Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update
Abstract
:1. Overview of the Toxic Effects of Mycotoxins in Animals and Humans
2. Systems for the Control of Mycotoxins in Feed and Food
2.1. Pre-Harvest Strategies
2.1.1. Agronomic Systems
2.1.2. Biological Systems
2.1.3. Chemical Systems
2.2. Post-Harvest Strategies
2.2.1. Storage Management
2.2.2. (Micro)biological Systems
2.2.3. Physical Systems
2.2.4. Chemical Systems
3. Mycotoxin Detoxification in Food and Feed by Ozone
3.1. Ozone Applications in Food/Feed Processing
3.2. Ozone: A Powerful Tool to Detoxify Mycotoxins (?)
4. Conclusions and Future Perspectives in the Use of Ozone for Detoxification
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agriculture Organization). World Agriculture: Towards 2030/2050: The 2012 Revision; ESA Working Paper 2012, No. 12-03; FAO: Rome, Italy, 2012. [Google Scholar]
- Firduas, R.B.R.; Gunaratne, M.S.; Rahmat, S.R.; Kamsi, N.S.; Yildiz, F. Does climate change only affect food availability: What else matters? Cogent Food Agric. 2019, 5, 1707607. [Google Scholar] [CrossRef]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Grenier, B.; Oswald, E. Mycotoxin co-contamination of food and feed: Meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Bitay, F.H.; Glavitis, R.; Sellyey, G. Mycotoxins. Magy. Allatorvosak 1979, 34, 417–422. [Google Scholar]
- Beri, H.K.; Vadehra, D.V.; Gupta, J.K. Proportionate incidence of mycotoxigenic fungi-Fusarium and its effect on ingestion by poultry. J. Food Sci. Technol. 1991, 28, 329–331. [Google Scholar]
- Smith, E.E.; Kubena, L.F.; Braithwaite, R.B.; Harvey, R.B.; Phillips, T.D.; Reine, A.H. Toxicological evaluation of aflatoxin and cyclopiazonic acid in broiler chickens. Poult. Sci. 1992, 71, 1136–1144. [Google Scholar] [CrossRef]
- Pang, V.F.; Pan, C.Y. The cytotoxic effects of aflatoxin B1 on swine lymphocytes in vitro. J. Chin. Soc. Vet. Sci. 1994, 20, 289–301. [Google Scholar]
- Glavitis, R.; Vanyi, A. More important mycotoxicosis in pigs. Magy. Allatorvosak 1995, 50, 407–420. [Google Scholar]
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef]
- Vesonder, R.; Haliburton, J.; Stubblefield, R.; Gilmore, W.; Peterson, S. Aspergillus flavus and aflatoxins B1, B2, and M1 in corn associated with equine death. Arch. Environ. Contam. Toxicol. 1991, 20, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Schatzmayr, G.; Zehner, F.; Täubel, M.; Schatzmayr, D.; Klimitsch, A.; Loibner, A.P.; Binder, E.M. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res. 2006, 50, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Bodine, A.B.; Fisher, S.F.; Gangjee, S. Effect of aflatoxin B1 and major metabolites on phytohemeagglutinin stimulated lymphoblastogenesis of bovine lymphocytes. J. Dairy Sci. 1984, 67, 110–114. [Google Scholar] [CrossRef]
- Miller, D.M.; Wilson, D.M. Veterinary diseases related to aflatoxin. In The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance; Eaton, D.L., Groopman, J.D., Eds.; Academic Press: San Diego, CA, USA, 1994; pp. 347–364. [Google Scholar]
- Omotayo, O.P.; Omotayo, A.O.; Mwanza, M.; Babalola, O.O. Prevalence of mycotoxins and their consequences on human health. Toxicol. Res. 2019, 35, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peraica, M.; Radić, B.; Lucić, A.; Pavlović, M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 1999, 77, 754–766. [Google Scholar]
- CAST (Council for Agricultural Science and Technology). Mycotoxins: Risks in Plant, Animal and Human Systems; Task Force Report; Council for Agricultural: Ames, IA, USA, 2003; Volume 139, pp. 1–199. [Google Scholar]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Seeley, T.D.; Nowicke, J.W.; Meselson, M.; Guillemin, J.; Akrata-nakul, P. Yellow rain. Sci. Am. 1985, 253, 128–137. [Google Scholar] [CrossRef]
- Rychlik, M.; Humpf, H.U.; Marko, D.; Dänicke, S.; Mally, A.; Berthiller, F.; Lonrenz, N. Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked mycotoxins”. Mycotoxin Res. 2014, 30, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Recommendation (EC) 2006/576; Official Journal of the European Union: Brussels, Belgium, 2006; Volume L285, p. 33. [Google Scholar]
- Mazumder, P.M.; Sasmal, D. Mycotoxins—Limits and regulations. Anc. Sci. Life 2001, 20, 1–19. [Google Scholar]
- van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations relating to mycotoxins in food. Anal. Bional. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Egmond, H.P. Mycotoxins: Risks, regulations and European co-operation. Zb. Matice Srp. Prir. Nauk. 2013, 125, 7–20. [Google Scholar]
- Marin, S.; Homedes, V.; Sanchis, V.; Magan, N. Impact of Fusarium moniliforme and F. proliferatum on calorific losses and fumonisin production under different environmental conditions. J. Stored Prod. Res. 1999, 35, 15–26. [Google Scholar] [CrossRef]
- Dellafiora, L.; Dall’Asta, C. Masked mycotoxins: An emerging issue that makes renegotiable what is ordinary. Food Chem. 2016, 213, 534–535. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.J.; Munoz, J.; Marin, S.; Sanchis, V.; Magan, N. Calorific losses in maize due to colonisation by isolates of Aspergillus ochraceus under different environmental conditions. J. Cereal Sci. 1999, 29, 177–183. [Google Scholar] [CrossRef]
- D’Mello, J.P.F.; MacDonald, A.M.C. Mycotoxins. Anim. Feed Sci. Technol. 1997, 69, 155–166. [Google Scholar]
- Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in food and feed: Present status and future concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef]
- Hesseltine, C.W.; Shotwell, O.L.; Smith, M.; Ellis, J.J.; Vandegraft, E.; Shannon, G. Production of various aflatoxins by strains of the Aspergillus flavus series. In Proceedings of First US-Japan Conference on Toxic Micro-Organisms; Herzberg, M., Ed.; UJNR Joint Panels on Toxic Micro-organisms and the U.S. Department of the Interior: Washington, DC, USA, 1970; pp. 202–210. [Google Scholar]
- Avantaggio, G.; Quaranta, F.; Desidero, E.; Visconti, A. Fumonisin contamination of maize hybrids visibly damaged by Sesamia. J. Sci. Food Agric. 2002, 83, 13–18. [Google Scholar] [CrossRef]
- Munkvold, G.P. Cultural and genetic approaches to managing mycotoxins in maize. Ann. Rev. Phytopathol. 2003, 41, 99–116. [Google Scholar] [CrossRef]
- Varga, J.; Tóth, B. Novel strategies to control mycotoxins in feeds: A review. Acta Vet. Hung. 2005, 53, 189–203. [Google Scholar] [CrossRef]
- Rachaputi, N.R.; Wright, G.C.; Kroschi, S. Management practices to minimise pre-harvest aflatoxin contamination in Australian groundnuts. Aust. J. Exp. Agric. 2002, 42, 595–605. [Google Scholar] [CrossRef]
- Sserumaga, J.P.; Ortega-Beltran, A.; Wagacha, J.M.; Mutegi, C.K.; Bandyopadhyay, R. Aflatoxin-producing fungi associated with pre-harvest maize contamination in Uganda. Int. J. Food Microbiol. 2020, 313, 108376. [Google Scholar] [CrossRef] [PubMed]
- Phokane, S.; Flett, B.C.; Ncube, E.; Rheeder, J.P.; Rose, L.J. Agricultural practices and their potential role in mycotoxin contamination of maize and groundnut subsistence farming. South Afr. J. Sci. 2019, 115, 6221. [Google Scholar]
- Mabuza, L.M.; Janse van Rensburg, B.; Flett, B.C.; Rose, L.J. Accumulation of toxigenic Fusarium species and Stenocarpella maydis in maize grain grown under different cropping systems. Eur. J. Plant Pathol. 2018, 152, 297–308. [Google Scholar] [CrossRef]
- Baliukonienè, V.; Bakutis, B.; Januškevičiené, G.; Mišeikiené, R. Fungal contamination and Fusarium mycotoxins in cereals grown in different tillage systems. J. Anim. Feed Sci. 2011, 20, 637–647. [Google Scholar] [CrossRef]
- Champeil, A.; Doré, T.; Fourbet, J.F. Fusarium head blight: Epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci. 2004, 166, 1389–1415. [Google Scholar] [CrossRef]
- Dill-Macky, R.; Jones, R.K. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis. 2000, 84, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Góral, T.; Łukanowski, A.; Małuszyńska, E.; Stuper-Szablewska, K.; Buśko, M.; Perkowski, J. Performance of winter wheat cultivars grown organically and conventionally with focus on Fusarium head blight and Fusarium trichothecene toxins. Microorganisms 2019, 7, 439. [Google Scholar] [CrossRef] [Green Version]
- Lazzaro, I.; Moretti, A.; Giorni, P.; Brera, C.; Battilani, P. Organic vs conventional farming: Differences in infection by mycotoxin-producing fungi on maize and wheat in Northern and Central Italy. Crop Prot. 2015, 4, 22–30. [Google Scholar] [CrossRef]
- Bernhoft, A.; Torp, M.; Clasen, P.-E.; Løes, A.-K.; Kristoffersen, A.B. Influence of agronomic and climatic factors on Fusarium infestation and mycotoxin contamination of cereals in Norway. Food Addit. Contam. Part A 2012, 29, 1129–1140. [Google Scholar] [CrossRef] [Green Version]
- Brodal, G.; Hofgaard, I.S.; Eriksen, G.S.; Bernhoft, A.; Sundheim, L. Mycotoxins in organically versus conventionally produced cereal grains and some other crops in temperate regions. World Mycotoxin J. 2016, 9, 755–770. [Google Scholar] [CrossRef]
- Remža, J.; Lacko-Bartošová, M.; Kosík, T. Fusarium mycotoxin content of Slovakian organic and conventional cereals. J. Cent. Eur. Agric. 2016, 17, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Rezende, E.F.; Borges, J.G.; Cirillo, M.A.; Prado, G.; Paiva, L.C.; Batista, L.R. Ochratoxigenic fungi associated with green coffee beans (Coffea arabica L.) in conventional and organic cultivation in Brazil. Braz. J. Microbiol. 2013, 44, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labanca, F.; Raimondi, A.; Fontanelli, M.; Pisuttu, C.; Rallo, G.; Galli, F.; Conte, G.; Pellegrini, E. The effects of climate change on livestock production systems: The cases of mycotoxins in animal feed and animal heat stress. Agrochimica 2019, 99–106. [Google Scholar]
- Nazarizadeh, H.; Hosseini, S.M.; Pourreza, J. Effect of plant extracts derived from thyme and chamomile on the growth performance, gut morphology and immune system of broilers fed aflatoxin B1 and ochratoxin A contaminated diets. Ital. J. Anim. Sci. 2019, 18, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Stasiewicz, M.J.; Falade, T.D.O.; Mutuma, M.; Mutiga, S.K.; Harvey, J.J.; Fox, G.; Pearson, T.C.; Muthomi, J.W.; Nelson, R.J. Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in Kenyan maize. Food Control 2017, 78, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Dorner, J.W.; Cole, R.J. Effect of application of nontoxigenic strains of Aspergillus flavus and A. parasiticus on subsequent aflatoxin contamination of peanuts in storage. J. Stored Prod. Res. 2002, 38, 329–339. [Google Scholar] [CrossRef]
- Cleveland, T.E.; Dowd, P.F.; Desjardins, A.E.; Bhatnagar, D.; Cotty, P.J. United States Department of Agriculture-agricultural research service on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US crops. Pest Manag. Sci. 2003, 59, 629–642. [Google Scholar] [CrossRef]
- Luongo, L.; Galli, M.; Corazza, L.; Meekes, E.; Haas, L.D.; Van Der Plas, C.L.; Köhl, J. Potential of fungal antagonists for bio-control of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol. Sci. Technol. 2005, 15, 229–242. [Google Scholar] [CrossRef]
- Bacon, C.W.; Yates, I.E.; Hinton, D.M.; Meredith, F. Biological control of Fusarium moniliforme in maize. Environ. Health Perspect. 2001, 109, 325–332. [Google Scholar]
- Wu, F. Mycotoxin reduction in Bt corn: Potential economic, health, and regulatory impacts. Transgenic Res. 2006, 15, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Benedict, J.; Fromme, D.; Cosper, J.; Correa, C.; Odvody, G.; Parker, R. Efficacy of Bt corn Events MON810, Bt11 and E176 in Controlling Corn Earworm, Fall Armyworm, Sugarcane Borer and Aflatoxin; Texas A&M University System: College Station, TX, USA, 1998. [Google Scholar]
- Dowd, P.F. Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields. J. Econ. Entomol. 2001, 94, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Bakan, B.; Melcion, D.; Richard-Molard, D.; Cahagnier, B. Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J. Agric. Food Chem. 2002, 50, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Hammond, B.; Campbell, K.; Pilcher, C.; Robinson, A.; Melcion, D.; Cahagnier, B.; Richard, J.; Sequeira, J.; Cea, J.; Tatli, F.; et al. Reduction of fumonisin mycotoxins in Bt corn. Toxicologist 2003, 72, 1217. [Google Scholar]
- Yoon, M.Y.; Cha, B.; Kim, J.-C. Recent trends on botanical fungicides in agriculture. Plant Pathol. J. 2013, 29, 1–9. [Google Scholar] [CrossRef] [Green Version]
- D’Mello, J.P.F.; Macdonald, A.M.C.; Postel, D.; Dijksma, W.T.P.; Dujardin, A.; Placinta, C.M. Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens. Eur. J. Plant Pathol. 1998, 104, 741–751. [Google Scholar]
- Driehuis, F.; Oude Elferink, S.J.W.H. The impact of the quality of silage on animal health and food safety: A review. Vet. Q. 2000, 22, 212–216. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Moncini, L.; Sarrocco, S.; Pachetti, G.; Moretti, A.; Haidukowski, M.; Vannacci, G. N2 controlled atmosphere reduces postharvest mycotoxin risk and pests attack on cereal grains. Phytoparasitica 2020. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Li, J. Updating techniques on controlling mycotoxins—A review. Food Control 2018, 89, 123–132. [Google Scholar] [CrossRef]
- Haque, M.D.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, M.R.; Hajimohammadali, M.; Moshkani, A.; Samadi, N.; Jamalifar, H.; Khoshayand, M.R.; Vaghari, E.; Pouragahi, S. Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria. J. Food Prot. 2009, 72, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Moss, M.O.; Long, M.T. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit. Contam. 2002, 19, 387–399. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, H.; Yang, Q.; Ren, R. Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples. Int. J. Food Microbiol. 2013, 162, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Molnar, O.; Schatzmayr, G.; Fuchs, E.; Prillinger, H. Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst. Appl. Microbiol. 2004, 27, 661–671. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Z.L.; Yuan, Y.H.; Zhou, Z.K.; Yue, T.L. Patulin adsorption of a superior microorganism strain with low flavor-affection of kiwi fruit juice. World Mycotoxin J. 2016, 9, 195–203. [Google Scholar] [CrossRef]
- Jesenska, Z.; Sajbidorova, I. T-2 toxin degradation by micromycetes. J. Hyg. Epidemiol. Microbiol. Immunol. 1991, 35, 41–49. [Google Scholar]
- Gromadzka, K.; Chelkowski, J.; Popiel, D.; Kachlicki, P.; Kostecki, M.; Glinski, P. Solid substrate bioassay to evaluate the effect of Trichoderma and Clonostachys on the production of zearalenone by Fusarium species. World Mycotoxin J. 2009, 2, 45–52. [Google Scholar] [CrossRef]
- De Felice, D.V.; Solfrizzo, M.; De Curtis, F.; Lima, G.; Visconti, A.; Castoria, R. Strains of Aureobasidium pullulans can lower OTA contamination in wine grapes. Phytopathology 2008, 98, 1261–1270. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Chiba, K.; Li, P. Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. J. Phys. Chem. B 2007, 111, 11443–11446. [Google Scholar] [CrossRef]
- Lanyasunya, T.P.; Wamae, L.W.; Musa, H.H.; Olowofeso, O.; Lokwaleput, I.K. The risk of mycotoxins contamination of dairy feed and milk on smallholder dairy farms in Kenya. Pak. J. Nutr. 2005, 4, 162–169. [Google Scholar]
- Hamiton, D. Toxic Fungus Threatens Health of Consumers. Available online: www.agric.org/pmp/2000/ama0826.htm (accessed on 28 February 2020).
- Awad, W.A.; Ghareeb, K.; Böhm, J.; Zentek, J. Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Addit. Contam. 2010, 27, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Fandohan, P.; Gnonlonfin, B.; Hell, K.; Marasas, W.F.O.; Wingfield, M.J. Natural occurrence of Fusarium and subsequent fumonisin contamination in pre-harvest and stored maize in Benin, West Africa. Int. J. Food Microbiol. 2005, 99, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Stove, S.D. Food safety and increasing hazard of mycotoxin occurrence in foods and feeds. Crit. Rev. Food Sci. Nutr. 2013, 53, 887–901. [Google Scholar] [CrossRef] [PubMed]
- Basappa, S.C.; Shantha, T. Methods for detoxification of aflatoxin in foods and feeds—A critical appraisal. J. Food Sci. Technol. 1996, 33, 95–107. [Google Scholar]
- Das, C.; Mishra, H.N. In vitro degradation of aflatoxin B1 in groundnut (Arachis hypogea) meal by horse radish peroxidase. LWT-Food Sci. Technol. 2000, 33, 308–312. [Google Scholar] [CrossRef]
- Scott, P.M. Industrial and farm detoxification processes for mycotoxins. Rev. Med. Vet. Fr. 1998, 149, 543–548. [Google Scholar]
- Diao, E.; Li, X.; Zhang, Z.; Ma, W.; Ji, N.; Dong, H. Ultraviolet irradiation detoxification of aflatoxins. Trends Food Sci. Tech. 2015, 42, 64–69. [Google Scholar] [CrossRef]
- Peng, W.X.; Marchal, J.L.M.; van der Poel, A.F.B. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Anim. Feed Sci. Tech. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Gavahian, M.; Cullen, P.J. Cold plasma as an emerging technique for mycotoxin-free food: Efficacy, mechanisms, and trends. Food Rev. Int. 2020, 36, 193–214. [Google Scholar] [CrossRef]
- Peraica, M.; Domijan, A.M.; Jurević, Ž.; Cvjetković, B. Prevention of exposure to mycotoxins from food and feed. Arh. Hig. Rada Toksikol. 2002, 53, 229–237. [Google Scholar] [PubMed]
- Venter, A.C. Glycerol Compositions and Solutions. U.S. Patent Application 20140106008, 17 April 2014. [Google Scholar]
- Li, M.; Guan, E.; Bian, K. Effect of ozone treatment on deoxynivalenol and quality evaluation of ozonised wheat. Food Addit. Contam. Part A 2015, 32, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, A.P.S.; Castanha, N.; Calori-Domingues, M.A.; Augusto, P.E.D. Ozonation of whole wheat flour and wet milling effluent: Degradation of deoxynivalenol (DON) and rheological properties. J. Environ. Sci. Heal. B 2017, 52, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, A.P.S.; Castanha, N.; Costa, N.S.; Santos, A.S.; Badiale-Furlong, E.; Augusto, P.E.D.; Calori-Domingues, M.A. Ozone technology to reduce zearalenone contamination in whole maize flour: Degradation kinetics and impact on quality. J. Sci. Food. Agric. 2019, 99, 6814–6821. [Google Scholar] [CrossRef]
- Piemontese, L.; Messia, M.C.; Marconi, E.M.; Falasca, L.; Zivoli, R.; Gambacorta, L.; Perrone, G.; Solfrizzo, M. Effect of gaseous ozone treatments on DON, microbial contaminants and technological parameters of wheat and semolina. Food Addit. Contam. Part A 2018, 35, 761–772. [Google Scholar] [CrossRef]
- Porto, Y.D.; Trombete, F.M.; Freitas-Silva, O.; de Castro, I.M.; Direito, G.M.; Ascheri, J.L.R. Gaseous ozonation to reduce aflatoxins levels and microbial contamination in corn grifts. Microorganisms 2019, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency (EEA). Air Quality in Europe—2018 Report; EEA Report 12/2018; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Karaka, H.; Velioglu, Y.S. Ozone applications in fruit and vegetable processing. Food Rev. Int. 2007, 23, 91–106. [Google Scholar] [CrossRef]
- WCBBC (Workers’ Compensation Board of British Columbia). Library and Archives Canada Cataloguing in Publication Data. Ozone Safe Work Practices: WCBBC. 2006. [Google Scholar]
- Tiwari, B.K.; Brennan, C.S.; Curran, T.; Gallagher, E.; Cullen, P.J.; O’Donnell, C.P. Application of ozone in grain processing. J. Cereal Sci. 2010, 51, 248–255. [Google Scholar] [CrossRef]
- FDA (Food and Drug Administration). Direct Food Substances Affirmed as Generally Recognized as Safe. Available online: http://www.accessdata.dfa.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.Cfm?fr=184.1563 (accessed on 28 February 2020).
- Sharma, R. Ozone decontamination of fresh fruit and vegetable. In Improving the Safety of Fresh Fruit and Vegetables, 2nd ed.; Jongen, W., Ed.; Woodhead Publishing: Cambridge, UK, 2005; pp. 373–386. [Google Scholar]
- EPA (Environmental Protection Agency). Alternative Disinfectants and Oxidants Guidance Manual; EPA 815-R-99-014; Office of Water: Washington, DC, USA, 1999.
- Trombete, F.M.; Freitas-Silva, O.; Saldanha, T.; Venâncio, A.A.; Fraga, M.E. Ozone against mycotoxins and pesticide residues in food: Current applications and perspectives. Int. Food Res. J. 2016, 26, 2545–2556. [Google Scholar]
- Freitas-Silva, O.; Venâncio, A. Ozone application to prevent and degrade mycotoxins: A review. Drug Metab. Rev. 2010, 42, 612–620. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.B.; Greene, A.K.; Seydim, A.C. Use of ozone in the food industry. LWT-Food Sci. Technol. 2004, 37, 453–460. [Google Scholar] [CrossRef]
- Scott, D.B.M.; Lesher, E.C. Effect of ozone on survival and permeability of Escherichia coli. J. Bacteriol. 1963, 85, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F. Effect of ozone treatment on the quality of grain products. Food Chem. 2018, 264, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Tapp, C.; Rice, R.G. Generation and control of ozone. In Ozone in Food Processing, 2nd ed.; O’Donnell, C., Tiwari, B.K., Cullen, P.J., Rice, R.G., Eds.; Wiley-Blackwell: Oxford, UK, 2012; p. 312. [Google Scholar]
- Prudente, A.D., Jr.; King, J.M. Efficacy and safety evaluation of ozonation to degrade aflatoxin in corn. J. Food Sci. 2002, 67, 2866–2872. [Google Scholar]
- Savi, G.D.; Piacentini, K.C.; Bittencourt, K.O.; Scussel, V.M. Ozone treatment efficiency on Fusarium graminearum and deoxynivalenol degradation and its effects on whole wheat grains (Triticum aestivum L.) quality and germination. J. Stored Prod. Res. 2014, 59, 245–253. [Google Scholar] [CrossRef]
- Alexandre, A.P.S.; Vela-Paredes, R.S.; Santos, A.S.; Costa, N.S.; Canniatti-Brazaca, S.G.; Calori-Domingues, M.A.; Augusto, P.E.D. Ozone treatment to reduce deoxynivalenol (DON) and zearalenone (ZEN) contamination in wheat bran and its impact on nutritional quality. Food Addit. Contam. Part A 2018, 35, 1189–1199. [Google Scholar] [CrossRef]
- Staehelin, J.; Hoigne, J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ. Sci. Technol. 1985, 19, 1206–1213. [Google Scholar] [CrossRef]
- Chulze, S.N. Strategies to reduce mycotoxin levels in maize during storage: A review. Food Addit. Contam. Part A 2010, 27, 651–657. [Google Scholar] [CrossRef]
- Jian, F.; Jayas, D.S.; White, N.D.G. Can ozone be a new control strategy for pests of stored grain? Agric. Res. 2013, 2, 1–8. [Google Scholar] [CrossRef]
- Isikber, A.A.; Athanassiou, C.G. The use of ozone gas for the control of insects and micro-organisms in stored products. J. Stored Prod. Res. 2015, 64, 139–145. [Google Scholar] [CrossRef]
- Fleurat-Lessard, F. Integrated management of the risks of stored grain spoilage by seedborne fungi and contamination by storage mould mycotoxins—An update. J. Stored Prod. Res. 2017, 71, 22–40. [Google Scholar] [CrossRef]
- Karaca, H. Use of ozone in the citrus industry. Ozone Sci. Eng. 2010, 32, 122–129. [Google Scholar] [CrossRef]
- Kashefi, B.; Arabsorkhi, M.R. Effect of mycotoxins in dried figs production. Acta Hortic. 2012, 963, 37–40. [Google Scholar] [CrossRef]
- Awuah, R.T.; Ellis, W.O. Effects of some groundnut packaging methods and protection with ocimum and syzygium powders on kernel infection by fungi. Mycopathologia 2002, 154, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Müller, J.; Vanlauwe, B.; Bandyopadhyay, R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application—A review. Food Control 2017, 76, 127–137. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Martinez-Tuppia, C.; Queiroz, O.C.M.; Yang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A.E.T. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J. Diary Sci. 2018, 101, 4034–4059. [Google Scholar] [CrossRef]
- Čolović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Duragić, O.; Kos, J.; Pinotti, L. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Luo, Y.; Wang, R.; Li, Y.; Li, Y.; Shao, H.; Chen, Z. Effect of deoxynivalenol detoxification by ozone treatment in wheat grains. Food Control 2016, 66, 137–144. [Google Scholar] [CrossRef]
- Dodd, J.G.; Vegi, A.; Vashisht, A.; Tobias, D.; Schwarz, P.; Wolf-Hall, C.E. Effect of ozone treatment on the safety and quality of malting barley. J. Food Prot. 2011, 74, 2134–2141. [Google Scholar] [CrossRef]
- Qi, L.; Li, Y.; Luo, X.; Wang, R.; Zheng, R.; Wang, L.; Li, Y.; Yang, D.; Fang, W.; Chen, Z. Detoxification of zearalenone and ochratoxin A by ozone and quality evaluation of ozonised corn. Food Addit. Contam. Part A 2016, 33, 1700–1710. [Google Scholar] [CrossRef]
- Diao, E.; Hou, H.; Chen, B.; Shan, C.; Dong, H. Ozonolysis efficiency and safety evaluation of aflatoxin B1 in peanuts. Food Chem. Toxicol. 2013, 55, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Torlak, E.; Akata, I.; Erci, F.; Uncu, A.T. Use of gaseous ozone to reduce aflatoxin B1 and microrganisms in poultry feed. J. Stored Prod. Res. 2016, 68, 44–49. [Google Scholar] [CrossRef]
- Kouchesfahani, M.M.; Alimohammadi, M.; Khaniki, G.J.; Nodehi, R.N.; Aghamohseni, Z.; Moazeni, M.; Rezaie, S. Antifungal effects of ozonated water on Aspergillus parasiticus: A new approach to prevent wheat contamination. J. Food Saf. 2015, 35, 295–302. [Google Scholar] [CrossRef]
- Sun, C.; Ji, J.; Wu, S.; Sun, C. Saturated aqueous ozone degradation of deoxynivalenol and application in contaminated grains. Food Control 2016, 69, 185–190. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Ji, J.; Wu, H.; Pi, F.; Zhang, Y.; Sun, X. Chemical and toxicological alterations of zearalenone under ozone treatment. Food Addit. Contam. Part A 2019, 36, 163–174. [Google Scholar] [CrossRef]
- Nooghi, M.E.; Jafari, A.A.; Khavidak, S.S.; Jafari, H. Impacts of dehydroacetic acid and ozonated water on Aspergillus flavus colonization and aflatoxin B1 accumulation in Iranian pistachio. J. Food Qual. Hazards Control 2016, 3, 87–92. [Google Scholar]
- Bashiri, P.; Hadad Khodaparast, M.H.; Sedaghat, N.; Tabatabaei, F.; Nassiri Mahalatti, M. Effect of aqueous ozone on aflatoxin degradation in pistachio of Ohadi cultivar. Iran. Food. Sci. Technol. Res. J. 2013, 9, 215–221. [Google Scholar]
- Wang, L.; Shao, H.; Luo, X.; Wang, R. Effect of ozone treatment on deoxynivalenol and wheat quality. PLoS ONE 2016, 11, e0147613. [Google Scholar] [CrossRef]
- Luo, X.; Wang, R.; Wang, L.; Li, Y. Detoxification of aflatoxin in corn flour by ozone. J. Sci. Food Agric. 2014, 94, 2253–2258. [Google Scholar] [CrossRef]
- Savi, G.D.; Piacentini, K.C.; Scussel, V.M. Ozone treatment efficiency in Aspergillus and Penicillium growth inhibition and mycotoxin degradation of stored what grains (Triticum aestivum L.). J. Food Process. Preserv. 2015, 39, 940–948. [Google Scholar] [CrossRef]
- Proctor, A.D.; Ahmedna, M.; Kumar, J.V.; Goktepe, I. Degradation of aflatoxins in peanut kernels/flour by gaseous ozonation and mild heat treatment. Food Addit. Contam. Part A 2014, 21, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Agriopoulou, S.; Koliadima, A.; Karaiskakis, G.; Kapolos, J. Kinetic study of aflatoxins’ degradation in the presence of ozone. Food Control 2016, 61, 221–226. [Google Scholar] [CrossRef]
- Eaton, D.L.; Groopmand, J.D. The Toxicology of Aflatoxins: Human Health, Veterinary and Agricultural Significance; Academic Press: San Diego, CA, USA, 1994; p. 544. [Google Scholar]
- Li, M.; Guan, E.; Bian, K. Structure elucidation and toxicity analysis of the degradation products of deoxynivalenol by gaseous ozone. Toxins 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinholds, I.; Juodeikiene, G.; Bartkiene, E.; Zadeike, D.; Bartkevics, V.; Krungleviciute, V.; Cernauskas, D.; Cižeikiene, D. Evaluation of ozonation as a method for mycotoxins degradation in malting wheat grains. World Mycotoxin J. 2016, 9, 409–417. [Google Scholar] [CrossRef]
- McKenzie, K.S.; Sarr, A.B.; Mayura, K.; Bailey, R.H.; Miller, D.R.; Rogers, T.D.; Norred, W.P.; Voss, K.A.; Plattner, R.D.; Kubena, L.F.; et al. Oxidative degradation and detoxification of mycotoxins using a novel source of ozone. Food Chem. Toxicol. 1997, 35, 807–820. [Google Scholar] [CrossRef]
- Young, J.C.; Zhu, H.; Zhou, T. Degradation of trichotecene mycotoxins by aqueous ozone. Food Chem. Toxicol. 2006, 44, 417–424. [Google Scholar] [CrossRef]
- Al-Ahmadi, S.S.; Ibrahim, R.A.; Ouf, S.A. Application of ozone to control insect pests and moulds of date fruits. Biosci. Biotechnol. Res. Asia 2009, 6, 435–446. [Google Scholar]
- de Alencar, E.R.; Faroni, L.R.; Soares, N.D.F.F.; da Silva, W.A.; Carvalho, M.C. Efficacy of ozone as a fungicidal and detoxifying agent of aflatoxins in peanuts. J. Sci. Food Agric. 2012, 92, 899–905. [Google Scholar] [CrossRef]
- El-Desouky, T.A.; Sharoba, A.M.A.; El-Desouky, A.I.; El-Mansy, H.A.; Naguib, K. Evaluation of ozone gas as an anti-aflatoxin B1 in wheat grains during storage. J. Agroaliment. Process. Technol. 2012, 18, 13–19. [Google Scholar]
- Luo, X.; Wang, R.; Wang, L.; Li, Y. Effect of ozone treatment on aflatoxin B1 and safety evaluation of ozonized corn. Food Control 2014, 37, 171–176. [Google Scholar] [CrossRef]
- McKenzie, K.S.; Kubena, L.F.; Denvir, A.J.; Rogers, T.D.; Hitchens, G.D.; Bailey, R.H.; Harvey, R.B.; Buckley, S.A.; Phillips, T.D. Aflatoxicosis in Turkey poults in prevented by treatment of naturally contaminated corn with ozone generated by electrolysis. Poult. Sci. 1998, 77, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
Year | O3 Concentration/Application | Food/Matrix | Target | O3 Main Effect | References |
---|---|---|---|---|---|
2011 | 26 g m−3 of gaseous O3 for 120 min after 2 and 6 h of steeping | Malting barley | Deoxynivalenol (DON) | No reduction (probably due to the low initial concentrations of DON) | [122] |
2012 | 13 and 21 g m−3 of gaseous O3 for 24, 48, 72, and 96 h | Peanuts kernels | Aflatoxin B1 (AFB1) | Reduction of 25% after 96 h of exposure at 21 g m−3 of O3 | [142] |
2012 | 20 and 40 g m−3 of gaseous O3 for 5, 10, 15, and 20 min | Wheat grains | AFB1 | Total reduction of AFB1 after 10, 15 and 20 min of exposure | [145] |
2013 | 50 g m−3 of gaseous O3 for 60 h | Peanuts | AFB1 | Reduction of 89% | [124] |
2013 | 4 and 8 g m−3 of aqueous O3 for 2, 4, 6, 8, 10, and 12 h | Pistachio kernels | AFB1 | Reduction by 48, 13, 46, 44 and 44% after 2, 4, 6, 8, 10 and 12 h | [130] |
2014 | 15, 30, 45, and 75 g m−3 of gaseous O3 for 60 min | Corn flour | AFB1, Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1) and Aflatoxin G2 (AFG2) | Reduction of AFB1, AFB2 and AFG1 by 79, 71 and 72% at 75 g m−3 | [132] |
2014 | 90 g m−3 of gaseous O3 for 20 and 40 min | Corn | AFB1 | Reduction by 78 and 88% after 20 and 40 min of exposure, respectively | [143] |
2014 | 79 and 118 g m−3 of gaseous O3 for 30, 60, 120, and 180 min at room temperature | Wheat grains | DON | Reduction to the limit of detection in wheat grains after 120 min of exposure at 118 g m−3 | [108] |
2014 | 6.0 g m−3 of gaseous O3 for 30 min at room temperature | Peanuts | AFB1 | Reduction of 66% | [134] |
2015 | 79 and 118 g m−3 of gaseous O3 for 30, 60, 120, and 180 min at room temperature | Wheat grains | AFB1, AFB2, AFG1, AFG2 and citrinin | Concomitant reduction of AFB1, AFB2, AFG1, and AFG2 by 95, 85, 80, and 81% in wheat grains after 180 min of exposure at 118 g m−3, respectively. Under the same O3 concentration, reduction of citrinin by 29, 45, 46, and 75% after 30, 60, 120, and 180 min | [133] |
2015 | 1, 2 and 2.5 g m−3 of aqueous O3 for 60, 120, and 180 min at 20, 25, and 40 °C | Wheat | AFB1, AFB2, AFG1 and AFG2 | Reduction of AFB1 by 27, 34, and 40% in wheat samples after 180 min of exposure at 2.5 g m−3 of O3 (at 20, 25, and 40 °C, respectively). AFG1 and AFG2 were completely inhibited when samples were treated with 2 and 1 g m−3 of aqueous O3, respectively | [126] |
2015 | 10 m g−3 of gaseous O3 for 30 s | Wheat | DON | Reduction by 94% | [89] |
2016 | 8.5, 13.5, 20, 25, and 40 g m−3 of gaseous O3 for 20 min | Aflatoxins dissolved in water | AFB1, AFB2, AFG1 and AFG2 | Rapid elimination of AFB1 and AFG1 | [135] |
2016 | 10 g m−3 of aqueous O3 for 15 min at room temperature | De-hulled dried pistachios | AFB1 | No reduction | [129] |
2016 | 100 g m−3 of gaseous O3 for 1 h at 20% moisture | Wheat flour | DON | Reduction by 78% | [127] |
2016 | 75 g m−3 of gaseous O3 for 30, 60, and 90 min | Wheat flour | DON | Reduction by 26, 39, and 54% after 30, 60, and 90 min | [131] |
2016 | 60 g m−3 of gaseous O3 for 300 min | Wheat grains | Aflatoxins and DON | Reduction of aflatoxins and DON by 64 and 48%, respectively | [101] |
2016 | 20 g m−3 of gaseous O3 for 40 and 130 min | Wheat grains | DON, HT-2 toxin (HT-2), T-2 toxin (T-2) and zearalenone (ZEA) | Reduction of HT-2, T-2 and ZEN by 65, 62, and 59% after 40 min. Reduction of DON by 25% after 130 min | [138] |
2016 | 2.8 and 5.3 g m−3 of gaseous O3 for 240 min at room temperature | Poultry feed composed of corn, barley, soybean and sunflower meal | AFB1 | Reduction by 74 and 86% at 2.8 and 5.3 g m−3 of O3 | [125] |
2016 | 100 g m−3 of gaseous O3 for 180 min | Corn | ZEA and OTA | Reduction of ZEA and OTA by 91 and 71%, respectively | [123] |
2016 | 80 g m−3 of aqueous O3 for 10 min | Contaminated Wheat, corn and bran | DON | Reduction by 75, 71, and 76% in contaminated wheat, corn, and bran, respectively | [127] |
2017 | 65 g m−3 of aqueous O3 for 60, 120, and 180 min at 10 and 25% of moisture | Wheat flour | DON | Reduction by 70, 70, and 78% in wheat flour after 60, 120 and 180 min of exposure at 25% of moisture | [90] |
2018 | 62 g m−3 of gaseous O3 for 15, 30, 60, 120, 180, and 240 min | Wheat bran from contaminated grains | DON and ZEA | Reduction of DON by 29, 45, and 32% in wheat bran after 15, 30, and 240 min of exposure. Reduction of ZEA by 57 and 61% after 15 and 240 min treatment | [109] |
2018 | 40 g m−3 of gaseous O3 for 6 h | Wheat grains, semolina and pasta | DON and DON-3-Glc | Reduction of DON and DON-3-Glc by 29 and 44% | [92] |
2019 | 52 g m−3 of gaseous O3 for 5, 10, 20, 30, and 60 min | Maize flour | ZEA | Reduction by 38, 56, and 62% in maize flour after 5, 10, and 60 min of exposure | [91] |
2019 | 20–60 g m−3 of gaseous O3 for 120–480 min | Corn grits | AFB1, AFB2, AFG1 and AFG2 | Reduction of AFB1, AFB2, AFG1, and AFG2 by 55, 57, 36, and 30% after 480 min of exposure at 60 g m−3 | [93] |
2019 | 10 g m−3 of gaseous O3 for 30 s | Scabbed wheat | DON | Reduction by 94% | [138] |
2019 | 50 g m−3 of aqueous O3 for 90 min | Corn flour | ZEN | Reduction by 95% | [128] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conte, G.; Fontanelli, M.; Galli, F.; Cotrozzi, L.; Pagni, L.; Pellegrini, E. Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update. Toxins 2020, 12, 486. https://doi.org/10.3390/toxins12080486
Conte G, Fontanelli M, Galli F, Cotrozzi L, Pagni L, Pellegrini E. Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update. Toxins. 2020; 12(8):486. https://doi.org/10.3390/toxins12080486
Chicago/Turabian StyleConte, Giuseppe, Marco Fontanelli, Francesca Galli, Lorenzo Cotrozzi, Lorenzo Pagni, and Elisa Pellegrini. 2020. "Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update" Toxins 12, no. 8: 486. https://doi.org/10.3390/toxins12080486
APA StyleConte, G., Fontanelli, M., Galli, F., Cotrozzi, L., Pagni, L., & Pellegrini, E. (2020). Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update. Toxins, 12(8), 486. https://doi.org/10.3390/toxins12080486