Simultaneous Quantification of Aflatoxin B1, T-2 Toxin, Ochratoxin A and Deoxynivalenol in Dried Seafood Products by LC-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of LC-MS/MS Conditions
2.2. Optimization of the UAE Extraction Procedure
2.2.1. Extraction Solvents
2.2.2. Solvent Extraction Procedure
2.3. Optimization of the Clean-Up Procedure
2.4. Linearity
2.5. Matrix Effects
2.6. Method Validation
2.7. Real Sample Analysis
3. Conclusions
4. Materials and Method
4.1. Reagents and Solutions
4.2. Sample Preparation
4.3. Optimization of Extraction Solvent
4.4. Optimization of Extraction Solvent Ratio
4.5. Optimization of UAE Extraction Condition
4.6. Optimization of Clean-Up Procedure
4.6.1. N-Hexane-Degreasing Purification
4.6.2. Immunoaffinity Column Purification
4.6.3. Alumina N-neutral Column Purification
4.6.4. SiO2-Solid Phase Extraction Column Purification
4.7. LC-MS/MS Operating Conditions
4.8. Linearity
4.9. Matrix Effects and Method Validation
4.10. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nuwanthi, S.; Madage, S.; Hewajulige, I.; Wijesekera, R. Comparative Study on Organoleptic, Microbiological and Chemical Qualities of Dried Fish, Goldstripe Sardinella(Sardinella Gibbosa) with Low Salt Levels and Spices. Procedia Food Sci. 2016, 6, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Otolowo, D.T.; Olapade, A.A.; Oladele, S.O.; Egbuna, F.; Ganji, V. Drying characteristics and quality evaluation of dehydrated catfish (Clarias gariepinus). Nutr. Food Sci. 2017, 47, 765–779. [Google Scholar] [CrossRef]
- Shah, A.; Tokunaga, C.; Ogasawara, M.; Kurihara, H.; Takahashi, K. Changes in Chemical and Sensory Properties of Migaki-Nishin (Dried Herring Fillet) during Drying. J. Food Sci. 2009, 74, S309–S314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Lin, Q.; Xu, S.; Wang, Z. Effect of drying methods and antioxidants on the flavor and lipid oxidation of silver carp slices. LWT 2015, 61, 251–257. [Google Scholar] [CrossRef]
- Kachapulula, P.W.; Akello, J.; Bandyopadhyay, R.; Cotty, P.J. Aflatoxin Contamination of Dried Insects and Fish in Zambia. J. Food Prot. 2018, 81, 1508–1518. [Google Scholar] [CrossRef] [PubMed]
- Fafioye, O.; Efuntoye, M.; Osho, A. Studies on the fungal infestation of five traditionally smoke-dried freshwater fish in Ago-Iwoye, Nigeria. Mycopathologia 2002, 154, 177–179. [Google Scholar] [CrossRef]
- Jimoh, W.A.; Ayeloja, A.A.; Oladele-Bukola, M.O.; Muideen, A.; Azeez, A.F.; Salami, S.R. Isolation of fungi infesting smoked African catfish from markets in Ibadan, Nigeria. Niger. J. Fish Aquacult. 2014, 2, 13–17. [Google Scholar]
- Oyebamiji, F.; Oyebimpe, F. Microbial identification of smoke-dried fish (Clarias gariepinus) from some local markets in Ibadan metropolis. Wudpecker J. Agric. Res. 2013, 2, 294–298. [Google Scholar]
- Singapurwa, N.M.A.S.; Suprapta, D.N.; Gunam, I.B.W.; Khalimi, K. Identification of contaminant fungi on Pedetan, An dry fish product of Lemuru (Sardinella lemuru). J. Biol. 2018, 8, 75–82. [Google Scholar]
- Hussein, H. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef]
- European Commission. European Commission Regulation (EC) No. 401/2006 of 23 February 2006 Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs; OJEU L70 2006; European Commission: Brussels, Belgium, 2006; pp. 12–34. [Google Scholar]
- Sam, J.F.; Jeyasanta, I.K.; Edward, P.J.K. Aflatoxins investigation on dried fishes of Tuticorin, southeast coast of India. J. Foodborne Zoon. Dis. 2015, 3, 49–62. [Google Scholar]
- Akwuobu, C.A.; Antiev, W.S.; Ofukwu, R.A.-P. Fungal Contaminants of Smoke-Dried Fish Sold in Open Markets in Makurdi, Benue State, North-Central Nigeria. Food Nutr. Sci. 2019, 10, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Fagbohun, E.; Lawal, O. Aflatoxins Investigation and Mycobiota of Selected Marketed Smoked - Dried Fish Samples in Ado-Ekiti, Nigeria and Their Environmental Health Implications. Br. Microbiol. Res. J. 2015, 7, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Han, Z.; Aerts, J.; Nie, D.; Jin, M.; Shi, W.; Zhao, Z.; De Saeger, S.; Zhao, Y.; Wu, A. A reliable liquid chromatography–tandem mass spectrometry method for simultaneous determination of multiple mycotoxins in fresh fish and dried seafoods. J. Chromatogr. A 2015, 1387, 42–48. [Google Scholar] [CrossRef]
- Jolly, P.; Jiang, Y.; Ellis, W.O.; Awuah, R.T.; Appawu, J.; Nnedu, O.; Stiles, J.K.; Wang, J.; Adjei, O.; Jolly, C.M.; et al. Association between aflatoxin exposure and health characteristics, liver function, hepatitis and malaria infections in Ghanaians. J. Nutr. Environ. Med. 2007, 16, 242–257. [Google Scholar] [CrossRef]
- Fahmy, N.; Woo, M.; Alameldin, M.; Macdonald, K.; Goneau, L.W.; Cadieux, P.; Pautler, S.E. Ochratoxin A is not detectable in renal and testicular tumours. Can. Urol. Assoc. J. 2014, 8, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Vdovenko, M.M.; Wang, J.-J.; Sakharov, I.Y. Comparison of Enzyme-Linked Immunosorbent Assays with Chemiluminescent and Colorimetric Detection for the Determination of Ochratoxin A in Food. J. Agric. Food Chem. 2011, 59, 809–813. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Zhu, G.; Zhou, X.; Jia, L.; Zhang, T. Highly Sensitive Detection of Zearalenone in Feed Samples Using Competitive Surface-Enhanced Raman Scattering Immunoassay. J. Agric. Food Chem. 2014, 62, 8325–8332. [Google Scholar] [CrossRef]
- Pascale, M.; Panzarini, G.; Visconti, A. Determination of HT-2 and T-2 toxins in oats and wheat by ultra-performance liquid chromatography with photodiode array detection. Talanta 2012, 89, 231–236. [Google Scholar] [CrossRef]
- Adi, P.J.; Matcha, B. Analysis of aflatoxin B1 in contaminated feed, media, and serum samples of Cyprinus carpio L. by high-performance liquid chromatography. Food Qual. Saf. 2018, 2, 199–204. [Google Scholar] [CrossRef]
- Moraleja, A.G.; Font, G.; Mañes, J.; Ferrer, E. Development of a new method for the simultaneous determination of 21 mycotoxins in coffee beverages by liquid chromatography tandem mass spectrometry. Food Res. Int. 2015, 72, 247–255. [Google Scholar] [CrossRef]
- Chen, N.; Cao, X.; Tao, Y.; Wu, Q.; Pan, Y.; Peng, D.; Liu, Z.; Huang, L.; Wang, Y.; Wang, X.; et al. Development of a liquid chromatography–tandem mass spectrometry with ultrasound-assisted extraction and auto solid-phase clean-up method for the determination of Fusarium toxins in animal derived foods. J. Chromatogr. A 2013, 1311, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, B.; Ferrari, M.; Bergamini, C. Simultaneous determination of deoxynivalenol, zearalenone, T-2 and HT-2 toxins in breakfast cereals and baby food by high-performance liquid chromatography and tandem mass spectrometry. J. Mass Spectrom. 2010, 45, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Albero, B.; Tadeo, J.L.; Pérez, R.A. Ultrasound-assisted extraction of organic contaminants. TrAC Trends Anal. Chem. 2019, 118, 739–750. [Google Scholar] [CrossRef]
- Yibadatihan, S.; Selamat, J.; Mahyudin, N.A. Simultaneous determination of multi-mycotoxins in palm kernel cake (PKC) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Addit. Contam. Part A 2014, 31, 2071–2079. [Google Scholar] [CrossRef]
- Zheng, R.S.; Xiao, Q.Y.; Xu, W.; Xu, H.; Zhan, R.T.; Chen, W.W. Determination of contaminant ochratoxin A in 10 traditional Chinese medicines and 3 food samples by LC-MS/MS. Chin. J. Pharm. Anal. 2015, 35, 289–294. [Google Scholar]
- Flores-Ramírez, R.; Medellín-Garibay, S.E.; Castillo, C.G.; Hernández, C.A.I.; Zuki-Orozco, B.A.; Batres-Esquivel, L.; Barriga, F.D. Application of Focused Ultrasound-Assisted Extraction to the Determination of Persistent Organic Pollutants (POPs) in Soil Samples. Bull. Environ. Contam. Toxicol. 2015, 95, 207–214. [Google Scholar] [CrossRef]
- Ziarrusta, H.; Val, N.; Dominguez, H.; Mijangos, L.; Prieto, A.; Usobiaga, A.; Etxebarria, N.; Zuloaga, O.; Olivares, M. Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 6359–6370. [Google Scholar] [CrossRef]
- Pena-Abaurrea, M.; De La Torre, V.G.; Ramos, L.; De La Torre, V.S.G. Ultrasound-assisted extraction followed by disposable pipette purification for the determination of polychlorinated biphenyls in small-size biological tissue samples. J. Chromatogr. A 2013, 1317, 223–229. [Google Scholar] [CrossRef]
- Pena, A.; Lino, C.M.; Alonso, R.; Barceló, D. Determination of Tetracycline Antibiotic Residues in Edible Swine Tissues by Liquid Chromatography with Spectrofluorometric Detection and Confirmation by Mass Spectrometry. J. Agric. Food Chem. 2007, 55, 4973–4979. [Google Scholar] [CrossRef]
- Han, Z.; Ren, Y.; Liu, X.; Luan, L.; Wu, Y.-J. A reliable isotope dilution method for simultaneous determination of fumonisins B1, B2 and B3 in traditional Chinese medicines by ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2010, 33, 2723–2733. [Google Scholar] [CrossRef] [PubMed]
- She, Y.-X.; Liu, J.; Wang, J.; Liu, Y.; Wang, R.; Cao, W. Determination of Sulfonamides in Bovine Milk by Ultra Performance Liquid Chromatography Combined with Quadrupole Mass Spectrometry. Anal. Lett. 2010, 43, 2246–2256. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, N.; Yang, L.; Deng, Y.; Wang, J.; Song, S.; Lin, S.; Wu, A.; Zhou, Z.; Hou, J. Multi-mycotoxin analysis of animal feed and animal-derived food using LC–MS/MS system with timed and highly selective reaction monitoring. Anal. Bioanal. Chem. 2015, 407, 7359–7368. [Google Scholar] [CrossRef] [PubMed]
- Sulyok, M.; Krska, R.; Schuhmacher, R. Application of an LC–MS/MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds. Food Chem. 2010, 119, 408–416. [Google Scholar] [CrossRef]
- Oueslati, S.; Romero-González, R.; Lasram, S.; Frenich, A.G.; Vidal, J.L.M. Multi-mycotoxin determination in cereals and derived products marketed in Tunisia using ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem. Toxicol. 2012, 50, 2376–2381. [Google Scholar] [CrossRef] [PubMed]
- Frenich, A.G.; Romero-González, R.; Gómez-Pérez, M.L.; Vidal, J.L.M. Multi-mycotoxin analysis in eggs using a QuEChERS-based extraction procedure and ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry. J. Chromatogr. A 2011, 1218, 4349–4356. [Google Scholar] [CrossRef] [PubMed]
- Aurélien, D.; Sabine, T.; Thomas, B.; Lucie, R.; Elisa, F.; Alessandro, U.; Wai-Chinn, C.; Pearly, C.; Pascal, M. Combining the quick, easy, cheap, effective, rugged and safe approach and clean-up by immunoaffinity column for the analysis of 15 mycotoxins by isotope dilution liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2014, 1337, 75–84. [Google Scholar]
- Gualda, I.P.; Dos Santos, V.J.; Figueiredo, I.D.L.; Petenuci, M.E.; Visentainer, J.V. Centesimal composition, fatty acids profile and the nutritional quality index of four seafood species from the southern region of Brazil. Acta Sci. Technol. 2018, 40, 39351. [Google Scholar] [CrossRef]
- Olmedo, P.; Hernández, A.; Pla, A.; Femia-Marzo, P.; Navas-Acien, A.; Gil, F. Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury–selenium balance. Food Chem. Toxicol. 2013, 62, 299–307. [Google Scholar] [CrossRef]
- Olajuyigbe, O.O.; Akande, G.R.; Ezekiel, C.N.; Ezekiel, M.O. Aflatoxigenic moulds and aflatoxin contamination of retailed fishery products in Lagos markets. Mycotoxicology 2014, 1, 57–63. [Google Scholar]
Toxin | Precursor Ion (m/z) | Product Ions (m/z) | CE (eV) | Retention Time (min) |
---|---|---|---|---|
AFB1 | 313.2 [M + H]+ | 213.0 | 44 | 4.3 |
241.0 a | 36 | |||
T-2 | 484.3 [M + NH4]+ | 185.1 a | 27 | 5.1 |
215.1 | 25 | |||
OTA | 404.0 [M + H]+ | 238.1 | 27 | 5.3 |
358.1 a | 15 | |||
DON | 297.3 [M + H]+ | 203.1 | 16 | 2.0 |
249.1 a | 12 |
Toxin | Linear Range (μg·kg−1) | Standard Calibration | R2 | Slope | LOD (μg·kg−1) | LOQ (μg·kg−1) |
---|---|---|---|---|---|---|
AFB1 | 0.5–100 | y = 1014.5x − 321.19 | 0.9989 | 1014.5 | 0.1 | 0.3 |
T-2 | 0.5–200 | y = 885.44x + 278.19 | 0.9994 | 885.4 | 0.1 | 0.5 |
OTA | 0.5–100 | Y = 7451.49x − 952.7 | 0.9999 | 7451.5 | 0.1 | 0.5 |
DON | 1–500 | Y = 355.52x − 339.42 | 0.9990 | 355.5 | 1.0 | 3.0 |
Matrix | Mycotoxin | Linear Range (μg·kg−1) | Standard Calibration a | R2 | Slope | LOD (μg·kg−1) | LOQ (μg·kg−1) | SSE (%) |
---|---|---|---|---|---|---|---|---|
Dried shrimp | AFB1 | 0.5–100 | y = 1047.21x + 289.35 | 0.9999 | 1047.2 | 0.1 | 0.5 | 100.6 |
T-2 | 0.5–200 | y = 653.31x + 357.65 | 0.9999 | 653.3 | 0.2 | 0.5 | 95.7 | |
OTA | 0.5–100 | y = 7302.98x + 523.42 | 0.9979 | 7303.0 | 0.1 | 0.3 | 95.2 | |
DON | 1–500 | y = 241.77x + 921.42 | 0.9987 | 241.8 | 2.0 | 3.0 | 93.4 | |
Dried fish | AFB1 | 0.5–100 | y = 1223.01x + 542.5 | 0.9989 | 1223 | 0.1 | 0.5 | 103.8 |
T-2 | 0.5–200 | y = 783.41x + 892.97 | 0.9989 | 783.4 | 0.5 | 1.0 | 95.4 | |
OTA | 0.5–100 | y = 6862.12x + 399.11 | 0.9999 | 6862.1 | 0.3 | 1.0 | 92.3 | |
DON | 1–500 | y = 268.23x + 223.42 | 0.9999 | 268.2 | 1.0 | 5.0 | 90.1 | |
Dried mussel | AFB1 | 0.5–100 | y = 1008x + 509.12 | 0.9989 | 1008 | 0.5 | 1.0 | 94.5 |
T-2 | 0.5–200 | y = 589.3x + 305.31 | 0.9979 | 889.3 | 0.5 | 1.0 | 86.6 | |
OTA | 0.5–100 | y = 5972.19x + 423.1 | 0.9985 | 5972.2 | 0.3 | 1.0 | 89.5 | |
DON | 1–500 | y = 233.98x + 692.44 | 0.9974 | 234 | 1.0 | 5.0 | 87.6 |
Mycotoxin | Spiked Concentration (μg·kg−1) | Dried Shrimp | Dried Fish | Dried Mussel | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Recovery (%) | RSDr | RSDR | Recovery (%) | RSDr | RSDR | Recovery (%) | RSDr | RSDR | ||
AFB1 | 1 | 94.31 ± 4.03 | 5.6 | 12.1 | 96.52 ± 2.63 | 5.2 | 15.4 | 91.53 ± 7.59 | 6.9 | 8.9 |
50 | 92.64 ± 3.47 | 5.8 | 7.4 | 89.79 ± 4.60 | 4.7 | 7.8 | 95.04 ± 4.85 | 6.4 | 9.8 | |
100 | 85.73 ± 8.72 | 6.2 | 7.8 | 92.43 ± 7.68 | 8.9 | 8.4 | 83.26 ± 3.27 | 4.8 | 5.7 | |
T-2 | 1 | 78.08 ± 6.15 | 3.8 | 14.5 | 89.32 ± 2.67 | 6.5 | 6.9 | 90.47 ± 7.59 | 5.5 | 9.0 |
100 | 95.16 ± 9.71 | 4.4 | 8.9 | 85.38 ± 4.26 | 5.2 | 12.0 | 95.04 ± 4.85 | 2.8 | 11.9 | |
200 | 98.38 ± 7.72 | 4.0 | 10.3 | 95.84 ± 3.91 | 7.9 | 7.7 | 83.26 ± 3.27 | 3.5 | 15.1 | |
OTA | 1 | 79.90 ± 3.29 | 8.6 | 7.7 | 87.34 ± 2.43 | 8.8 | 10.8 | 82.84 ± 4.52 | 10.6 | 7.4 |
50 | 96.75 ± 5.28 | 5.2 | 8.4 | 94.74 ± 4.92 | 7.1 | 9.7 | 95.40 ± 7.45 | 4.9 | 8.0 | |
100 | 89.37 ± 5.45 | 3.4 | 6.0 | 90.19 ± 6.75 | 5.1 | 5.5 | 97.59 ± 3.64 | 7.7 | 12.7 | |
DON | 2 | 72.24 ± 6.25 | 9.3 | 9.6 | 79.52 ± 6.16 | 4.9 | 7.8 | 74.15 ± 2.71 | 9.9 | 10.5 |
200 | 79.65 ± 8.83 | 7.1 | 8.6 | 82.31 ± 4.68 | 5.4 | 9.0 | 85.34 ± 4.85 | 8.4 | 10.7 | |
400 | 80.57 ± 3.93 | 5.3 | 9.6 | 77.26 ± 5.35 | 3.3 | 11.9 | 83.51 ± 2.39 | 6.5 | 11.6 |
Seafood Type | Sample Number a | Mycotoxin Residues (μg·kg−1) | |||
---|---|---|---|---|---|
AFB1 | T-2 | OTA | DON | ||
Dried shrimp | 1 | - b | - | 0.41 ± 0.02 | - |
2 | 0.58 ± 0.01 | 0.65 ± 0.02 | 0.57 ± 0.03 | - | |
3 | - | 0.87 ± 0.04 | - | ||
7 | - | - | 0.37 ± 0.01 | - | |
Dried mussel | 13 | 0.64 ± 0.06 | 1.34 ± 0.21 | - | |
Dried scallop | 14 | - | 0.88 ± 0.11 | 0.36 ± 0.03 | - |
Dried octopus | 15 | - | 0.55 ± 0.01 | - | |
Dried fish | 16 | 0.58 ± 0.04 | - | - | |
19 | 0.72 ± 0.01 | 1.07 ± 0.16 | - | ||
25 | - | - | 0.89 ± 0.17 | - | |
27 | 0.63 ± 0.03 | - | 0.43 ± 0.04 | - | |
28 | 0.87 ± 0.07 | 0.61 ± 0.07 | 0.62 ± 0.07 | - | |
29 | 0.59 ± 0.02 | - | - | ||
30 | 0.83 ± 0.11 | - | 0.70 ± 0.06 | - | |
32 | 0.62 ± 0.05 | - | 0.51 ± 0.02 | - | |
34 | 0.89 ± 0.13 | - | - | ||
35 | - | - | 0.82 ± 0.15 | - | |
36 | 0.78 ± 0.08 | - | 0.36 ± 0.01 | - | |
37 | 0.74 ± 0.12 | - | - | ||
38 | - | - | 0.73 ± 0.03 | - | |
39 | - | - | 1.51 ± 0.14 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Wang, Y.; Deng, Q.; Sun, L.; Wang, R.; Wang, X.; Liao, J.; Gooneratne, R. Simultaneous Quantification of Aflatoxin B1, T-2 Toxin, Ochratoxin A and Deoxynivalenol in Dried Seafood Products by LC-MS/MS. Toxins 2020, 12, 488. https://doi.org/10.3390/toxins12080488
Deng Y, Wang Y, Deng Q, Sun L, Wang R, Wang X, Liao J, Gooneratne R. Simultaneous Quantification of Aflatoxin B1, T-2 Toxin, Ochratoxin A and Deoxynivalenol in Dried Seafood Products by LC-MS/MS. Toxins. 2020; 12(8):488. https://doi.org/10.3390/toxins12080488
Chicago/Turabian StyleDeng, Yijia, Yaling Wang, Qi Deng, Lijun Sun, Rundong Wang, Xiaobo Wang, Jianmeng Liao, and Ravi Gooneratne. 2020. "Simultaneous Quantification of Aflatoxin B1, T-2 Toxin, Ochratoxin A and Deoxynivalenol in Dried Seafood Products by LC-MS/MS" Toxins 12, no. 8: 488. https://doi.org/10.3390/toxins12080488
APA StyleDeng, Y., Wang, Y., Deng, Q., Sun, L., Wang, R., Wang, X., Liao, J., & Gooneratne, R. (2020). Simultaneous Quantification of Aflatoxin B1, T-2 Toxin, Ochratoxin A and Deoxynivalenol in Dried Seafood Products by LC-MS/MS. Toxins, 12(8), 488. https://doi.org/10.3390/toxins12080488