Accumulation of Microcystin-LR in Grains of Two Rice Varieties (Oryza sativa L.) and a Leafy Vegetable, Ipomoea aquatica
Abstract
:1. Introduction
2. Results
2.1. Laboratory Studies
2.2. Field Studies
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Laboratory Study
4.3. Field Study
4.4. Extraction of MC-LR from Rice Grains
4.5. Extraction of MC-LR from I. Aqutaica Plant Tissues
4.6. Extraction of MC-LR in Hydroponic System Medium and Water Samples from the Padaviya Reservoir
4.7. Quantification of MC-LR
4.8. Statistical Analysis
4.9. Calculation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carmichael, W.W. The toxins of cyanobacteria. Sci. Am. 1994, 270, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Zanchett, G.; Oliveira-Filho, E.C. Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins 2013, 5, 1896–1917. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 2002, 25, 704–726. [Google Scholar] [CrossRef]
- Codd, G.A.; Bell, S.G.; Kaya, K.; Ward, C.J.; Beattie, K.A.; Metcalf, J.S. Cyanobacterial toxins, exposure routes and human health. Euro. J. Phycol. 1999, 34, 405–415. [Google Scholar] [CrossRef]
- Carey, C.C.; Ibelings, B.W.; Hoffmann, E.P.; Hamilton, D.P.; Brookes, J.D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012, 46, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Drobac, D.; Tokodi, N.; Simeunović, J.; Baltić, V.; Stanić, D.; Svirčev, Z. Human exposure to cyanotoxins and their effects on health. Arch. Indus. Hyg. Toxicol. 2013, 64, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Lambert, T.; Holmes, C.; Hrudey, S. Microcystin class of toxins: Health effects and safety of drinking water supplies. Environ. Rev. 1994, 2, 167–186. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Sinha, R.P. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotech. Adv. 2009, 27, 521–539. [Google Scholar] [CrossRef]
- Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide for their Public Health Consequences, Monitoring and Management; E&FN Spon: London, UK, 1999. [Google Scholar]
- World Health Organization. Cyanobacterial Toxins: Microcystin-LR in Drinking-Water, 2nd ed.; World Health Organization: Geneva, Switzerland, 2003; Available online: http://www.who.int/water_sanitation_health/dwq/chemicals/ cyanobactoxis.pdf (accessed on 21 January 2016).
- Chorus, I.; Falconer, I.R.; Salas, H.J.; Bartram, J. Health risks caused by freshwater cyanobacteria in recreational waters. J. Toxicol. Environ. Health Part B Crit. Rev. 2000, 3, 323–347. [Google Scholar]
- Azevedo, S.M.; Carmichael, W.W.; Jochimsen, E.M.; Rinehart, K.L.; Lau, S.; Shaw, G.R.; Eaglesham, G.K. Human intoxication by microcystins during renal dialysis treatment in Caruaru—Brazil. Toxicology 2002, 181, 441–446. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Azevedo, S.; An, J.S.; Molica, R.; Jochimsen, E.M.; Lau, S.; Rinehart, K.L.; Shaw, G.R.; Eaglesham, G.K. Human fatalities from cyanobacteria: Chemical and biological evidence for cyanotoxins. Environ. Health Perspec. 2001, 109, 663. [Google Scholar] [CrossRef] [PubMed]
- Dillenberg, H.; Dehnel, M. Toxic waterbloom in Saskatchewan, 1959. Can. Med. Assoc. J. 1960, 83, 1151. [Google Scholar] [PubMed]
- Drobac, D.; Svirčev, Z.; Tokodi, N.; Vidović, M.; Baltić, V.; Božić-Krstić, V.; Lazić, D.; Pavlica, T. Microcystins: Potential risk factors in carcinogenesis of primary liver cancer in Serbia. Geogr. Pannonica 2011, 15, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Nishiwaki-Matsushima, R.; Ohta, T.; Nishiwaki, S.; Suganuma, M.; Kohyama, K.; Ishikawa, T.; Carmichael, W.W.; Fujiki, H. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J. Cancer Res. Clin. Oncol. 1992, 118, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, J.; Li, Y.; Han, X. Decline of sperm quality and testicular function in male mice during chronic low-dose exposure to microcystin-LR. Reprod. Toxicol. 2011, 31, 551–557. [Google Scholar] [CrossRef]
- Dissananyake, D.; Jayasekera, J.; Ratnayake, P.; Wickramasinghe, W.; Radella, Y. The short term effect of cyanobacterial toxin extracts on mice kidney. In Proceedings of the Peradeniya University Research Sessions, Peradeniya, Sri Lanka, 24 November 2011. [Google Scholar]
- Lankoff, A.; Carmichael, W.W.; Grasman, K.A.; Yuan, M. The uptake kinetics and immunotoxic effects of microcystin-LR in human and chicken peripheral blood lymphocytes in vitro. Toxicology 2004, 204, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Lone, Y.; Koiri, R.K.; Bhide, M. An overview of the toxic effect of potential human carcinogen Microcystin-LR on testis. Toxicol. Rep. 2015, 2, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Maidana, M.; Carlis, V.; Galhardi, F.G.; Yunes, J.S.; Geracitano, L.; Monserrat, J.M.; Barros, D.M. Effects of microcystins over short-and long-term memory and oxidative stress generation in hippocampus of rats. Chem. Biol. Interact. 2006, 159, 223–234. [Google Scholar] [CrossRef]
- Zeller, P.; Clement, M.; Fessard, V. Similar uptake profiles of microcystin-LR and-RR in an in vitro human intestinal model. Toxicology 2011, 290, 7–13. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Zhang, F.Q.; Li, C.F.; Yi, D.; Fu, X.L.; Cui, L.X. A cyanobacterial toxin, microcystin-LR, induces apoptosis of sertoli cells by changing the expression levels of apoptosis-related proteins. Tohoku J. Exp. Med. 2011, 224, 235–242. [Google Scholar] [CrossRef]
- Dias, E.; Louro, H.; Pinto, M.; Santos, T.; Antunes, S.; Pereira, P.; Silva, M.J. Genotoxicity of microcystin-LR in in vitro and in vivo experimental models. Bio. Med. Res. Int. 2014, 2014, 1–9. [Google Scholar]
- Dawson, R. The toxicology of microcystins. Toxicon 1998, 36, 953–962. [Google Scholar] [CrossRef]
- Campos, A.; Vasconcelos, V. Molecular mechanisms of microcystin toxicity in animal cells. Int. J. Mole. Sci. 2010, 11, 268–287. [Google Scholar] [CrossRef] [PubMed]
- MacKintosh, C.; Beattie, K.A.; Klumpp, S.; Cohen, P.; Codd, G.A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990, 264, 187–192. [Google Scholar] [CrossRef] [Green Version]
- La-Salete, R.; Oliveira, M.; Palmeira, C.; Almeida, J.; Peixoto, F. Mitochondria a key role in microcystin-LR kidney intoxication. J. Appl. Toxicol. 2008, 28, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Piyathilake, M.; Pathmalal, M.; Tennekoon, K.; De Silva, B.; Samarakoon, S.; Chanthirika, S. Microcystin-LR-induced cytotoxicity and apoptosis in human embryonic kidney and human kidney adenocarcinoma cell lines. Microbiology 2015, 161, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Torokne, A.; Palovics, A.; Bankine, M. Allergenic (sensitization, skin and eye irritation) effects of freshwater cyanobacteria—experimental evidence. Environ. Toxicol. 2001, 16, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Manage, P. Cyanotoxins: A hidden cause of Chronic Kidney Disease of unknown etiology (CKDu) in Sri Lanka-A review. Sri Lanka J. Aquati. Sci. 2019, 24, 1–10. [Google Scholar] [CrossRef]
- Abeysiri, H.A.S.N.; Wanigasuriya, K.; Manage, P.M. Accumulation of Cylindrospermopsin and Microcystin-LR in rice (Oryza sativa) in CKDu high prevalence Padaviya in Anuradhapura District, Sri Lanka. In Proceedings of the International Conference on Chronic Kidney Disease of Unknown Aetiology: Current Aspects and Future Prospects, Kandy, Sri Lanka, 8–9 December 2018; p. 28. [Google Scholar]
- Abeysiri, H.A.S.N.; Wanigasuriya, K.; Manage, P.M. Cyanotoxin Contamination in Human Urine in CKDu High Prevalence Padaviya and Low Prevalence Rajanganaya and Galnewa in Anuradhapura District, Sri Lanka. In Proceedings of the International Forestry and Environment Symposium, Waskaduwa, Sri Lanka, 23–24 November 2018; p. 210. [Google Scholar]
- Chandrajith, R.; Nanayakkara, S.; Itai, K.; Aturaliya, T.; Dissanayake, C.; Abeysekera, T.; Harada, K.; Watanabe, T.; Koizumi, A. Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: Geographic distribution and environmental implications. Environ. Geochem. Health 2011, 33, 267–278. [Google Scholar] [CrossRef]
- Jayasekara, J.; Dissanayake, D.; Adhikari, S.; Bandara, P. Geographical distribution of chronic kidney disease of unknown origin in North Central Region of Sri Lanka. Cey. Med. J. 2013, 58, 6–10. [Google Scholar] [CrossRef]
- Manage, P.M. Detection of Hepatotoxin Microcystin-LR and Identification of Cyanobacteria in Some Selected Drinking, Irrigation and Aesthetic Waterbodies in Sri Lanka; Final Report; NWSDB: Colombo, Sri Lanka, 2013. [Google Scholar]
- Jayatissa, L.; Silva, E.; McElhiney, J.; Lawton, L. Occurrence of toxigenic cyanobacterial blooms in freshwaters of Sri Lanka. Syst. Appl. Microbiol. 2006, 29, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Codd, G.A.; Metcalf, J.S.; Beattie, K.A. Retention of Microcystis Aeruginosa and microcystin by salad lettuce (Lactuca Sativa) after spray irrigation with water containing cyanobacteria. Toxicon 1999, 37, 1181–1185. [Google Scholar] [CrossRef]
- Chen, J.; Han, F.X.; Wang, F.; Zhang, H.; Shi, Z. Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Ecotoxicol. Environ. Saf. 2012, 76, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Järvenpää, S.; Lundberg-Niinistö, C.; Spoof, L.; Sjövall, O.; Tyystjärvi, E.; Meriluoto, J. Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography–mass spectrometry. Toxicon 2007, 49, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, B.R. The accumulation of the cyanobacterial toxin, microcystin, in cherry tomato (Solanum Lycoperiscum) and bush bean (Phaseolus Vulgaris) plants. UNH Cent. Freshw. Biol. Res. 2013, 15, 1–11. [Google Scholar]
- Mohamed, Z.A.; Al Shehri, A.M. Microcystins in groundwater wells and their accumulation in vegetable plants irrigated with contaminated waters in Saudi Arabia. J. Hazard. Mater. 2009, 172, 310–315. [Google Scholar] [CrossRef]
- Idroos, S.F.; Manage, P.M. Seasonal occurrence of Microcystin-LR with respect to physico-chemical aspects of Beira lake water. Int. J. Multidisci. Stud. 2015, 1, 27–37. [Google Scholar] [CrossRef]
- Sethunge, S.; Manage, P.M. Nuisance algae in water supply projects in Sri Lanka. In Proceedings of the International Conference on Sustainable Built Environment (ICSBE-2010), Kandy, Sri Lanka, 13–14 December 2010; pp. 62–70. [Google Scholar]
- Department of Census and Statistics. Agriculture Census. Available online: http://www.statistics.gov.lk/agriculture/Paddy%20Statistics/PaddyStatsPages/ProvisionalEstimates2015IM.pdf (accessed on 21 January 2017).
- Wang, H.; Velarde, O.; Walisinghe, R.; Herath, R.; Rajapaksa, D. Pattern of varietal adoption and economics of rice production in Sri Lanka. In Patterns of Varietal Adoption and Economics of Rice Production in Asia; Wang, H., Pandy, S., Velarde, O., Hardy, B., Eds.; International Rice Research Institute: Makati, Philippines, 2012; pp. 91–130. [Google Scholar]
- Holmer, R.; Linwattana, G.; Nath, P.; Keatinge, J.D.H. (Eds.) SEAVEG 2012: High Value Vegetables in Southeast Asia: Production, Supply and Demand; AVRDC-World Vegetable Center: Chiang Mai, Thailand, 2013. [Google Scholar]
- Vaishampayan, A.; Sinha, R.; Hader, D.P.; Dey, T.; Gupta, A.; Bhan, U.; Rao, A. Cyanobacterial biofertilizers in rice agriculture. Bot. Rev. 2001, 67, 453–516. [Google Scholar] [CrossRef]
- Purkayastha, J.; Gogoi, H.K.; Singh, L. Plant-Cyanobacteria interaction: Phytotoxicity of cyanotoxins. J. Phytol. 2010, 2, 7–15. [Google Scholar]
- Rahman, M.; Heulin, T.; Balandreau, J. Abundance and isolation of nitrogen-fixing bacteria from the major rice soils of Bangladesh. In Biological Nitrogen Fixation Associated with Rice Production, 1st ed.; Rahman, M., Podder, A.K., Van Hove, C., Begum, Z.N.T., Heulin, T., Hartmann, A., Eds.; Springer: Dordrecht, The Netherland, 1996; Volume 70, pp. 171–179. [Google Scholar]
- Rebeira, S.; Wickramasinghe, H.; Samarasinghe, W.; Prashantha, B. Diversity of grain quality characteristics of traditional rice (Oryza sativa L.) varieties in Sri Lanka. Trop. Agri. Res. 2014, 25, 470–478. [Google Scholar] [CrossRef]
- Priyangani, E.; Kottearachchi, N.; Attanayaka, D.; Pathinayake, B. Characterization of Suwandal and Heenati Rice Varieties for the Fragrance Gene Using Polymerase Chain Reaction Based Molecular Markers. Doctor of Philosophy, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka, 28 June 2008. [Google Scholar]
- Oh, H.M.; Lee, S.J.; Jang, M.H.; Yoon, B.D. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl. Environ. Microbiol. 2000, 66, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Bourne, D.G.; Riddles, P.; Jones, G.J.; Smith, W.; Blakeley, R.L. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ. Toxicol. 2001, 16, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Manage, P.M.; Edwards, C.; Singh, B.K.; Lawton, L.A. Isolation and identification of novel microcystin-degrading bacteria. Appl. Environ. Microbiol. 2009, 75, 6924–6928. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, K.; Naito, S.; Kondo, F.; Ishikawa, N.; Watanabe, M.F.; Suzuki, M.; Harada, K.I. Stability of Microcystins from cyanobacteria: Effect of light on decomposition and isomerization. Environ. Sci. Technol. 1994, 28, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Svrcek, C.; Smith, D.W. Cyanobacteria toxins and the current state of knowledge on water treatment options: A review. J. Environ. Eng. Sci. 2004, 3, 155–185. [Google Scholar] [CrossRef]
- Bury, N.; Newlands, A.; Eddy, F.; Codd, G. In vivo and in vitro intestinal transport of 3H-microcystin-LR, a cyanobacterial toxin, in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 1998, 42, 139–148. [Google Scholar] [CrossRef]
- Fischer, W.J.; Altheimer, S.; Cattori, V.; Meier, P.J.; Dietrich, D.R.; Hagenbuch, B. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol. 2005, 203, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runnegar, M.; Berndt, N.; Kaplowitz, N. Microcystin uptake and inhibition of protein phosphatases: Effects of chemoprotectants and self-inhibition in relation to known hepatic transporters. Toxicol. Appl. Pharmacol. 1995, 134, 264–272. [Google Scholar] [CrossRef]
- Crush, J.; Briggs, L.; Sprosen, J.; Nichols, S. Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environ. Toxicol. 2008, 23, 246–252. [Google Scholar] [CrossRef]
- Do Carmo Bittencourt-Oliveira, M.; Cordeiro-Araújo, M.K.; Chia, M.A.; De Toledo Arruda-Neto, J.D.; De Oliveira, Ê.T.; Dos Santos, F. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners. Ecotoxicol. Environ. Saf. 2016, 128, 83–90. [Google Scholar] [CrossRef]
- Azevedo, C.C.; Azevedo, J.; Osório, H.; Vasconcelos, V.; Campos, A. Early physiological and biochemical responses of rice seedlings to low concentration of microcystin-LR. Ecotoxicology 2014, 23, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Peuthert, A.; Chakrabarti, S.; Pflugmacher, S. Uptake of microcystins-LR and-LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Environ. Toxicol. 2007, 22, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Pflugmacher, S.; Aulhorn, M.; Grimm, B. Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defense systems of different spinach variants. New Phytol. 2007, 175, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Pflugmacher, S.; Hofmann, J.; Hübner, B. Effects on growth and physiological parameters in wheat (Triticum aestivum L.) grown in soil and irrigated with cyanobacterial toxin contaminated water. Environ. Toxicol. Chem. 2007, 26, 2710–2716. [Google Scholar] [CrossRef] [PubMed]
- Pflugmacher, S.; Wiegand, C.; Beattie, K.A.; Krause, E.; Steinberg, C.E.; Codd, G.A. Uptake, effects, and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (cav.) trin. ex steud. Environ. Toxicol. Chem. 2001, 20, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Saqrane, S.; Ouahid, Y.; El Ghazali, I.; Oudra, B.; Bouarab, L.; Del Campo, F.F. Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: A laboratory experimental approach. Toxicon 2009, 53, 786–796. [Google Scholar] [CrossRef] [PubMed]
- MacKintosh, R.W.; Dalby, K.N.; Campbell, D.G.; Cohen, P.T.; Cohen, P.; MacKintosh, C. The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. Febs Lett. 1995, 371, 236–240. [Google Scholar] [PubMed] [Green Version]
- Pflugmacher, S.; Wiegand, C.; Werner, S.; Schroeder, H.; Kankaanpää, H. Activity and substrate specificity of cytosolic and microsomal glutathione S-transferase in Australian black tiger prawns (Penaeus monodon) after exposure to cyanobacterial toxins. Environ. Toxicol. 2005, 20, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Duy, T.N.; Lam, P.K.; Shaw, G.R.; Connell, D.W. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2000; pp. 113–185. [Google Scholar]
- Funari, E.; Testai, E. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol. 2008, 38, 97–125. [Google Scholar] [CrossRef] [PubMed]
- Lawton, L.A.; Edwards, C.; Codd, G.A. Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 1994, 119, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
Experimental Design | Plant | Mean Concentration of MC-LR in Edible Tissues (μg/kg) | Mean Potential Human Exposure (µg/kg of Body weight/day) | |
---|---|---|---|---|
Laboratory study | Positive control | O. sativa (BG358) | 567.52 ± 4.88 | 2.84 ± 0.01 |
O. sativa (Suwandel) | 429.83 ± 4.39 | 0.22 ± 0.01 | ||
I. aquatica | 350.82 ± 2.86 | 0.06 ± 0.01 | ||
Negative control * | - | ND | ND | |
Field Study | - | O. sativa (BG358) | 20.97 ± 0.31 | 0.10 ± 0.01 |
O. sativa (Suwandel) | 18.19 ± 0.16 | 0.009 ± 0.005 | ||
I. aquatica | 132.86 ± 0.26 | 0.03 ± 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijewickrama, M.M.; Manage, P.M. Accumulation of Microcystin-LR in Grains of Two Rice Varieties (Oryza sativa L.) and a Leafy Vegetable, Ipomoea aquatica. Toxins 2019, 11, 432. https://doi.org/10.3390/toxins11080432
Wijewickrama MM, Manage PM. Accumulation of Microcystin-LR in Grains of Two Rice Varieties (Oryza sativa L.) and a Leafy Vegetable, Ipomoea aquatica. Toxins. 2019; 11(8):432. https://doi.org/10.3390/toxins11080432
Chicago/Turabian StyleWijewickrama, Menuja M, and Pathmalal M Manage. 2019. "Accumulation of Microcystin-LR in Grains of Two Rice Varieties (Oryza sativa L.) and a Leafy Vegetable, Ipomoea aquatica" Toxins 11, no. 8: 432. https://doi.org/10.3390/toxins11080432
APA StyleWijewickrama, M. M., & Manage, P. M. (2019). Accumulation of Microcystin-LR in Grains of Two Rice Varieties (Oryza sativa L.) and a Leafy Vegetable, Ipomoea aquatica. Toxins, 11(8), 432. https://doi.org/10.3390/toxins11080432