Lack of Dose- and Time-Dependent Effects of Aflatoxin B1 on Gene Expression and Enzymes Associated with Lipid Peroxidation and the Glutathione Redox System in Chicken
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Design
4.2. Ethical Issues
4.3. Measurement of Feed Intake, Mortality, Body Weight, Liver Weight, and Relative Liver Weight
4.4. Biochemical Analyses
4.5. RNA Isolation, Reverse Transcription and qPCR
4.6. Statistical Analyses
Author Contributions
Funding
Conflicts of Interest
References
- Yunus, A.W.; Razzazi-Fazeli, E.; Bohm, J. Aflatoxin B1 in affecting broiler’s performance, immunity and gastrointestinal tract: A review of History and Contemporary Issues. Toxins 2011, 3, 566–590. [Google Scholar] [CrossRef] [Green Version]
- Dobolyi, Cs.; Sebők, F.; Varga, J.; Kocsubé, S.; Szigeti, G.; Baranyi, N.; Szécsi, Á.; Tóth, B.; Varga, B.; Kriszt, B.; et al. Occurrence of aflatoxin producing Aspergillus flavus isolates in maize kernel in Hungary. Acta. Aliment. 2013, 42, 451–459. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Fels-Klerx, H.J.; Moretti, A.; Leggieri, M.C.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [Green Version]
- Fountain, J.C.; Bajaj, P.; Nayak, S.N.; Yang, L.; Pandey, M.K.; Kumar, V.; Jayale, A.S.; Chitikineni, A.; Lee, R.D.; Kemerait, R.C.; et al. Responses of Aspergillus flavus to oxidative stress are related to fungal development regulator, antioxidant enzyme, and secondary metabolite biosynthetic gene expression. Front. Microbiol. 2016, 7, 2048. [Google Scholar] [CrossRef] [Green Version]
- Ledoux, D.R.; Rottinghaus, G.E.; Bermudez, A.J.; Alonso–Debolt, M. Efficacy of hydrated sodium calcium aluminosilicate to ameliorate the toxic effects of aflatoxin in broiler chicks. Poult. Sci. 1999, 78, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, W. Aflatoxin B1 impairs mitochondrial functions, activates ROS generation, induces apoptosis and involves Nrf2 signal pathway in primary broiler hepatocytes. Anim. Sci. J. 2016, 87, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Yarru, L.P.; Settivari, R.S.; Antoniou, E.; Ledoux, D.R.; Rottinghaus, G. Toxicological and gene expression analysis of the impact of aflatoxin B1 on hepatic function of male broiler chicks. Poult. Sci. 2009, 88, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Yarru, L.P.; Settivari, R.S.; Gowda, N.K.; Antoniou, E.; Ledoux, D.R.; Rottinghaus, G.E. Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poult. Sci. 2009, 88, 2620–2627. [Google Scholar] [CrossRef] [PubMed]
- Erdélyi, M.; Balogh, K.; Pelyhe, C.; Kövesi, B.; Nakade, M.; Zándoki, E.; Mézes, M.; Kovács, B. Changes in the regulation and activity of glutathione redox system, and lipid peroxidation processes in short-term aflatoxin B1 exposure in liver of laying hens. J. Anim. Physiol. Anim. Nutr. 2018, 102, 947–952. [Google Scholar] [CrossRef]
- Salem, R.; El-Habashi, N.; Fadl, S.E.; Sakr, O.A.; Elbialy, Z.I. Effect of probiotic supplement on aflatoxicosis and gene expression in the liver of broiler chicken. Environ. Toxicol. Pharmacol. 2018, 60, 118–127. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Nisar, S.; Asi, M.R.; Jinap, S. Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control 2014, 43, 98–103. [Google Scholar] [CrossRef]
- Arafa, A.S.; Bloomer, R.J.; Wilson, H.R.; Simpson, C.F.; Harms, R.H. Susceptibility of various poultry species to dietary aflatoxin. Br. Poult. Sci. 1981, 22, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Lozano, M.C.; Diaz, G.J. Microsomal and cytosolic biotransformation of aflatoxin B1 in four poultry species. Br. Poult. Sci. 2006, 47, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Leeson, S.; Diaz, G.J.; Summers, J.D. Poultry Metabolic Disorders and Mycotoxins; University Books: Guelph, ON, Canada, 1995; pp. 249–280. [Google Scholar]
- Rawal, S.; Kim, J.E.; Coulombe, R.A. Aflatoxin B1 in poultry: toxicology, metabolism and prevention. Res. Vet. Sci. 2010, 89, 325–331. [Google Scholar] [CrossRef]
- Bbosa, G.S.; Kity, D.; Lubega, A.; Ogwal-Okeng, J.; Anokbonggo, W.W.; Kyegomba, D.B. Review of the biological and health effects of aflatoxins on bodyorgans and body systems. In Aflatoxins—Recent Advances and Future Prospects; Razzaghi-Abyaneh, M., Ed.; InTech: Rijeka, Croatia, 2013; Volume 12, pp. 239–265. [Google Scholar] [CrossRef] [Green Version]
- Guengerich, F.P.; Jonhson, W.W.; Shimada, T.; Ueng, Y.F.; Yamazaki, H.; Langouet, S. Activation and detoxication of aflatoxin B1. Mutat. Res. 1998, 402, 121–128. [Google Scholar] [CrossRef]
- Diaz, G.J.; Murcia, H.W. Biotransformation of aflatoxin B1 and its relationship with the differential toxicological response to aflatoxin in commercial poultry species. In Aflatoxins—Biochemistry and Molecular Biology; Guevara-Gonzalez, R.D., Ed.; InTech: Rijeka, Croatia, 2011; Volume 1, pp. 3–20. [Google Scholar] [CrossRef] [Green Version]
- IARC. Available online: http://monographs.iarc.fr/ENG/Classification/index.php (accessed on 16 September 2019).
- Mary, V.S.; Theumer, M.G.; Arias, S.L.; Rubinstein, H.R. Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells. Toxicology 2012, 302, 299–307. [Google Scholar] [CrossRef]
- Wang, W.J.; Xu, Z.L.; Yu, C.; Xu, X.H. Effects of aflatoxin B1 on mitochondrial respiration, ROS generation and apoptosis in broiler cardiomyocytes. Anim. Sci. J. 2017, 1561–1567. [Google Scholar] [CrossRef]
- Abdel-Wahhab, M.A.; Abdel-Galil, M.M.; El-Lithey, M. Melatonin counteracts oxidative stress in rats fed an ochratoxin A contaminated diet. J. Pineal. Res. 2005, 38, 130–135. [Google Scholar] [CrossRef]
- Shi, D.Y.; Liao, S.Q.; Guo, S.N.; Li, H.; Yang, M.M.; Tang, Z.X. Protective effects of selenium on aflatoxin B1-induced mitochondrial permeability transition, DNA damage, and histological alterations in duckling liver. Biol. Trace Elem. Res. 2015, 163, 162–168. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Fan, Y.; Zhao, L.; Wei, H.; Ji, C.; Zhang, J. Molecular mechanisms of lipoic acid protection against aflatoxin B₁-induced liver oxidative damage and inflammatory responses in broilers. Toxins 2015, 7, 5435–5447. [Google Scholar] [CrossRef] [Green Version]
- Maurya, B.K.; Trigun, S.K. Fisetin modulates antioxidant enzymes and inflammatory factors to inhibit aflatoxin B1 induced hepatocellular carcinoma in rats. Oxid. Med. Cell. Longev. 2016, 2016, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pál, L.; Dublecz, K.; Weber, M.; Balogh, K.; Erdélyi, M.; Szigeti, G.; Mézes, M. Effect of combined treatment with aflatoxin B1 and T-2 toxin and metabolites on some production traits and lipid peroxide status parameters of broiled chickens. Acta. Vet. Hung. 2009, 57, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.M.; Shi, C.Y.; Shen, Y.; Ong, C.N. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radic. Biol. Med. 1996, 21, 139–146. [Google Scholar] [CrossRef]
- Wójtowicz-Chomicz, K.; Stadnik, A.; Kowal, M.; Sztanke, K.; Sztanke, M.; Borzecki, A. Disturbances of anti-oxidative balance in rats caused by aflatoxin B1. Bull. Vet. Inst. Pulawy 2011, 55, 145–148. [Google Scholar]
- Gloire, G.; Legrand-Poels, S.; Piette, J. NF-kappa B activation by reactive oxygen species: Fifteen years later. Biochem. Pharmacol. 2006, 72, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Otsuki, A.; Lukwete, N.K.; Yamamoto, M. Overview of redox regulation by Keap1–Nrf2 system in toxicology and cancer. Curr. Opin. Toxicol. 2016, 1, 29–36. [Google Scholar] [CrossRef]
- Jobbagy, S.; Vitturi, D.A.; Salvatore, S.R.; Turell, L.; Pires, M.F.; Kansanen, E.; Batthyany, C.; Lancaster, J.R.; Freeman, B.A.; Schopfer, F.J. Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis. Redox. Biol. 2018, 21, 101050. [Google Scholar] [CrossRef]
- Shelly, C.; Lu, M.D. Glutathione synthesis. Biochim. Biophys. Acta. 2013, 1830, 3143–3153. [Google Scholar] [CrossRef] [Green Version]
- Imlay, J.A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 2008, 77, 755–776. [Google Scholar] [CrossRef] [Green Version]
- Biomin World Mycotoxin Survey. Annual Report No. 15. Available online: https://www.biomin.net/en/articles/biomin-world-mycotoxin-survey-report-2018/?utmsource=AAF&utm_medium=Advertorial&utm_campaign=MTXSurvey (accessed on 24 October 2019).
- Diaz, G.J.; Calabrese, E.; Blain, R. Aflatoxicosis in chickens (Gallus gallus): An example of hormesis? Poult. Sci. 2008, 87, 727–732. [Google Scholar] [CrossRef]
- Patterson, D.S.P. Aflatoxin and related compounds: Introduction. In Mycotoxic Fungi, Mycotoxins, Mycotoxicoses, An Encyclopaedic Handbook, 1st ed.; Wyllie, T.D., Morehouse, L.G., Eds.; Marcel Dekker: New York, NY, USA, 1977; Volume 1, pp. 131–135. [Google Scholar]
- Verma, J.; Johri, T.S.; Swain, B.K.; Ameena, S. Effect of graded levels of aflatoxin, ochratoxin and their combinations on the performance and immune response of broilers. Br. Poult. Sci. 2004, 45, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Bai, F.; Zhang, K.; Bai, S.; Peng, X.; Ding, X.; Li, Y.; Zhang, J.; Zhao, L. Effects of feeding corn naturally contaminated with aflatoxin B1 and B2 on hepatic functions of broilers. Poult. Sci. 2012, 91, 2792–2801. [Google Scholar] [CrossRef] [PubMed]
- Ali Rajput, S.; Sun, L.; Zhang, N.; Mohamed Khalil, M.; Gao, X.; Ling, Z.; Zhu, L.; Khan, F.A.; Zhang, J.; Qi, D. Ameliorative effects of grape seed proanthocyanidin extract on growth performance, immune function, antioxidant capacity, biochemical constituents, liver histopathology and aflatoxin residues in broilers exposed to aflatoxin B₁. Toxins 2017, 9, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanian, M.; Karimi-Torshizi, M.A.; Allameh, A. Alleviation of aflatoxin-related oxidative damage to liver and improvement of growth performance in broiler chickens consumed Lactobacillus plantarum 299v for entire growth period. Toxicon 2019, 158, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Dvorska, J.E. Effects of mycotoxins on antioxidant status and immunity. In The Mycotoxin Blue Book; Diaz, D.E., Ed.; Nottingham University Press: Nottingham, UK, 2005; pp. 93–137. [Google Scholar]
- Valdivia, A.G.; Martinez, A.; Damian, F.J.; Quezada, T.; Ortiz, R.; Martinez, C.; Llamas, J.; Rodrıguez, M.L.; Yamamoto, L.; Jaramillo, F.; et al. Efficacy of N-acetylcysteine to reduce the effects of aflatoxin B1 intoxication in broiler chickens. Poult. Sci. 2001, 80, 727–734. [Google Scholar] [CrossRef]
- Muhammad, I.; Wang, H.; Sun, X.; Wang, X.; Han, M.; Lu, Z.; Cheng, P.; Hussain, M.A.; Zhang, X. Dual role of dietary curcumin through attenuating AFB1-induced oxidative stress and liver injury via modulating liver phase-I and phase-II enzymes involved in AFB1 bioactivation and detoxification. Front. Pharmacol. 2018, 9, 554. [Google Scholar] [CrossRef] [Green Version]
- Gowda, N.K.S.; Ledoux, D.R.; Rottinghaus, G.E.; Bermudez, A.J.; Chen, Y.C. Efficacy of turmeric, containing a known level of curcumin, and a hydrated sodium calcium aluminosilicate to ameliorate the adverse effects of aflatoxin in broiler chicks. Poult. Sci. 2008, 87, 1125–1130. [Google Scholar] [CrossRef]
- Huang, J.Q.; Li, D.L.; Zhao, H.; Sun, L.H.; Xia, X.J.; Wang, K.N.; Luo, X.; Lei, X.G. The selenium deficiency disease exudative diathesis in chicks is associated with down-regulation of seven common selenoprotein genes in liver and muscle. J. Nutr. 2011, 141, 1605–1610. [Google Scholar] [CrossRef]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef] [Green Version]
- Hungarian Feed Code. Nutrient Requirements of Farm Animals; OMMI: Budapest, Hungary, 2004; Vol. II/II, pp. 258–263. (In Hungarian) [Google Scholar]
- Khayoon, W.S.; Saad, B.; Yan, C.B.; Hashim, N.H.; Ali, A.S.M.; Salleh, M.I.; Salleh, B. Determination of aflatoxins in animal feeds by HPLC with multifunctional column clean-up. Food Chem. 2010, 118, 882–886. [Google Scholar] [CrossRef]
- Association of the Official Analytical Chemists (AOAC). Official Methods of Analysis 28054 B, 14th ed.; AOAC: Arlington, VA, USA, 1984; Vol. I, pp. 1013–1015. [Google Scholar]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Rahman, I.; Kode, A.; Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulphide levels using enzymatic recycling method. Nat. Protoc. 2007, 1, 3159–3165. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.A.; Burk, R.F. Glutathione peroxidase activity in selenium deficient rat liver. Biochem. Biophys. Res. Commun. 1976, 71, 952–956. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
Group | Day 0 | Day 7 | Day 14 | Day 21 |
---|---|---|---|---|
Control | 614.6 ± 84.0 | 995.3 ± 143.7a | 1462.7 ± 232.5a | 1988.9 ± 329.0 |
A1 | 610.8 ± 84.5 | 961.0 ± 134.0ab | 1435.8 ± 182.9ab | 1938.8 ± 233.0 |
A2 | 600.3 ± 67.2 | 954.4 ± 120.8b | 1371.0 ± 185.6b | 1851.3 ± 204.7 |
A3 | 606.5 ± 70.8 | 959.6 ± 116.1ab | 1396.2 ± 170.8ab | 1874.2 ± 226.1 |
Conjugated dienes (OD 232 nm) | ||||
Day 0 | Day 7 | Day 14 | Day 21 | |
Control | 0.312 ± 0.012 | 0.289 ± 0.011 | 0.269 ± 0.013a | 0.289 ± 0.018 |
A1 | 0.300 ± 0.028 | 0.280 ± 0.021ab | 0.311 ± 0.039 | |
A2 | 0.284 ± 0.014 | 0.313 ± 0.027b | 0.307 ± 0.050 | |
A3 | 0.275 ± 0.012 | 0.304 ± 0.024ab | 0.282 ± 0.028 | |
Conjugated trienes (OD 268 nm) | ||||
Day 0 | Day 7 | Day 14 | Day 21 | |
Control | 0.175 ± 0.006 | 0.162 ± 0.009 | 0.145 ± 0.008a | 0.157 ± 0.009 |
A1 | 0.165 ± 0.017 | 0.151 ± 0.011ab | 0.163 ± 0.011 | |
A2 | 0.153 ± 0.007 | 0.175 ± 0.014c | 0.157 ± 0.010 | |
A3 | 0.151 ± 0.006 | 0.163 ± 0.009bc | 0.147 ± 0.011 | |
TBARS (malondialdehyde μmol/g wet weight tissue) | ||||
Day 0 | Day 7 | Day 14 | Day 21 | |
Control | 58.19 ± 11.10 | 71.66 ± 4.34b | 63.46 ± 12.21b | 30.60 ± 4.48a |
A1 | 46.39 ± 6.38a | 50.24 ± 13.45ab | 51.79 ± 7.42b | |
A2 | 61.27 ± 8.33ab | 34.28 ± 10.89a | 25.07 ± 10.76a | |
A3 | 47.71 ± 17.50a | 42.40 ± 7.49a | 36.88 ± 9.80a |
Reduced glutathione (μmol/g protein content) | ||||
Day 0 | Day 7 | Day 14 | Day 21 | |
Control | 4.68 ± 0.60 | 4.68 ± 0.91 | 5.02 ± 0.64b | 3.92 ± 0.64 |
A1 | 4.66 ± 0.46 | 5.12 ± 0.93b | 4.19 ± 0.56 | |
A2 | 5.45 ± 0.64 | 3.76 ± 0.80a | 4.32 ± 0.61 | |
A3 | 5.27 ± 1.13 | 3.98 ± 0.28ab | 4.94 ± 0.85 | |
Glutathione peroxidase (U/g protein content) | ||||
Day 0 | Day 7 | Day 14 | Day 21 | |
Control | 4.18 ± 2.13 | 3.96 ± 0.74a | 4.99 ± 0.54b | 3.31± 0.68a |
A1 | 4.00 ± 0.53a | 5.41 ± 0.74b | 3.60 ± 0.67ab | |
A2 | 5.10 ± 0.51ab | 3.24 ± 0.63a | 4.39 ± 0.63ab | |
A3 | 5.19 ± 1.04b | 3.13 ± 0.44a | 4.67 ± 0.71b |
Glutathione peroxidase 4 (GPX4) | ||||
Day 0 | Day 7 | Day 14 | Day 21 | |
Control | 1.00 ± 0.03 | 0.93 ± 0.05bc | 0.78 ± 0.05a | 1.80 ± 0.09a |
A1 | 0.85 ± 0.03ab | 0.79 ± 0.08a | 1.82 ± 0.06a | |
A2 | 0.79 ± 0.04a | 1.10 ± 0.02b | 2.26 ± 0.08b | |
A3 | 0.99 ± 0.06c | 1.06 ± 0.07b | 1.89 ± 0.19a | |
Glutathione synthetase (GSS) | ||||
Day 0 | Day 7 | Day 14 | Day 21 | |
Control | 1.04 ± 0.07 | 1.22 ± 0.06 | 1.42 ± 0.08b | 1.35 ± 0.12a |
A1 | 1.10 ± 0.09 | 1.13 ± 0.15a | 1.54 ± 0.19b | |
A2 | 1.20 ± 0.14 | 1.28 ± 0.11ab | 1.57 ± 0.11b | |
A3 | 1.07 ± 0.12 | 1.41 ± 0.10b | 1.39 ± 0.21ab | |
Glutathione reductase (GSR) | ||||
Day 0 | Day 7 | Day 14 | Day 21 | |
Control | 1.00 ± 0.04 | 1.19 ± 0.14b | 1.05 ± 0.08ab | 2.23 ± 0.09b |
A1 | 0.96 ± 0.10a | 0.91 ± 0.07a | 1.87 ± 0.13a | |
A2 | 0.92 ± 0.07a | 1.16 ± 0.14bc | 1.88 ± 0.10a | |
A3 | 1.00 ± 0.07a | 1.27 ± 0.06c | 1.76 ± 0.12a |
Diet | AFB1 | AFB2 | AFG1 | AFG2 |
---|---|---|---|---|
Control | <1.0 | <1.0 | <0.5 | <0.5 |
A1 | 17.0 | <1.0 | <0.5 | <0.5 |
A2 | 92.0 | 6.0 | <0.5 | <0.5 |
A3 | 182.0 | 12.0 | <0.5 | <0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kövesi, B.; Cserháti, M.; Erdélyi, M.; Zándoki, E.; Mézes, M.; Balogh, K. Lack of Dose- and Time-Dependent Effects of Aflatoxin B1 on Gene Expression and Enzymes Associated with Lipid Peroxidation and the Glutathione Redox System in Chicken. Toxins 2020, 12, 84. https://doi.org/10.3390/toxins12020084
Kövesi B, Cserháti M, Erdélyi M, Zándoki E, Mézes M, Balogh K. Lack of Dose- and Time-Dependent Effects of Aflatoxin B1 on Gene Expression and Enzymes Associated with Lipid Peroxidation and the Glutathione Redox System in Chicken. Toxins. 2020; 12(2):84. https://doi.org/10.3390/toxins12020084
Chicago/Turabian StyleKövesi, Benjámin, Mátyás Cserháti, Márta Erdélyi, Erika Zándoki, Miklós Mézes, and Krisztián Balogh. 2020. "Lack of Dose- and Time-Dependent Effects of Aflatoxin B1 on Gene Expression and Enzymes Associated with Lipid Peroxidation and the Glutathione Redox System in Chicken" Toxins 12, no. 2: 84. https://doi.org/10.3390/toxins12020084
APA StyleKövesi, B., Cserháti, M., Erdélyi, M., Zándoki, E., Mézes, M., & Balogh, K. (2020). Lack of Dose- and Time-Dependent Effects of Aflatoxin B1 on Gene Expression and Enzymes Associated with Lipid Peroxidation and the Glutathione Redox System in Chicken. Toxins, 12(2), 84. https://doi.org/10.3390/toxins12020084