Gustatory Function and the Uremic Toxin, Phosphate, Are Modulators of the Risk of Vascular Calcification among Patients with Chronic Kidney Disease: A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Comparison of Nutrition, Appetite and Gustatory Function Test Results between CKD Patients with and without VC
2.2. Investigating the Relationship between Gustatory Function Results, other Clinical Features and VC among CKD Patients
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Cohort Establishment
5.2. Exposure Characterization
5.3. Outcome Measurement
5.4. Statistical Analysis
5.5. Ethical Approval
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AAC | aortic arch calcification |
CI | confidence interval |
CKD | chronic kidney disease |
CKD-MBD | chronic kidney disease-mineral bone disorder |
CNAQ | Council on Nutrition Appetite Questionnaire |
DM | diabetes mellitus |
eGFR | estimated glomerular filtration rate |
ESRD | end-stage renal disease |
MNA | Mini-Nutritional Assessment |
OR | odds ratio |
VC | vascular calcification |
VSMC | vascular smooth muscle cell |
References
- Shah, R.V.; Yeri, A.S.; Murthy, V.L.; Massaro, J.M.; D’ Agostino, R.; Freedman, J.E.; Long, M.T.; Fox, C.S.; Das, S.; Benjamin, E.J.; et al. Association of Multiorgan Computed Tomographic Phenomap With Adverse Cardiovascular Health Outcomes: The Framingham Heart Study. JAMA Cardiol. 2017, 2, 1236–1246. [Google Scholar] [CrossRef]
- Himmelsbach, A.; Ciliox, C.; Goettsch, C. Cardiovascular Calcification in Chronic Kidney Disease-Therapeutic Opportunities. Toxins 2020, 12, 181. [Google Scholar] [CrossRef] [Green Version]
- Evenepoel, P.; Opdebeeck, B.; David, K.; D’ Haese, P.C. Bone-Vascular Axis in Chronic Kidney Disease. Adv. Chronic. Kidney Dis. 2019, 26, 472–483. [Google Scholar] [CrossRef]
- Hou, Y.C.; Lu, C.L.; Yuan, T.H.; Liao, M.T.; Chao, C.T.; Lu, K.C. The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective. Int. J. Mol. Sci. 2020, 21, 980. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, M.; Brancaccio, D.; Gallieni, M.; Slatopolsky, E. Pathogenesis of vascular calcification in chronic kidney disease. Kidney Int. 2005, 68, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Chao, C.T.; Yeh, H.Y.; Tsai, Y.T.; Chuang, P.H.; Yuan, T.H.; Huang, J.W.; Chen, H.W. Natural and non-natural antioxidative compounds: Potential candidates for treatment of vascular calcification. Cell Death Discov. 2019, 5, 145. [Google Scholar] [CrossRef]
- Vervloet, M.G.; Sezer, S.; Massy, Z.A.; Johansson, L.; Cozzolino, M.; Fouque, D. The role of phosphate in kidney disease. Nat. Rev. Nephrol. 2017, 13, 27–38. [Google Scholar] [CrossRef]
- Toussaint, N.D.; Holt, S.G. Is serum phosphate a useful target in patients with chronic kidney disease and what is the role for dietary phosphate restriction? Nephrology 2017, 22, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Sergi, G.; Bano, G.; Pizzato, S.; Veronese, N.; Manzato, E. Taste loss in the elderly: Possible implications for dietary habits. Crit. Rev. Food Sci. Nutr. 2017, 57, 3684–3689. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Wiese, G.; Moorthi, R.N.; Moe, S.M.; Gallant, K.H.; Running, C.A. Characterizing dysgeusia in hemodialysis patients. Chem. Senses. 2019, 44, 165–171. [Google Scholar] [CrossRef]
- Sarnelli, G.; Annunziata, G.; Magno, S.; Oriolo, C.; Savastano, S.; Colao, A. Taste and the Gastrointestinal tract: From physiology to potential therapeutic target for obesity. Int. J. Obes. Suppl. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brennan, F.; Stevenson, J.; Brown, M. The Pathophysiology and Management of Taste Changes in Chronic Kidney Disease: A Review. J. Ren. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.X.; Moe, S.M. Vascular calcification: Pathophysiology and risk factors. Curr. Hypertens. Rep. 2012, 14, 228–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicoll, R.; Zhao, Y.; Ibrahimi, P.; Olivecrona, G.; Henein, M. Diabetes and Hypertension Consistently Predict the Presence and Extent of Coronary Artery Calcification in Symptomatic Patients: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2016, 17, 1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, J.D.; Reiter, E.R.; Costanzo, R.M. Etiology of subjective taste loss. Int. Forum Allergy Rhinol. 2019, 9, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Arganini, C.; Sinesio, F. Chemosensory impairment does not diminish eating pleasure and appetite in independently living older adults. Maturitas 2015, 82, 241–244. [Google Scholar] [CrossRef]
- Maheswaran, T.; Abikshyeet, P.; Sitra, G.; Gokulanathan, S.; Vaithiyanadane, V.; Jeelani, S. Gustatory dysfunction. J. Pharm. Bioallied Sci. 2014, 6, S30–S33. [Google Scholar] [CrossRef]
- Jabbari, B.; Vaziri, N.D. The nature, consequences, and management of neurological disorders in chronic kidney disease. Hemodial. Int. 2018, 22, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Opdebeeck, B.; Maudsley, S.; Azmi, A.; De Maré, A.; De Leger, W.; Meijers, B.; Verhulst, A.; Evenepoel, P.; D’ Haese, P.C.; Neven, E. Indoxyl Sulfate and p-Cresyl Sulfate Promote Vascular Calcification and Associate with Glucose Intolerance. J. Am. Soc. Nephrol. 2019, 30, 751–766. [Google Scholar] [CrossRef]
- Lau, W.L.; Savoj, J.; Nakata, M.B.; Vaziri, N.D. Altered microbiome in chronic kidney disease: Systemic effects of gut-derived uremic toxins. Clin. Sci. 2018, 132, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Cazaña-Pérez, V.; Cidad, P.; Donate-Correa, J.; Martín-Núñez, E.; López-López, J.R.; Pérez-García, M.T.; Giraldez, T.; Navarro-Gonzalez, J.F.; Alvarez de la Rosa, D. Phenotypic Modulation of Cultured Primary Human Aortic Vascular Smooth Muscle Cells by Uremic Serum. Front. Physiol. 2018; 9, 89. [Google Scholar]
- Silaghi, C.N.; Ilyes, T.; van Ballegooijen, A.J.; Craciun, A.M. Calciprotein particles and serum calcification propensity: Hallmarks of vascular calcifications in patients with chronic kidney disease. J. Clin. Med. 2020, 9, E1287. [Google Scholar] [CrossRef] [PubMed]
- Kokabu, S.; Lowery, J.W.; Toyono, T.; Sato, T.; Yoda, T. On the Emerging Role of the Taste Receptor Type 1 (T1R) Family of Nutrient-Sensors in the Musculoskeletal System. Molecules 2017, 22, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Floch, J.P.; Le Livere, G.; Sadoun, J.; Perlemuter, L.; Peynegre, R.; Hazard, J. Taste impairment and related factors in type 1 diabetes mellitus. Diabetes Care 1989, 12, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.B.; Phillips, N.; Parry, J.; Epstein, M.S.; Nevill, T.; Stevenson-Moore, P. Quality of life, taste, olfactory and oral function following high-dose chemotherapy and allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2002, 30, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Nodake, K.; Numata, M.; Kosai, K.; Kim, Y.J.; Nishiumi, T. Evaluation of changes in the taste of cooked meat products during curing using an artificial taste sensor. Anim. Sci. J. 2013, 84, 613–621. [Google Scholar] [CrossRef]
- Besser, G.; Prassl, A.; Mueller, C.; Renner, B. Testing gustatory function using either a forced-choice or a non-forced-choice paradigm - Does it make a difference? Rhinology 2019, 57, 385–391. [Google Scholar] [CrossRef]
- Shaik, F.A.; Singh, N.; Arakawa, M.; Duan, K.; Bhullar, R.P.; Chelikani, P. Bitter taste receptors: Extraoral roles in pathophysiology. Int. J. Biochem. Cell Biol. 2016, 77, 197–204. [Google Scholar] [CrossRef]
- Chao, C.T.; Liu, Y.P.; Su, S.F.; Yeh, H.Y.; Chen, H.Y.; Lee, P.J.; Chen, W.J.; Lee, Y.M.; Huang, J.W.; Chiang, C.K.; et al. Circulating MicroRNA-125b Predicts the Presence and Progression of Uremic Vascular Calcification. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1402–1414. [Google Scholar] [CrossRef] [Green Version]
- Toffanello, E.D.; Inelmen, E.M.; Imoscopi, A.; Perissinotto, E.; Coin, A.; Miotto, F.; Donini, L.M.; Cucinotta, D.; Barbagallo, M.; Manzato, E.; et al. Taste loss in hospitalized multimorbid elderly subjects. Clin. Interv. Aging 2013, 8, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.M.; Thomas, D.R.; Rubenstein, L.Z.; Chibnall, J.T.; Anderson, S.; Baxi, A.; Diebold, M.R.; Morley, J.E. Appetite assessment: Simple appetite questionnaire predicts weight loss in community-dwelling adults and nursing home residents. Am. J. Clin. Nutr. 2005, 82, 1074–1081. [Google Scholar] [CrossRef]
- Cereda, E. Mini Nutritional Assessment. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.M.; Kaiser, M.J.; Anthony, P.; Guigoz, Y.; Sieber, C.C. The Mini Nutritional Assessment®—Its History, Today’s Practice, and Future Perspectives. Nutr. Clin. Pract. 2008, 23, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Bohn, E.; Tangri, N.; Gali, B.; Henderson, B.; Sood, M.M.; Komenda, P.; Rigatto, C. Predicting risk of mortality in dialysis patients: A retrospective cohort study evaluating the prognostic value of a simple chest X-ray. BMC Nephrol. 2013, 14, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, C.T.; Yeh, H.Y.; Yuan, T.H.; Chiang, C.K.; Chen, H.W. MicroRNA-125b in vascular diseases: An updated systematic review of pathogenetic implications and clinical applications. J. Cell. Mol. Med. 2019, 23, 5884–5894. [Google Scholar] [CrossRef]
- Chao, C.T.; Yuan, T.H.; Yeh, H.Y.; Chen, H.Y.; Huang, J.W.; Chen, H.W. Risk Factors Associated With Altered Circulating Micro RNA -125b and Their Influences on Uremic Vascular Calcification Among Patients With End-Stage Renal Disease. J. Am. Heart Assoc. 2019, 8, e010805. [Google Scholar] [CrossRef]
Total (n = 58) | With AAC (n = 35) | Without AAC (n = 23) | p-Value | |
---|---|---|---|---|
Demographic profile | ||||
Age (years) | 72.4 ± 10.9 | 75 ± 7.5 | 68.6 ± 14.1 | 0.030 |
Sex (male %) | 38 (65.5) | 22 (62.9) | 16 (69.6) | 0.607 |
Comorbidities | ||||
Diabetic mellitus (%) | 31 (53.5) | 22 (62.9) | 9 (39.1) | 0.079 |
Hypertension (%) | 47 (81.0) | 31 (88.6) | 16 (69.6) | 0.073 |
Cirrhosis (%) | 1 (1.7) | 1 (2.9) | 0 (0) | 0.422 |
Coronary artery disease (%) | 2 (3.5) | 2 (5.7) | 0 (0) | 0.251 |
Prior myocardial infarction (%) | 2 (3.5) | 2 (5.7) | 0 (0) | 0.251 |
Heart failure (%) | 1 (1.7) | 0 (0) | 1 (4.4) | 0.220 |
Atrial fibrillation (%) | 3 (5.2) | 2 (5.7) | 1 (4.4) | 0.822 |
Chronic obstructive pulmonary disease (%) | 1 (1.7) | 1 (2.9) | 0 (0) | 0.422 |
Rheumatologic illnesses (%) | 3 (5.2) | 1 (2.9) | 2 (8.7) | 0.335 |
Malignancy (%) | 7 (12.1) | 4 (11.4) | 3 (13.0) | 0.857 |
Peptic ulcer disease (%) | 7 (12.1) | 6 (17.1) | 1 (4.4) | 0.857 |
Prior cerebrovascular disease (%) | 7 (12.1) | 6 (17.1) | 1 (4.4) | 0.148 |
Anthropometric parameters | ||||
Systolic blood pressure (mmHg) | 129.6 ± 15.6 | 131.3 ± 16.2 | 126.8 ± 14.3 | 0.283 |
Heart rate (/min) | 73.8 ± 10 | 74.5 ± 9.7 | 72.9 ± 10.6 | 0.559 |
Body height (cm) | 162.2 ± 8.4 | 161.3 ± 8.4 | 163.5 ± 8.4 | 0.348 |
Body weight (kg) | 65.8 ± 11.6 | 64.6 ± 10.8 | 67.6 ± 12.7 | 0.346 |
Body mass index (kg/m2) | 24.9 ± 3.5 | 24.8 ± 3.6 | 25.1 ± 3.5 | 0.718 |
Waste circumference (cm) | 90.0 ± 10.6 | 90.7 ± 9.0 | 88.9 ± 12.7 | 0.523 |
Laboratory data | ||||
Hemoglobin (mmol/L) | 7.3 ± 1.2 | 7.1 ± 1.1 | 7.6 ± 1.2 | 0.191 |
Platelet (K/μL) | 212.7 ± 71.6 | 208.6 ± 71.7 | 218.8 ± 72.6 | 0.602 |
Leukocyte (K/μL) | 6.4 ± 1.9 | 6.1 ± 1.9 | 6.9 ± 2.0 | 0.119 |
Albumin (g/L) | 41.0 ± 3.1 | 41.0 ± 2.8 | 41.0 ± 3.6 | 0.939 |
Urea nitrogen (mmol/L) | 14.4 ± 6.5 | 15.1 ± 5.2 | 13.4 ± 8.1 | 0.353 |
Creatinine (μmol/L) | 288.4 ± 357.2 | 316.5 ± 402.6 | 245.6 ± 277.4 | 0.465 |
eGFR (mL/min/1.73 m2) | 32.0 ± 15.7 | 29.8 ± 15.8 | 35.3 ± 15.2 | 0.197 |
Sodium (meq/L) | 137.8 ± 2.7 | 137.5 ± 2.8 | 138.3 ± 2.5 | 0.246 |
Potassium (meq/L) | 4.5 ± 0.5 | 4.6 ± 0.5 | 4.4 ± 0.4 | 0.175 |
Calcium (mmol/L) | 2.3 ± 0.1 | 2.3 ± 0.1 | 2.3 ± 0.2 | 0.448 |
Phosphate (mg/dL) | 3.8 ± 0.7 | 3.9 ± 0.7 | 3.6 ± 0.7 | 0.082 |
Uric acid (μmol/L) | 362.4 ± 110.7 | 360.6 ± 120.0 | 365.3 ± 97.5 | 0.875 |
Total cholesterol (mmol/L) | 4.3 ± 0.9 | 4.5 ± 0.9 | 4.1 ± 0.9 | 0.147 |
Triglyceride (mmol/L) | 1.6 ± 0.9 | 1.7 ± 0.9 | 1.4 ± 0.8 | 0.191 |
Spot urine protein-creatinine ratio | 0.75 ± 0.97 | 0.86 ± 1.04 | 0.59 ± 0.85 | 0.300 |
Appetite and nutritional status | ||||
CNAQ scores | 27.9 ± 3.8 | 28.3 ± 4.0 | 27.3 ± 3.5 | 0.334 |
Anorexia (based on CNAQ) | 23 (39.7) | 13 (37.1) | 10 (43.5) | 0.637 |
MNA-SF scores | 12.9 ± 1.6 | 12.7 ± 1.8 | 13.1 ± 1.3 | 0.334 |
Malnutrition (based on MNA-SF) | 11 (19.0) | 7 (20.0) | 4 (17.4) | 0.808 |
Total (n = 58) | With AAC (n = 35) | Without AAC (n = 23) | p-Value | |
---|---|---|---|---|
Taste strip aggregate score | 0.039 | |||
0 ~ 3 | 24 (41.4) | 11 (31.4) | 13 (56.5) | |
4 ~ 6 | 19 (32.8) | 11 (31.4) | 8 (34.8) | |
7 ~ 13 | 15 (25.9) | 13 (37.1) | 2 (8.7) | |
Taste strip intact category counts | 0.046 | |||
0 | 25 (43.1) | 11 (31.4) | 14 (60.9) | |
1 ~ 2 | 20 (34.5) | 13 (37.1) | 7 (30.4) | |
3 ~ 4 | 13 (22.4) | 11 (31.4) | 2 (8.7) | |
Defective sweet taste (%) | 37 (63.8) | 20 (57.1) | 17 (73.9) | 0.2 |
Sweet taste scores | 0.523 | |||
0 ~ 2 | 51 (87.9) | 30 (85.7) | 21 (91.3) | |
3 ~ 4 | 7 (12.1) | 5 (14.3) | 2 (8.7) | |
Defective sour taste (%) | 35 (60.3) | 18 (51.4) | 17 (73.9) | 0.09 |
Sour taste scores | 0.361 | |||
0 ~ 2 | 50 (86.2) | 29 (82.9) | 21 (91.3) | |
3 ~ 4 | 8 (13.8) | 6 (17.1) | 2 (8.7) | |
Defective salty taste (%) | 40 (69.0) | 21 (60.0) | 19 (82.6) | 0.071 |
Salty taste scores | 0.069 | |||
0 ~ 1 | 40 (69.0) | 21 (60.0) | 19 (82.6) | |
2 ~ 3 | 18 (31.0) | 14 (40.0) | 4 (17.4) | |
Defective bitter taste (%) | 42 (72.4) | 22 (62.9) | 20 (87.0) | 0.045 |
Bitter taste scores | 0.045 | |||
0 ~ 1 | 42 (72.4) | 22 (62.9) | 20 (87.0) | |
2 ~ 4 | 16 (27.6) | 13 (37.1) | 3 (13.0) | |
Subjective taste intactness (0–100) | 81.5 ± 14.4 | 79.9 ± 17.0 | 83.9 ± 8.9 | 0.298 |
Subjective taste importance (0–100) | 84.1 ± 16.1 | 85.0 ± 14.2 | 82.8 ± 18.9 | 0.619 |
Odds Ratio | 95% CI | p-Value | |
---|---|---|---|
Model 1: Basic model *, including aggregate taste strip scores | |||
Age (per year) | 1.096 | 1.026–1.171 | 0.006 |
Hypertension | 6.564 | 1.295–33.277 | 0.023 |
Taste strip scores (per score) | 1.288 | 1.022–1.623 | 0.032 |
Model 2: Basic model *+P, including aggregate taste strip scores | |||
Age (per year) | 1.104 | 1.028–1.184 | 0.006 |
Hypertension | 5.300 | 1.070–26.259 | 0.041 |
Taste strip scores (per score) | 1.284 | 1.017–1.622 | 0.036 |
Model 3: Basic model *, including taste intactness category count | |||
Age (per year) | 1.089 | 1.022–1.161 | 0.009 |
Hypertension | 6.529 | 1.348–31.609 | 0.020 |
Taste strip intact category (per category) | 1.923 | 1.152–3.211 | 0.012 |
Model 4: Basic model *+P, including taste intactness category count | |||
Age (per year) | 1.089 | 1.022–1.161 | 0.009 |
Hypertension | 6.529 | 1.348–31.609 | 0.020 |
Phosphate (mg/dL) | 1.923 | 1.152–3.211 | 0.012 |
Model 5: Basic model *, including bitter taste scores | |||
Age (per year) | 1.104 | 1.031–1.183 | 0.005 |
Hypertension | 8.435 | 1.510–47.101 | 0.015 |
Bitter taste score (per score) | 2.558 | 1.167–5.606 | 0.019 |
Model 6: Basic model *+P, including bitter taste scores | |||
Age (per year) | 1.115 | 1.034–1.203 | 0.005 |
Hypertension | 7.333 | 1.279–42.056 | 0.025 |
Bitter taste score (per score) | 2.656 | 1.215–5.806 | 0.014 |
Phosphate (mg/dL) | 3.205 | 1.079–9.522 | 0.036 |
Model 7: Basic model *, including proportions with defective bitter taste | |||
Age (per year) | 1.082 | 1.018–1.149 | 0.011 |
Hypertension | 5.997 | 1.248–28.827 | 0.025 |
Defective bitter taste | 0.175 | 0.036–0.847 | 0.030 |
Model 8: Basic model *+P, including proportions with defective bitter taste | |||
Age (per year) | 1.100 | 1.028–1.177 | 0.006 |
Hypertension | 5.167 | 1.029–25.936 | 0.046 |
Defective bitter taste | 0.168 | 0.032–0.879 | 0.035 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-I.; Chiang, C.-L.; Chao, C.-T.; Chiang, C.-K.; Huang, J.-W. Gustatory Function and the Uremic Toxin, Phosphate, Are Modulators of the Risk of Vascular Calcification among Patients with Chronic Kidney Disease: A Pilot Study. Toxins 2020, 12, 420. https://doi.org/10.3390/toxins12060420
Chen S-I, Chiang C-L, Chao C-T, Chiang C-K, Huang J-W. Gustatory Function and the Uremic Toxin, Phosphate, Are Modulators of the Risk of Vascular Calcification among Patients with Chronic Kidney Disease: A Pilot Study. Toxins. 2020; 12(6):420. https://doi.org/10.3390/toxins12060420
Chicago/Turabian StyleChen, Shih-I, Chin-Ling Chiang, Chia-Ter Chao, Chih-Kang Chiang, and Jenq-Wen Huang. 2020. "Gustatory Function and the Uremic Toxin, Phosphate, Are Modulators of the Risk of Vascular Calcification among Patients with Chronic Kidney Disease: A Pilot Study" Toxins 12, no. 6: 420. https://doi.org/10.3390/toxins12060420
APA StyleChen, S. -I., Chiang, C. -L., Chao, C. -T., Chiang, C. -K., & Huang, J. -W. (2020). Gustatory Function and the Uremic Toxin, Phosphate, Are Modulators of the Risk of Vascular Calcification among Patients with Chronic Kidney Disease: A Pilot Study. Toxins, 12(6), 420. https://doi.org/10.3390/toxins12060420