 13/13 | 14/20 |
Neosolaniol | 400.2 | 51 | 185.1/245.1 | 29/17 | 12/16 |
15-Acetyldeoxynivalenol | 356.1 | 41 | 321.0/137.1 | 19/21 | 22/8 |
3-Acetyldeoxynivalenol | 339.2 | 71 | 231.1/203.1 | 17/21 | 16/14 |
Monoacetoxyscirpenol | 342.1 | 41 | 265.1/107.1 | 13/21 | 18/6 |
Diacetoxyscirpenol | 384.2 | 51 | 307.0/247.0 | 17/21 | 20/16 |
Aflatoxin M1 | 329.0 | 71 | 273.1/259.0 | 33/33 | 18/18 |
Aflatoxin B1 | 313.1 | 106 | 285.1/128.1 | 33/93 | 20/8 |
Aflatoxin B2 | 315.1 | 106 | 287.1/259.0 | 37/41 | 20/18 |
Aflatoxin G1 | 329.1 | 96 | 242.9/200.1 | 37/57 | 16/14 |
Aflatoxin G2 | 331.0 | 76 | 189.0/245.1 | 59/45 | 13/12 |
Fumonisin B1 | 722.4 | 116 | 334.4/352.3 | 57/51 | 10/10 |
Fumonisin B2 | 706.4 | 121 | 336.4/318.3 | 51/55 | 10/10 |
Fumonisin B3 | 706.4 | 121 | 336.4/318.3 | 51/55 | 10/10 |
T2 Triol | 400.2 | 36 | 215.2/233.1 | 17/13 | 14/16 |
Roquefortine C | 390.2 | 81 | 193.0/322.0 | 39/29 | 12/22 |
Griseofulvin | 353.1 | 71 | 165.0/215.1 | 29/29 | 10/14 |
T−2 toxin | 484.2 | 56 | 215.0/305.1 | 29/21 | 14/8 |
HT−2 toxin | 442.2 | 61 | 215.1/263.0 | 19/19 | 14/18 |
Ochratoxin A | 404.1 | 61 | 239.0/358.1 | 33/21 | 16/10 |
Ochratoxin B | 370.1 | 61 | 205.0/187.1 | 29/49 | 14/12 |
Mycophenolic acid | 321.1 | 66 | 207.0/303.0 | 29/15 | 14/20 |
Mevinolin | 405.3 | 81 | 285.1/199.1 | 17/17 | 20/12 |
Mycotoxins | LOD (Settled Dust Matrix) (ng/g) | LOQ (Settled Dust Matrix) (ng/g) | LOD (Standard Solution) (ng/mL) | LOQ (Standard Solution) (ng/mL) |
---|---|---|---|---|
Patulin | 1.1 | 3.6 | 0.8 | 2.6 |
Nivalenol | 4.5 | 14.9 | 3.6 | 11.9 |
Deoxynivalenol-3-glucoside | 5.4 | 17.8 | 4.2 | 13.9 |
Deoxynivalenol | 2.7 | 8.9 | 2.3 | 7.6 |
Fusarenon-X | 4.8 | 15.8 | 4.2 | 13.9 |
Deepoxy-deoxynivalenol | 4.2 | 13.9 | 3.3 | 10.9 |
α-Zearalanol | 2.0 | 6.6 | 1.7 | 5.6 |
β-Zearalanol | 0.9 | 3.0 | 0.9 | 3.0 |
β-Zearalenol | 1.4 | 4.6 | 1.2 | 4.0 |
α-Zearalenol | 1.0 | 3.3 | 0.9 | 3.0 |
Zearalanone | 0.5 | 1.7 | 0.5 | 1.7 |
Zearalenone | 0.2 | 0.7 | 0.2 | 0.7 |
Neosolaniol | 0.1 | 0.3 | 0.1 | 0.3 |
15-Acetyldeoxynivalenol | 0.8 | 2.6 | 0.8 | 2.6 |
3-Acetyldeoxynivalenol | 0.8 | 2.6 | 0.8 | 2.6 |
Monoacetoxyscirpenol | 0.1 | 0.3 | 0.1 | 0.3 |
Diacetoxyscirpenol | 0.3 | 1.0 | 0.2 | 0.7 |
Aflatoxin M1 | 0.1 | 0.3 | 0.1 | 0.3 |
Aflatoxin B1 | 0.1 | 0.3 | 0.1 | 0.3 |
Aflatoxin B2 | 0.1 | 0.3 | 0.1 | 0.3 |
Aflatoxin G1 | 0.1 | 0.3 | 0.1 | 0.3 |
Aflatoxin G2 | 0.1 | 0.3 | 0.1 | 0.3 |
Fumonisin B1 | 0.5 | 1.7 | 0.5 | 1.7 |
Fumonisin B2 | 0.4 | 1.3 | 0.3 | 1.0 |
Fumonisin B3 | 0.5 | 1.7 | 0.5 | 1.7 |
T2 tetraol | 5.4 | 17.8 | 4.5 | 14.9 |
T2 triol | 0.3 | 1.0 | 0.2 | 0.7 |
Roquefortine C | 0.2 | 0.7 | 0.1 | 0.3 |
Griseofulvin | 0.1 | 0.3 | 0.1 | 0.3 |
T-2 toxin | 0.1 | 0.3 | 0.1 | 0.3 |
HT-2 toxin | 0.3 | 1.0 | 0.2 | 0.7 |
Ochratoxin A | 0.1 | 0.3 | 0.1 | 0.3 |
Ochratoxin B | 0.1 | 0.3 | 0.1 | 0.3 |
Mycophenolic acid | 0.2 | 0.7 | 0.2 | 0.7 |
Mevinolin | 0.1 | 0.3 | 0.1 | 0.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viegas, S.; Assunção, R.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Martins, C.; Alvito, P.; Almeida, A.; et al. Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach. Toxins 2018, 10, 342. https://doi.org/10.3390/toxins10090342
Viegas S, Assunção R, Nunes C, Osteresch B, Twarużek M, Kosicki R, Grajewski J, Martins C, Alvito P, Almeida A, et al. Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach. Toxins. 2018; 10(9):342. https://doi.org/10.3390/toxins10090342
Chicago/Turabian StyleViegas, Susana, Ricardo Assunção, Carla Nunes, Bernd Osteresch, Magdalena Twarużek, Robert Kosicki, Jan Grajewski, Carla Martins, Paula Alvito, Ana Almeida, and et al. 2018. "Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach" Toxins 10, no. 9: 342. https://doi.org/10.3390/toxins10090342
APA StyleViegas, S., Assunção, R., Nunes, C., Osteresch, B., Twarużek, M., Kosicki, R., Grajewski, J., Martins, C., Alvito, P., Almeida, A., & Viegas, C. (2018). Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach. Toxins, 10(9), 342. https://doi.org/10.3390/toxins10090342