Occurrence of Mycotoxins in Winter Rye Varieties Cultivated in Poland (2017–2019)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Weather Data and Agronomic Practise
2.2. Occurrence of Mycotoxins
2.3. Co-Occurrence and Correlation Between Mycotoxins
3. Conclusions
4. Materials and Methods
4.1. Samples
4.2. Chemicals
4.3. Sample Preparation
4.3.1. Trichothecenes and Zearalenone
4.3.2. Ochratoxin A
4.4. Statistics
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3ADON | 3-acetyl-deoxynivalenol |
DAS | diacetoxyscirpenol |
DON | deoxynivalenol |
FHB | Fusarium head blight |
HT-2 | HT-2 toxin |
LOD | limit of detection |
LOQ | limit of quantification |
MAS | monoacetoxuscirpenol |
NIV | nivalenol |
OTA | ochratoxin A |
T2 | T-2 toxin |
ZEN | zearalenone |
References
- Tarkowski, C. (Ed.) Biologia żyta (Rye Biology); PWN: Warsaw, Poland, 1983. [Google Scholar]
- Statistics Poland. Statistical Yearbook of Agriculture; Statistics Poland: Warsaw, Poland, 2018; ISSN 2080-8798. [Google Scholar]
- Jasińska, I.; Kołodziejczyk, P.; Michniewicz, J. Rye seed as a potential source of pro-health compounds in diet. Food Sci. Technol. Qual. 2006, 2, 85–92. [Google Scholar]
- Richard, J.L. Some major mycotoxins and their mycotoxicosis—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef]
- Richard, J.L.; Payne, G.A. Mycotoxins: Risk in plant, animal, and human systems. In Council for Agricultural Science and Technology Task Force Report No. 139; Council for Agricultural: Ames, IA, USA, 2003. [Google Scholar]
- Gaikpa, D.S.; Lieberherr, B.; Maurer, H.P.; Longin, C.F.H.; Miedaner, T. Comparison of rye, triticale, durum wheat and bread wheat genotypes for Fusarium head blight resistance and deoxynivalenol contamination. Plant Breed. 2020, 139, 251–262. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006. L364/5–L364/24.
- European Commission. Commission Recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products (2013/165/EU). Off. J. Eur. Union 2013. L91/12–L91/15.
- European Commission. Commission Recommendation of of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding (2006/576/EC). Off. J. Eur. Union 2006. L229/7–L229/9.
- Habschied, K.; Krska, R.; Sulyok, M.; Šarkanj, B.; Krstanović, V.; Lalić, A.; Šimić, G.; Mastanjević, K. Screening of various metabolites in six barley varieties grown under natural climatic conditions (2016–2018). Microorganisms 2019, 7, 532. [Google Scholar] [CrossRef] [Green Version]
- Parikka, P.; Hakala, K.; Tiilikkala, K. Expected shifts in Fusarium species’ composition on cereal grain in Northern Europe due to climatic change. Food Addit. Contam. Part A 2012, 29, 1543–1555. [Google Scholar] [CrossRef]
- Bernhoft, A.; Torp, M.; Clasen, P.-E.; Løes, A.-K.; Kristoffersen, A.B. Influence of Agronomic and Climatic Factors on Fusarium Infestation and Mycotoxin Contamination of Cereals in Norway. Food Addit. Contam. Part A 2012, 29, 1129–1140. [Google Scholar] [CrossRef] [Green Version]
- Klix, M.B.; Beyer, M.; Verreet, J.-A. Effects of cultivar, agronomic practices, geographic location, and meteorological conditions on the composition of selected Fusarium species on wheat heads. Can. J. Plant Pathol. 2008, 30, 46–57. [Google Scholar] [CrossRef]
- Karlsson, I.; Friberg, H.; Kolseth, A.K.; Steinberg, C.; Persson, P. Agricultural factors affecting Fusarium communities in wheat kernels. Int. J. Food Microbiol. 2017, 252, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksen, G.S.; Pettersson, H. Toxicological evaluation of trichothecenes in animal feed. Anim. Feed Sci. Technol. 2004, 114, 205–239. [Google Scholar] [CrossRef]
- Błajet-Kosicka, A.; Twarużek, M.; Kosicki, R.; Sibiorowska, E.; Grajewski, J. Co-occurrence and evaluation of mycotoxins in organic and conventional rye grain and products. Food Control 2014, 38, 61–66. [Google Scholar] [CrossRef]
- Mankevičienė, A.; Butkutė, B.; Gaurilčikienė, I.; Dabkevičius, Z.; Supronienė, S. Risk assessment of Fusarium mycotoxins in Lithuanian small cereal grains. Food Control 2011, 22, 970–976. [Google Scholar] [CrossRef]
- Tutelyan, V.A.; Zakharova, L.P.; Sedova, I.B.; Perederyaev, O.I.; Aristarkhova, T.V.; Eller, K.I. Fusariotoxins in Russian Federation 2005-2010 grain harvests. Food Addit. Contam. Part B Surveill. 2013, 6, 139–145. [Google Scholar] [CrossRef]
- Remža, J.; Lacko-Bartošová, M.; Kosík, T. Fusarium mycotoxin content of Slovakian organic and conventional cereals. J. Cen. Eur. Agric. 2016, 17, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, C.; Barthel, J.; Engelhardt, G.; Bauer, J.; Meyer, K. Simultaneous determination of type A, B and D trichothecenes and their occurrence in cereals and cereal products. Food Addit. Contam. Part A 2009, 26, 1273–1289. [Google Scholar] [CrossRef] [Green Version]
- Pleadin, J.; Staver, M.M.; Markov, K.; Frece, J.; Zadravec, M.; Jaki, V.; Krupić, I.; Vahčić, N. Mycotoxins in organic and conventional cereals and cereal products grown and marketed in Croatia. Mycotoxin Res. 2017, 33, 219–227. [Google Scholar] [CrossRef]
- Krysińska-Traczyk, E.; Perkowski, J.; Dutkiewicz, J. Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland. Ann. Agric. Environ. Med. 2007, 14, 159–167. [Google Scholar]
- Hajok, I.; Kowalska, A.; Piekut, A.; Ćwieląg-Drabek, M. A risk assessment of dietary exposure to ochratoxin A for the Polish population. Food Chem. 2019, 284, 264–269. [Google Scholar] [CrossRef]
- Torović, L. Aflatoxins and ochratoxin A in flour: A survey of the Serbian retail market. Food Addit. Contam. Part B Surveill. 2018, 11, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.V.C.; Fernandes, A.; Heleno, S.A.; Rodrigues, P.; Gonzaléz-Paramás, A.M.; Barros, L.; Ferreira, I.C.F.R. Physicochemical characterization and microbiology of wheat and rye flours. Food Chem. 2019, 280, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenier, B.; Oswald, I.P. Mycotoxin co-contamination of food and feed: Meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Mankevičienė, A.; Butkutė, B.; Dabkevičius, Z. Peculiarities of cereal grain co-contamination with Fusarium mycotoxins. Zemdirb.Agric. 2011, 98, 415–420. [Google Scholar]
- Polish Institute of Meteorology and Water Management–National Research Institute. Available online: https://dane.imgw.pl/ (accessed on 21 February 2020).
DON | NIV | 3ADON | MAS | DAS | T2 | HT2 | ZEN | OTA | |
---|---|---|---|---|---|---|---|---|---|
Growing Season 2016/2017 | |||||||||
Number of samples | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Positive (%) | 100 | 15 | 10 | 5 | 0 | 85 | 85 | 80 | 10 |
Mean (µg/kg) | 70.6 c | <LOQ | <LOD | <LOD | <LOD | 1.64 c | 6.59 b | 1.82 b | <LOQ |
Mean positive (µg/kg) | 70.6 | 8.06 | <LOQ | <LOQ | <LOD | 1.93 | 7.75 | 2.27 | 1.58 |
Median (µg/kg) | 45.2 | <LOD | <LOD | <LOD | <LOD | 0.98 | 3.95 | 0.60 | <LOD |
Maximum (µg/kg) | 354.1 | 9.72 | 3.00 | <LOQ | <LOD | 6.63 | 29.8 | 10.2 | 2.75 |
Growing Season 2017/2018 | |||||||||
Number of samples | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Positive (%) | 90 | 10 | 0 | 10 | 0 | 70 | 55 | 50 | 0 |
Mean (µg/kg) | 9.62 b | <LOQ | <LOD | <LOD | <LOD | 0.96 b | <LOQ a | 0.24 a | <LOD |
Mean positive (µg/kg) | 10.7 | 15.5 | <LOD | 2.29 | <LOD | 1.37 | 2.27 | 0.49 | <LOD |
Median (µg/kg) | 8.44 | <LOD | <LOD | <LOD | <LOD | 0.61 | <LOQ | <LOQ | <LOD |
Maximum (µg/kg) | 27.9 | 26.4 | <LOD | 3.07 | <LOD | 5.62 | 3.25 | 1.99 | <LOD |
Growing Season 2018/2019 | |||||||||
Number of samples | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Positive (%) | 80 | 5 | 0 | 5 | 0 | 35 | 30 | 5 | 0 |
Mean (µg/kg) | 6.21 a | <LOD | <LOD | <LOD | <LOD | <LOQ a | <LOQ a | <LOD | <LOD |
Mean positive (µg/kg) | 7.77 | <LOQ | <LOD | <LOQ | <LOD | 1.03 | 3.64 | <LOQ | <LOD |
Median (µg/kg) | 4.17 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Maximum (µg/kg) | 17.0 | <LOQ | <LOD | <LOQ | <LOD | 1.68 | 6.93 | <LOQ | <LOD |
DON | NIV | 3ADON | MAS | DAS | T2 | HT2 | ZEN | OTA | |
---|---|---|---|---|---|---|---|---|---|
Boguszyn | |||||||||
Number of samples | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Positive (%) | 75 | 0 | 0 | 0 | 0 | 42 | 42 | 50 | 0 |
Mean (µg/kg) | 13.3 a | <LOD | <LOD | <LOD | <LOD | <LOQ a | <LOQ a | 0.28 b | <LOD |
Mean positive (µg/kg) | 17.8 | <LOD | <LOD | <LOD | <LOD | 0.91 | 2.12 | 0.55 | <LOD |
Median (µg/kg) | 10.2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOQ | <LOD |
Maximum (µg/kg) | 42.2 | <LOD | <LOD | <LOD | <LOD | 1.22 | 2.58 | 1.92 | <LOD |
Marianowo | |||||||||
Number of samples | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Positive (%) | 100 | 0 | 0 | 0 | 0 | 92 | 92 | 33 | 0 |
Mean (µg/kg) | 13.5 a | <LOD | <LOD | <LOD | <LOD | 2.03 d | 7.43 c | <LOQ a | <LOD |
Mean positive (µg/kg) | 13.5 | <LOD | <LOD | <LOD | <LOD | 2.21 | 8.10 | 0.23 | <LOD |
Median (µg/kg) | 8.20 | <LOD | <LOD | <LOD | <LOD | 1.13 | 2.70 | <LOD | <LOD |
Maximum (µg/kg) | 48.2 | <LOD | <LOD | <LOD | <LOD | 6.63 | 29.8 | 0.30 | <LOD |
Walewice | |||||||||
Number of samples | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Positive (%) | 100 | 17 | 0 | 25 | 0 | 50 | 50 | 58 | 0 |
Mean (µg/kg) | 19.3 b | <LOQ | <LOD | <LOQ | <LOD | 0.98 b | 3.38 b | 0.37 c | <LOD |
Mean positive (µg/kg) | 19.3 | 15.5 | <LOD | 2.02 | <LOD | 1.96 | 6.77 | 0.63 | <LOD |
Median (µg/kg) | 14.0 | <LOD | <LOD | <LOD | <LOD | <LOQ | <LOQ | 0.21 | <LOD |
Maximum (µg/kg) | 48.3 | 26.4 | <LOD | 3.07 | <LOD | 3.01 | 14.47 | 1.99 | <LOD |
Prusim | |||||||||
Number of samples | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Positive (%) | 75 | 25 | 8 | 8 | 0 | 58 | 50 | 42 | 8 |
Mean (µg/kg) | 44.0 c | <LOQ | <LOD | <LOD | <LOD | <LOQ a | <LOQ a | 0.93 d | <LOQ |
Mean positive (µg/kg) | 58.6 | 6.10 | <LOQ | <LOQ | <LOD | 0.74 | 3.58 | 2.24 | 2.75 |
Median (µg/kg) | <LOQ | <LOD | <LOD | <LOD | <LOD | <LOQ | <LOQ | <LOD | <LOD |
Maximum (µg/kg) | 210.7 | 9.72 | <LOQ | <LOQ | <LOD | 1.44 | 5.51 | 3.82 | 2.75 |
Wyczechy | |||||||||
Number of samples | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Positive (%) | 100 | 8 | 8 | 0 | 0 | 75 | 50 | 42 | 8 |
Mean (µg/kg) | 54.1 d | <LOD | <LOD | <LOD | <LOD | 1.10 c | <LOQ a | 1.80 e | <LOD |
Mean positive (µg/kg) | 54.1 | 8.89 | <LOQ | <LOD | <LOD | 1.47 | 2.80 | 4.32 | <LOQ |
Median (µg/kg) | 12.9 | <LOD | <LOD | <LOD | <LOD | <LOQ | <LOQ | <LOD | <LOD |
Maximum (µg/kg) | 354.1 | 8.89 | <LOQ | <LOD | <LOD | 5.62 | 3.57 | 10.2 | <LOQ |
DON | NIV | 3ADON | MAS | DAS | T2 | HT2 | ZEN | OTA | |
---|---|---|---|---|---|---|---|---|---|
KWS Binntto hybrid rye | |||||||||
Number of samples | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Positive (%) | 87 | 20 | 7 | 7 | 0 | 67 | 60 | 47 | 0 |
Mean (µg/kg) | 24.1 b | <LOQ | <LOD | <LOD | <LOD | 1.06 c | 4.01 c | 1.13 d | <LOD |
Mean positive (µg/kg) | 27.8 | 15.0 | <LOQ | 3.07 | <LOD | 1.59 | 6.69 | 2.42 | <LOD |
Median (µg/kg) | 12.1 | <LOD | <LOD | <LOD | <LOD | <LOQ | <LOQ | <LOD | <LOD |
Maximum (µg/kg) | 136.7 | 26.4 | <LOQ | 3.07 | <LOD | 5.42 | 23.9 | 10.2 | <LOD |
KWS Serafino Hybrid Rye | |||||||||
Number of samples | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Positive (%) | 93 | 7 | 0 | 7 | 0 | 60 | 53 | 40 | 7 |
Mean (µg/kg) | 28.4 c | <LOD | <LOD | <LOD | <LOD | 0.80 a | 2.03 b | 0.35 a | <LOQ |
Mean positive (µg/kg) | 30.4 | 4.65 | <LOD | <LOQ | <LOD | 1.34 | 3.81 | 0.87 | 2.75 |
Median (µg/kg) | 9.05 | <LOD | <LOD | <LOD | <LOD | 0.65 | <LOQ | <LOD | <LOD |
Maximum (µg/kg) | 210.7 | 4.65 | <LOD | <LOQ | <LOD | 3.00 | 9.88 | 3.28 | 2.75 |
Dańkowskie Granat Population Rye | |||||||||
Number of samples | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Positive (%) | 87 | 7 | 0 | 7 | 0 | 60 | 53 | 53 | 7 |
Mean (µg/kg) | 19.3 a | <LOD | <LOD | <LOD | <LOD | 0.86 b | <LOQ a | 0.59 b | <LOD |
Mean positive (µg/kg) | 22.3 | 5.58 | <LOD | <LOQ | <LOD | 1.43 | 3.42 | 1.10 | <LOQ |
Median (µg/kg) | 7.83 | <LOD | <LOD | <LOD | <LOD | <LOQ | <LOQ | <LOQ | <LOD |
Maximum (µg/kg) | 96.6 | 5.58 | <LOD | <LOQ | <LOD | 5.62 | 6.51 | 3.64 | <LOQ |
Farm Saved Seed Population Rye | |||||||||
Number of samples | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Positive (%) | 93 | 7 | 7 | 7 | 0 | 67 | 60 | 40 | 0 |
Mean (µg/kg) | 43.5 d | <LOD | <LOD | <LOD | <LOD | 1.21 d | 4.04 c | 0.70 c | <LOD |
Mean positive (µg/kg) | 46.7 | <LOQ | <LOQ | <LOQ | <LOD | 1.82 | 6.73 | 1.75 | <LOD |
Median (µg/kg) | 11.3 | <LOD | <LOD | <LOD | <LOD | <LOQ | <LOQ | <LOD | <LOD |
Maximum (µg/kg) | 354.1 | <LOQ | <LOQ | <LOQ | <LOD | 6.63 | 29.76 | 6.79 | <LOD |
DON | T2 | HT2 | ZEN | |
---|---|---|---|---|
DON | 1 | |||
T2 | 0.124 | 1 | ||
HT2 | 0.134 | 0.840 a | 1 | |
ZEN | 0.708 a | 0.001 | 0.010 | 1 |
Precursor Ion [m/z] | Product Ions [m/z] * | Declustering Potential [V] | Collision Energy [V] | Cell Exit Potential [V] | ||
---|---|---|---|---|---|---|
NIV | [M+Ac]− | 371.1 | 281.0/59.0 | −40 | −22/−40 | −14/−5 |
DON | [M+Ac]− | 355.1 | 264.8/58.9 | −35 | −20/−38 | −17/−1 |
13C-DON | [M+Ac]− | 370.2 | 310.0 | −50 | −14 | −7 |
3ADON | [M+Ac]− | 397.1 | 307.0/59.0 | −50 | −18/−42 | −7/−1 |
MAS | [M+NH4]+ | 342.1 | 265.0/107.1 | 46 | 13/19 | 18/6 |
DAS | [M+NH4]+ | 384.1 | 307.0/247.0 | 51 | 17/19 | 20/16 |
HT2 | [M+NH4]+ | 442.2 | 215.0/263.0 | 51 | 19/17 | 14/18 |
13C-HT2 | [M+NH4]+ | 464.1 | 278.1 | 51 | 17 | 18 |
T2 | [M+NH4]+ | 484.1 | 215.0/185.0 | 61 | 25/29 | 14/12 |
13C-T2 | [M+NH4]+ | 508.3 | 322.1 | 61 | 19 | 8 |
ZEN | [M-H]− | 317.1 | 130.8/174.9 | −85 | −40/−32 | −7/−9 |
13C-ZEN | [M-H]− | 335.1 | 139.9 | −100 | −42 | −7 |
Mycotoxin | LOD (µg/kg) | LOQ (µg/kg) | Linearity (µg/kg) | Recovery (%) ± RSD (n = 3) |
---|---|---|---|---|
NIV | 1.0 | 3.0 | 5–1000 | 75 ± 4 |
DON | 1.0 | 3.0 | 5–2000 | 90 ± 2 |
3ADON | 1.0 | 3.0 | 5–500 | 90 ± 7 |
MAS | 0.50 | 1.5 | 5–500 | 85 ± 5 |
DAS | 0.33 | 1.0 | 5–500 | 90 ± 3 |
HT2 | 0.67 | 2.0 | 5–1000 | 82 ± 4 |
T2 | 0.20 | 0.60 | 5–1000 | 88 ± 3 |
ZEN | 0.07 | 0.20 | 5–500 | 110 ± 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosicki, R.; Twarużek, M.; Dopierała, P.; Rudzki, B.; Grajewski, J. Occurrence of Mycotoxins in Winter Rye Varieties Cultivated in Poland (2017–2019). Toxins 2020, 12, 423. https://doi.org/10.3390/toxins12060423
Kosicki R, Twarużek M, Dopierała P, Rudzki B, Grajewski J. Occurrence of Mycotoxins in Winter Rye Varieties Cultivated in Poland (2017–2019). Toxins. 2020; 12(6):423. https://doi.org/10.3390/toxins12060423
Chicago/Turabian StyleKosicki, Robert, Magdalena Twarużek, Paweł Dopierała, Bartosz Rudzki, and Jan Grajewski. 2020. "Occurrence of Mycotoxins in Winter Rye Varieties Cultivated in Poland (2017–2019)" Toxins 12, no. 6: 423. https://doi.org/10.3390/toxins12060423
APA StyleKosicki, R., Twarużek, M., Dopierała, P., Rudzki, B., & Grajewski, J. (2020). Occurrence of Mycotoxins in Winter Rye Varieties Cultivated in Poland (2017–2019). Toxins, 12(6), 423. https://doi.org/10.3390/toxins12060423