A Novel Uremic Score Reflecting Accumulation of Specific Uremic Toxins More Precisely Predicts One-Year Mortality after Hemodialysis Commencement: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Results
2.1. Flowchart of Study Participation
2.2. Baseline Characteristics
2.3. Association between Uremic Score and the Primary Outcome
2.4. Underlying Characteristics of Patients with Elevated BUN, β2MG, and AG
3. Discussion
4. Conclusions
5. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vanholder, V.; Fouque, D.; Glorieux, G.; Heine, G.H.; Kanbay, M.; Mallamaci, F.; Massy, Z.A.; Ortiz, A.; Rossignol, P.; Wiecek, A.; et al. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol. 2016, 4, 360–373. [Google Scholar] [CrossRef]
- Clark, W.R.; Dehghanic, N.L.; Narsimhan, V.; Ronco, C. Uremic Toxins and their Relation to Dialysis Efficacy. Blood Purif. 2019, 48, 299–314. [Google Scholar] [CrossRef]
- Meyer, T.W.; Hostetter, T.H. Uremia. N. Engl. J. Med. 2007, 357, 1316–1325. [Google Scholar] [CrossRef]
- Vanholder, R.; Pletinck, A.; Schepers, E.; Glorieux, G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins 2018, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.W.; Hostetter, T.H. Approaches to Uremia. J. Am. Soc. Nephrol. 2014, 25, 2151–2158. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.D.; Himmelfarb, J.; Paganini, E.; Ikizler, T.A.; Soroko, S.H.; Mehta, R.L.; Chertow, G.M. Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clin. J. Am. Soc. Nephrol. 2006, 1, 915–919. [Google Scholar] [CrossRef] [Green Version]
- Waikar, S.S.; Bonventre, J.V. Can we rely on blood urea nitrogen as a biomarker to determine when to initiate dialysis? Clin. J. Am. Soc. Nephrol. 2006, 1, 903–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, A.K.; Rocco, M.V.; Yan, G.; Leypoldt, J.K.; Levin, N.W.; Greene, T.; Agodoa, L.; Bailey, J.; Beck, G.J.; Clark, W.; et al. Serum β-2 Microglobulin Levels Predict Mortality in Dialysis Patients: Results of the HEMO Study. J. Am. Soc. Nephrol. 2006, 17, 546–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.W.; Kim, S.; Na, K.Y.; Cha, R.H.; Kang, S.W.; Park, C.W.; Cha, D.R.; Kim, S.G.; Yoon, S.A.; Han, S.Y.; et al. Serum anion gap predicts all-cause mortality in patients with advanced chronic kidney disease: A retrospective analysis of a randomized controlled study. PLoS ONE 2016, 11, e0156381. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Tanaka, H.; Shioji, S.; Sakamoto, E.; Kondo, I.; Suzuki, M.; Katadiri, D.; Tada, M.; Hinoshita, F. Anion gap predicts early mortality after starting hemodialysis in the elderly. Clin. Exp. Nephrol. 2020, 24, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.; De Smet, R. Pathophysiologic effects of uremic retention solutes. J. Am. Soc. Nephrol. 1999, 10, 1815–1823. [Google Scholar] [PubMed]
- Hörl, W.H. Genesis of the uraemic syndrome: Role of uraemic toxins. Wien. Klin. Wochenschr. 1998, 110, 511–520. [Google Scholar] [PubMed]
- Watanabe, Y.; Yamagata, K.; Nishi, S.; Hirakata, H.; Hanafusa, N.; Saito, C.; Hattori, M.; Itami, N.; Komatsu, Y.; Kawaguchi, Y.; et al. Japanese society for dialysis therapy clinical guideline for “hemodialysis initiation for maintenance hemodialysis”. Ther. Apher. Dial. 2015, 19, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Nakai, S.; Iseki, K.; Tsubakihara, Y. Late dialysis start did not affect long-term outcome in Japanese dialysis patients: Longterm prognosis from Japanese Society for Dialysis Therapy Registry. Ther. Apher. Dial. 2012, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.H.; Drechsler, C.; Wenger, J.; Buccafusca, R.; Hod, T.; Kalim, S.; Ramma, W.; Parikh, S.M.; Steen, H.; Friedman, D.J.; et al. Carbamylation of serum albumin as a risk factor for mortality in patients with kidney failure. Sci. Transl. Med. 2013, 5, 175ra29. [Google Scholar] [CrossRef] [Green Version]
- Lowrie, E.G.; Laird, N.M.; Parker, T.F.; Sargent, J.A. Effect of the hemodialysis prescription of patient morbidity: Report from the National Cooperative Dialysis Study. N. Engl. J. Med. 1981, 305, 1176–1181. [Google Scholar] [CrossRef]
- Argyropoulos, C.P.; Chen, S.S.; Ng, Y.H.; Roumelioti, M.E.; Shaffi, K.; Singh, P.; Tzamaloukas, A.H. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front. Med. (Lausanne) 2017, 4, 73. [Google Scholar] [CrossRef] [Green Version]
- Foster, M.C.; Inker, L.A.; Levey, A.S.; Selvin, E.; Eckfeldt, J.; Juraschek, S.P.; Coresh, J. Novel filtration markers as predictors of all-cause and cardiovascular mortality in US adults. Am. J. Kidney Dis. 2013, 62, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Estakhri, M.A.; Kavakeb, P.; Fathi, D.; Karimi, G.; Mohammadpour, A.; Rahbar, M. An Investigation of the Relationship between Beta-2 Microglobulin. (β2M) and Inflammatory Factors (Serum Levels of CRP and Albumin) and High Density Lipoproteins (HDL) in Hemodialysis Patients. Mod. Med. Lab. 2017, 1, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Stove, V.; Slabbinck, A.; Vanoverschelde, L.; Hoste, E.; Paepe, P.D.; Delanghe, J. How to Solve the Underestimated Problem of Overestimated Sodium Results in the Hypoproteinemic Patient. Crit. Care Med. 2016, 44, e83–e88. [Google Scholar] [CrossRef] [PubMed]
- Delanghe, J.R. Management of electrolyte disorders: Also the method matters! Acta Clin. Belg. 2019, 74, 2–6. [Google Scholar] [CrossRef]
- Arai, Y.; Shioji, S.; Tanaka, H.; Kondo, I.; Sakamoto, E.; Suzuki, M.; Katagiri, D.; Tada, M.; Hinoshita, F. Delirium is independently associated with early mortality in elderly patients starting hemodialysis. Clin Exp. Nephrol. 2020, 24, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Muramoto, Y.; Matsushita, M.; Irino, T. Reduction of reaction differences between human mercaptalbumin and human nonmercaptalbumin measured by the bromcresol purple method. Clin. Chim. Acta 1999, 289, 69–78. [Google Scholar] [CrossRef]
Prognosis and Baseline Conditions | Overall | Score: 0 | Score: 1 | Score: 2 | Score: 3 |
---|---|---|---|---|---|
(n = 230) | (n = 73) | (n = 77) | (n = 57) | (n = 23) | |
Prognosis | |||||
Observation period (days) | 347 ± 74 | 357 ± 49 | 352 ± 65 | 336 ± 90 | 322 ± 112 |
Death, n (%) | 16 (7%) | 2 (3%) | 4 (5%) | 6 (11%) | 4 (17%) |
Demographic characteristics | |||||
Age (years) | 68 ± 14 | 69 ± 12 | 68 ± 13 | 66 ± 15 | 67 ± 17 |
Male, n (%) | 175 (76%) | 56 (77%) | 58 (75%) | 43 (75%) | 18 (78%) |
BMI (kg/m2) | 22.7 ± 4.7 | 23.2 ± 4.0 | 22.7 ± 4.7 | 22.9 ± 5.6 | 20.2 ± 4.1 |
Clinical status | |||||
Presence of hemodialysis shunt | 180 (78%) | 65 (89%) | 62 (81%) | 38 (67%) | 15 (65%) |
Nephrology care (>6 months) | 190 (83%) | 64 (88%) | 65 (84%) | 43 (75%) | 18 (78%) |
Laboratory data | |||||
eGFR (mL/min/1.73 m2) | 5.4 ± 1.9 | 6.0 ± 1.7 | 5.5 ± 1.8 | 5.3 ± 1.9 | 3.8 ± 1.5 |
Systolic blood pressure (mmHg) | 149 ± 21 | 146 ± 17 | 150 ± 23 | 149 ± 22 | 152 ± 22 |
Hemoglobin (g/dL) | 8.8 ± 1.4 | 9.0 ± 1.2 | 8.9 ± 1.3 | 8.5 ± 1.6 | 8.8 ± 1.7 |
Albumin (g/dL) | 3.1 ± 0.6 | 3.3 ± 0.6 | 3.0 ± 0.6 | 2.8 ± 0.7 | 3.2 ± 0.7 |
Phosphate (mg/dL) | 5.9 ± 1.6 | 5.0 ± 0.9 | 5.7 ± 1.1 | 6.9 ± 1.6 | 7.5 ± 2.1 |
CRP (mg/dL) | 1.7 ± 3.7 | 0.6 ± 1.5 | 1.3 ± 1.5 | 3.2 ± 5.4 | 2.9 ± 4.4 |
BUN (mg/dL) | 89 ± 25 | 73 ± 15 | 85 ± 21 | 104 ± 25 | 119 ± 23 |
∆cAG (mmol/L) | 5.7 ± 3.6 | 2.7 ± 1.8 | 5.4 ± 2.4 | 8.2 ± 3.1 | 10.2 ± 3.8 |
β2MG (mg/L) | 18.8 ± 5.2 | 15.7 ± 2.2 | 18.2 ± 3.7 | 21.3 ± 6.7 | 24.3 ± 4.4 |
Comorbidities | |||||
Diabetes, n (%) | 136 (59%) | 48 (66%) | 50 (65%) | 30 (53%) | 8 (35%) |
Cardiovascular disease, n (%) | 82 (36%) | 26 (36%) | 34 (44%) | 19 (33%) | 3 (13%) |
Malignant disease, n (%) | 39 (17%) | 8 (11%) | 12 (16%) | 12 (21%) | 7 (30%) |
Medication | |||||
RAS inhibitor, n (%) | 75 (33%) | 31 (42%) | 20 (26%) | 19 (33%) | 5 (22%) |
Statin, n (%) | 90 (39%) | 36 (49%) | 30 (39%) | 20 (35%) | 4 (17%) |
ESA, n (%) | 205 (89%) | 68 (93%) | 70 (91%) | 48 (84%) | 19 (83%) |
Cox Proportional Hazard Model | HR (95% CI) | p-Value |
---|---|---|
One point increase in the uremic score | ||
Unadjusted model | 1.91 (1.16, 3.14) | 0.011 |
Model 1 | 1.70 (1.01, 2.83) | 0.042 |
Model 2 | 2.44 (1.21, 4.95) | 0.013 |
Model 3 | 4.19 (1.79, 9.78) | 0.001 |
Logistic Regression Analysis | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Demography | ||||
Age ≥ 75 years | 1.38 (0.77–2.45) | 0.273 | - | - |
Male gender | 0.64 (0.34–1.22) | 0.180 | - | - |
BMI < 20 kg/m2 | 1.65 (0.90–3.04) | 0.102 | - | - |
Laboratory data | ||||
eGFR > 7 mL/min/1.73 m2 | 0.95 (0.45–2.00) | 0.896 | - | - |
Systolic blood pressure < 110 mmHg | 11.9 (1.37–104) | 0.025 | 29.1 (3.01–282) | 0.004 |
Hemoglobin < 7 g/dL | 3.30 (1.41–7.70) | 0.006 | 2.88 (1.10–7.53) | 0.031 |
Albumin < 3 g/dL | 1.08 (0.61–1.91) | 0.791 | - | - |
Phosphate > 6 mg/dL | 5.12 (2.81–9.35) | <0.001 | 5.73 (3.00–10.9) | <0.001 |
CRP > 1 mg/dL | 1.61 (0.88–2.97) | 0.121 | - | - |
Comorbidities | ||||
Diabetes | 0.60 (0.34–1.06) | 0.084 | - | - |
Cardiovascular disease | 0.45 (0.24–0.85) | 0.014 | 0.41 (0.20–0.85) | 0.016 |
Malignant disease | 1.96 (0.96–3.97) | 0.062 | - | - |
Medications | ||||
RAS inhibitor | 0.98 (0.54–1.79) | 0.963 | - | - |
Statin | 0.60 (0.33–1.08) | 0.092 | - | - |
ESA | 0.43 (0.18–1.01) | 0.054 | - | - |
Logistic Regression Analysis | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Demography | ||||
Age ≥ 75 years | 0.98 (0.54–1.79) | 0.958 | - | - |
Male gender | 1.06 (0.54–2.10) | 0.852 | - | - |
BMI < 20 kg/m2 | 2.00 (1.08–3.70) | 0.027 | 1.84 (0.90–3.75) | 0.090 |
Laboratory data | ||||
eGFR > 7 mL/min/1.73 m2 | 0.23 (0.08–0.69) | 0.008 | 0.20 (0.06–0.68) | 0.010 |
Systolic blood pressure < 110 mmHg | 1.27 (0.22–7.15) | 0.780 | - | - |
Hemoglobin < 7 g/dL | 0.98 (0.39–2.48) | 0.976 | - | - |
Albumin < 3 g/dL | 2.48 (1.38–4.46) | 0.002 | 2.09 (1.04–4.19) | 0.037 |
Phosphate > 6 mg/dL | 3.23 (1.78–5.86) | <0.001 | 2.21 (1.13–4.30) | 0.020 |
CRP > 1 mg/dL | 2.93 (1.58–5.45) | 0.001 | 2.30 (1.11–4.74) | 0.024 |
Comorbidities | ||||
Diabetes | 0.67 (0.38–1.20) | 0.188 | - | - |
Cardiovascular disease | 0.73 (0.40–1.36) | 0.333 | - | - |
Malignant disease | 2.01 (0.98–4.12) | 0.055 | - | - |
Medications | ||||
RAS inhibitor | 0.46 (0.23–0.91) | 0.026 | 0.59 (0.28–1.26) | 0.179 |
Statin | 0.44 (0.23–0.84) | 0.012 | 0.41 (0.20–0.84) | 0.015 |
ESA | 0.81 (0.33–2.00) | 0.660 | - | - |
Logistic Regression Analysis | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Demography | ||||
Age ≥ 75 years | 0.72 (0.42–1.24) | 0.246 | - | - |
Male gender | 1.42 (0.77–2.60) | 0.258 | - | - |
BMI < 20 kg/m2 | 1.64 (0.91–2.97) | 0.098 | ||
Laboratory data | ||||
eGFR > 7 mL/min/1.73 m2 | 0.64 (0.32–1.28) | 0.215 | - | - |
Systolic blood pressure < 110 mmHg | 0.85 (0.16–4.30) | 0.846 | - | - |
Hemoglobin < 7 g/dL | 3.01 (1.15–7.85) | 0.024 | 2.17 (0.70–6.68) | 0.177 |
Albumin < 3 g/dL | 2.26 (1.31–3.91) | 0.003 | 1.38 (0.73–2.60) | 0.316 |
Phosphate > 6 mg/dL | 4.75 (2.62–8.61) | <0.001 | 3.83 (2.03–7.22) | <0.001 |
CRP > 1 mg/dL | 3.75 (1.96–7.15) | <0.001 | 2.85 (1.39–5.87) | 0.004 |
Comorbidities | ||||
Diabetes | 0.50 (0.29–0.86) | 0.013 | 0.48 (0.26–0.89) | 0.021 |
Cardiovascular disease | 0.98 (0.57–1.69) | 0.954 | - | - |
Malignant disease | 1.45 (0.72–2.94) | 0.296 | - | - |
Medications | ||||
RAS inhibitor | 0.70 (0.40–1.22) | 0.212 | - | - |
Statin | 0.66 (0.39–1.13) | 0.135 | - | - |
ESA | 0.51 (0.21–1.24) | 0.140 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arai, Y.; Shioji, S.; Tanaka, H.; Katagiri, D.; Hinoshita, F. A Novel Uremic Score Reflecting Accumulation of Specific Uremic Toxins More Precisely Predicts One-Year Mortality after Hemodialysis Commencement: A Retrospective Cohort Study. Toxins 2020, 12, 634. https://doi.org/10.3390/toxins12100634
Arai Y, Shioji S, Tanaka H, Katagiri D, Hinoshita F. A Novel Uremic Score Reflecting Accumulation of Specific Uremic Toxins More Precisely Predicts One-Year Mortality after Hemodialysis Commencement: A Retrospective Cohort Study. Toxins. 2020; 12(10):634. https://doi.org/10.3390/toxins12100634
Chicago/Turabian StyleArai, Yohei, Shingo Shioji, Hiroyuki Tanaka, Daisuke Katagiri, and Fumihiko Hinoshita. 2020. "A Novel Uremic Score Reflecting Accumulation of Specific Uremic Toxins More Precisely Predicts One-Year Mortality after Hemodialysis Commencement: A Retrospective Cohort Study" Toxins 12, no. 10: 634. https://doi.org/10.3390/toxins12100634
APA StyleArai, Y., Shioji, S., Tanaka, H., Katagiri, D., & Hinoshita, F. (2020). A Novel Uremic Score Reflecting Accumulation of Specific Uremic Toxins More Precisely Predicts One-Year Mortality after Hemodialysis Commencement: A Retrospective Cohort Study. Toxins, 12(10), 634. https://doi.org/10.3390/toxins12100634