Two Toxic Lipid Aldehydes, 4-hydroxy-2-hexenal (4-HHE) and 4-hydroxy-2-nonenal (4-HNE), Accumulate in Patients with Chronic Kidney Disease
Abstract
:1. Introduction
2. Results
2.1. Patient Data
2.2. Plasma Concentration of 4-hydroxy-alkenals Increases in Patients with Severe Loss of Kidney Function
2.3. Advanced Lipoperoxidation By-Products
2.4. Correlation Study: Relationships between Plasma 4-hydroxy-alkenal Concentration and Clinical or Biochemical Parameters
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals
5.2. Ethic Statement
5.3. Subjects
5.4. Blood Sampling
5.5. Glomerular Filtration Rate Measurements (mGFR)
5.6. 4-hydroxy-2-alkenals Assay
5.7. Dot Blot: 4-HHE and 4-HNE Protein Adducts
5.8. Other Biochemical Measurements
5.9. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Typical Chromatogram
References
- Levey, A.S.; Beto, J.A.; Coronado, B.E.; Eknoyan, G.; Foley, R.N.; Kasiske, B.L.; Klag, M.J.; Mailloux, L.U.; Manske, C.L.; Meyer, K.B.; et al. Controlling the epidemic of cardiovascular disease in chronic renal disease: What do we know? What do we need to learn? Where do we go from here? National Kidney Foundation Task Force on Cardiovascular Disease. Am. J. Kidney Dis. 1998, 32, 853–906. [Google Scholar] [CrossRef]
- Foley, R.N.; Parfrey, P.S.; Sarnak, M.J. Epidemiology of cardiovascular disease in chronic renal disease. J. Am. Soc. Nephrol. 1998, 9, S16–S23. [Google Scholar] [CrossRef] [PubMed]
- Massy, Z.A.; Stenvinkel, P.; Drueke, T.B. The role of oxidative stress in chronic kidney disease. Semin. Dial. 2009, 22, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Himmelfarb, J.; Hakim, R.M. Oxidative stress in uremia. Curr. Opin. Nephrol. Hypertens. 2003, 12, 593–598. [Google Scholar] [CrossRef]
- Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 2012, 17, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Cachofeiro, V.; Goicochea, M.; de Vinuesa, S.G.; Oubiña, P.; Lahera, V.; Luño, J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. Suppl. 2008, S4–S9. [Google Scholar] [CrossRef] [Green Version]
- Cottone, S.; Lorito, M.C.; Riccobene, R.; Nardi, E.; Mulè, G.; Buscemi, S.; Geraci, C.; Guarneri, M.; Arsena, R.; Cerasola, G. Oxidative stress, inflammation and cardiovascular disease in chronic renal failure. J. Nephrol. 2008, 21, 175–179. [Google Scholar]
- Locatelli, F.; Canaud, B.; Eckardt, K.-U.; Stenvinkel, P.; Wanner, C.; Zoccali, C. Oxidative stress in end-stage renal disease: An emerging threat to patient outcome. Nephrol. Dial. Transplant. 2003, 18, 1272–1280. [Google Scholar] [CrossRef]
- Mircescu, G. Oxidative stress: An accomplice to uremic toxicity? J. Ren. Nutr. 2006, 16, 194–198. [Google Scholar] [CrossRef]
- Requena, J.R.; Fu, M.X.; Ahmed, M.U.; Jenkins, A.J.; Lyons, T.J.; Thorpe, S.R. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol. Dial. Transplant. 1996, 11 (Suppl. S5), 48–53. [Google Scholar] [CrossRef]
- Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991, 11, 81–128. [Google Scholar] [CrossRef]
- Van Kuijk, F.J.; Holte, L.L.; Dratz, E.A. 4-Hydroxyhexenal: A lipid peroxidation product derived from oxidized docosahexaenoic acid. Biochim. Biophys. Acta 1990, 1043, 116–118. [Google Scholar] [CrossRef]
- Negre-Salvayre, A.; Coatrieux, C.; Ingueneau, C.; Salvayre, R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br. J. Pharmacol. 2008, 153, 6–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacot, S.; Bernoud-Hubac, N.; Chantegrel, B.; Deshayes, C.; Doutheau, A.; Ponsin, G.; Lagarde, M.; Guichardant, M. Evidence for in situ ethanolamine phospholipid adducts with hydroxy-alkenals. J. Lipid Res. 2007, 48, 816–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Feng, Z.; Eveleigh, J.; Iyer, G.; Pan, J.; Amin, S.; Chung, F.-L.; Tang, M.-S. The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis 2002, 23, 1781–1789. [Google Scholar] [CrossRef]
- Uchida, K.; Stadtman, E.R. Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc. Natl. Acad. Sci. USA 1992, 89, 4544–4548. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Tang, X.; Anderson, V.E.; Sayre, L.M. Mass spectrometric characterization of protein modification by the products of nonenzymatic oxidation of linoleic acid. Chem. Res. Toxicol. 2009, 22, 1386–1397. [Google Scholar] [CrossRef] [Green Version]
- Szapacs, M.E.; Riggins, J.N.; Zimmerman, L.J.; Liebler, D.C. Covalent adduction of human serum albumin by 4-hydroxy-2-nonenal: Kinetic analysis of competing alkylation reactions. Biochemistry 2006, 45, 10521–10528. [Google Scholar] [CrossRef]
- Annangudi, S.P.; Deng, Y.; Gu, X.; Zhang, W.; Crabb, J.W.; Salomon, R.G. Low-density lipoprotein has an enormous capacity to bind (E)-4-hydroxynon-2-enal (HNE): Detection and characterization of lysyl and histidyl adducts containing multiple molecules of HNE. Chem. Res. Toxicol. 2008, 21, 1384–1395. [Google Scholar] [CrossRef] [Green Version]
- Florens, N.; Calzada, C.; Lemoine, S.; Boulet, M.M.; Guillot, N.; Barba, C.; Roux, J.; Delolme, F.; Page, A.; Poux, J.M.; et al. CKD Increases Carbonylation of HDL and Is Associated with impaired antiaggregant properties. J. Am. Soc. Nephrol. 2020, 31, 1462–1477. [Google Scholar] [CrossRef]
- Long, E.K.; Picklo, M.J. Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: Make some room HNE. Free Radic. Biol. Med. 2010, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pillon, N.J.; Soulère, L.; Vella, R.E.; Croze, M.; Caré, B.R.; Soula, H.A.; Doutheau, A.; Lagarde, M.; Soulage, C.O. Quantitative structure-activity relationship for 4-hydroxy-2-alkenal induced cytotoxicity in L6 muscle cells. Chem. Biol. Interact. 2010, 188, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Tatsuda, E.; Kumazawa, S.; Nakayama, T.; Uchida, K. Molecular basis of enzyme inactivation by an endogenous electrophile 4-hydroxy-2-nonenal: Identification of modification sites in glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 2003, 42, 3474–3480. [Google Scholar] [CrossRef] [PubMed]
- Szweda, L.I.; Uchida, K.; Tsai, L.; Stadtman, E.R. Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J. Biol. Chem. 1993, 268, 3342–3347. [Google Scholar]
- Crabb, J.W.; O’Neil, J.; Miyagi, M.; West, K.; Hoff, H.F. Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues. Protein Sci. 2002, 11, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Pillon, N.J.; Vella, R.E.; Souleere, L.; Becchi, M.; Lagarde, M.; Soulage, C.O. Structural and functional changes in human insulin induced by the lipid peroxidation byproducts 4-hydroxy-2-nonenal and 4-hydroxy-2-hexenal. Chem. Res. Toxicol. 2011, 24, 752–762. [Google Scholar] [CrossRef]
- Miyata, T.; Wada, Y.; Cai, Z.; Iida, Y.; Horie, K.; Yasuda, Y.; Maeda, K.; Kurokawa, K.; van Ypersele de Strihou, C. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int. 1997, 51, 1170–1181. [Google Scholar] [CrossRef] [Green Version]
- Zoccali, C.; Mallamaci, F.; Tripepi, G. AGEs and carbonyl stress: Potential pathogenetic factors of long-term uraemic complications. Nephrol. Dial. Transplant. 2000, 15 (Suppl. 2), 7–11. [Google Scholar] [CrossRef]
- Alhamdani, M.-S.S.; Al-Kassir, A.-H.A.M.; Jaleel, N.A.; Hmood, A.M.; Ali, H.M. Elevated levels of alkanals, alkenals and 4-HO-alkenals in plasma of hemodialysis patients. Am. J. Nephrol. 2006, 26, 299–303. [Google Scholar] [CrossRef]
- Duranton, F.; Cohen, G.; De Smet, R.; Rodriguez, M.; Jankowski, J.; Vanholder, R.; Argiles, A. European uremic toxin work group normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 2012, 23, 1258–1270. [Google Scholar] [CrossRef] [Green Version]
- Himmelfarb, J. Oxidative stress in hemodialysis. Contrib. Nephrol. 2008, 161, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Michalski, M.-C.; Calzada, C.; Makino, A.; Michaud, S.; Guichardant, M. Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk—A preliminary study. Mol. Nutr. Food Res. 2008, 52, 1478–1485. [Google Scholar] [CrossRef] [PubMed]
- Soulage, C.O.; Sardón Puig, L.; Soulère, L.; Zarrouki, B.; Guichardant, M.; Lagarde, M.; Pillon, N.J. Skeletal muscle insulin resistance is induced by 4-hydroxy-2-hexenal, a by-product of n-3 fatty acid peroxidation. Diabetologia 2018, 61, 688–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stępniewska, J.; Gołembiewska, E.; Dołęgowska, B.; Domański, M.; Ciechanowski, K. Oxidative stress and antioxidative enzyme activities in chronic kidney disease and different types of renal replacement therapy. Curr. Protein Pept. Sci. 2015, 16, 243–248. [Google Scholar] [CrossRef]
- Rutkowski, P.; Malgorzewicz, S.; Slominska, E.; Renke, M.; Lysiak-Szydlowska, W.; Swierczynski, J.; Rutkowski, B. Interrelationship between uremic toxicity and oxidative stress. J. Ren. Nutr. 2006, 16, 190–193. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Watanabe, H.; Otagiri, M.; Maruyama, T. New insight into the redox properties of uremic solute indoxyl sulfate as a pro- and anti-oxidant. Ther. Apher. Dial. 2011, 15, 129–131. [Google Scholar] [CrossRef]
- Watanabe, H.; Miyamoto, Y.; Otagiri, M.; Maruyama, T. Update on the pharmacokinetics and redox properties of protein-bound uremic toxins. J. Pharm. Sci. 2011, 100, 3682–3695. [Google Scholar] [CrossRef]
- Watanabe, H.; Miyamoto, Y.; Honda, D.; Tanaka, H.; Wu, Q.; Endo, M.; Noguchi, T.; Kadowaki, D.; Ishima, Y.; Kotani, S.; et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013, 83, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Miyamoto, Y.; Enoki, Y.; Ishima, Y.; Kadowaki, D.; Kotani, S.; Nakajima, M.; Tanaka, M.; Matsushita, K.; Mori, Y.; et al. p-Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress. Pharmacol. Res. Perspect. 2015, 3, e00092. [Google Scholar] [CrossRef]
- Praschberger, M.; Hermann, M.; Wanner, J.; Jirovetz, L.; Exner, M.; Kapiotis, S.; Gmeiner, B.M.K.; Laggner, H. The uremic toxin indoxyl sulfate acts as a pro- or antioxidant on LDL oxidation. Free Radic. Biol. Med. 2014, 75 (Suppl. S1), S36. [Google Scholar] [CrossRef]
- Yang, K.; Xu, X.; Nie, L.; Xiao, T.; Guan, X.; He, T.; Yu, Y.; Liu, L.; Huang, Y.; Zhang, J.; et al. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway. Toxicol. Lett. 2015, 234, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Stockler-Pinto, M.B.; Saldanha, J.F.; Yi, D.; Mafra, D.; Fouque, D.; Soulage, C.O. The uremic toxin indoxyl sulfate exacerbates reactive oxygen species production and inflammation in 3T3-L1 adipose cells. Free Radic. Res. 2016, 50, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mika, A.; Sikorska-Wiśniewska, M.; Małgorzewicz, S.; Stepnowski, P.; Dębska-Ślizień, A.; Śledziński, T.; Chmielewski, M. Potential contribution of monounsaturated fatty acids to cardiovascular risk in chronic kidney disease. Pol. Arch. Intern. Med. 2018, 128, 755–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubatsch, I.; Ridderström, M.; Mannervik, B. Human glutathione transferase A4-4: An alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem. J. 1998, 330 Pt 1, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Long, E.K.; Murphy, T.C.; Leiphon, L.J.; Watt, J.; Morrow, J.D.; Milne, G.L.; Howard, J.R.H.; Picklo, M.J. Trans-4-hydroxy-2-hexenal is a neurotoxic product of docosahexaenoic (22:6; n-3) acid oxidation. J. Neurochem. 2008, 105, 714–724. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Khanna, P.; Srivastava, S.; van Kuijk, F.J.; Ansari, N.H. Reduction of 4-hydroxynonenal and 4-hydroxyhexenal by retinal aldose reductase. Biochem. Biophys. Res. Commun. 1998, 247, 719–722. [Google Scholar] [CrossRef]
- Galli, F.; Rovidati, S.; Benedetti, S.; Buoncristiani, U.; Covarelli, C.; Floridi, A.; Canestrari, F. Overexpression of erythrocyte glutathione S-transferase in uremia and dialysis. Clin. Chem. 1999, 45, 1781–1788. [Google Scholar] [CrossRef] [Green Version]
- Diamond, J.R. The role of reactive oxygen species in animal models of glomerular disease. Am. J. Kidney Dis. 1992, 19, 292–300. [Google Scholar] [CrossRef]
- Vlassara, H.; Torreggiani, M.; Post, J.B.; Zheng, F.; Uribarri, J.; Striker, G.E. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging. Kidney Int. Suppl. 2009, S3–S11. [Google Scholar] [CrossRef] [Green Version]
- Bae, E.H.; Cho, S.; Joo, S.Y.; Ma, S.K.; Kim, S.H.; Lee, J.; Kim, S.W. 4-Hydroxy-2-hexenal-induced apoptosis in human renal proximal tubular epithelial cells. Nephrol. Dial. Transplant. 2011, 26, 3866–3873. [Google Scholar] [CrossRef] [Green Version]
- Curzio, M.; Torrielli, M.V.; Giroud, J.P.; Esterbauer, H.; Dianzani, M.U. Neutrophil chemotactic responses to aldehydes. Res. Commun. Chem. Pathol. Pharmacol. 1982, 36, 463–476. [Google Scholar] [PubMed]
- Schaur, R.J.; Dussing, G.; Kink, E.; Schauenstein, E.; Posch, W.; Kukovetz, E.; Egger, G. The lipid peroxidation product 4-hydroxynonenal is formed by--and is able to attract--rat neutrophils in vivo. Free Radic. Res. 1994, 20, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Schaur, R.J. Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol. Aspects Med. 2003, 24, 149–159. [Google Scholar] [CrossRef]
- Zhou, Q.G.; Peng, X.; Hu, L.L.; Xie, D.; Zhou, M.; Hou, F.F. Advanced oxidation protein products inhibit differentiation and activate inflammation in 3T3-L1 preadipocytes. J. Cell. Physiol. 2010, 225, 42–51. [Google Scholar] [CrossRef]
- Siems, W.; Grune, T. Intracellular metabolism of 4-hydroxynonenal. Mol. Aspects Med. 2003, 24, 167–175. [Google Scholar] [CrossRef]
- Alary, J.; Guéraud, F.; Cravedi, J.-P. Fate of 4-hydroxynonenal in vivo: Disposition and metabolic pathways. Mol. Aspects Med. 2003, 24, 177–187. [Google Scholar] [CrossRef]
- Pillon, N.J.; Croze, M.L.; Vella, R.E.; Soulère, L.; Lagarde, M.; Soulage, C.O. The lipid peroxidation by-product 4-hydroxy-2-nonenal (4-HNE) induces insulin resistance in skeletal muscle through both carbonyl and oxidative stress. Endocrinology 2012, 153, 2099–2111. [Google Scholar] [CrossRef]
Non CKD | Stage 1–2 | Stage 3a–3b | Stage 4–5 | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gender, M/F | 9/4 | 8/11 | 4/6 | 9/2 | 0.092 | ||||||||
Age, y | 43.9 | ± | 13.0 | 44.8 | ± | 13.5 | 52.8 | ± | 14.3 | 45.9 | ± | 14.9 | 0.424 |
Body weight, kg | 73.9 | ± | 11.4 | 65.3 | ± | 16.0 | 67.7 | ± | 17.9 | 77.5 | ± | 12.5 | 0.129 |
Height, m | 1.72 | ± | 0.10 | 1.72 | ± | 0.12 | 1.67 | ± | 0.10 | 1.75 | ± | 0.12 | 0.285 |
BMI, kg/m2 | 24.9 | ± | 2.1 | 23.0 | ± | 2.7 | 23.9 | ± | 4.0 | 25.2 | ± | 3.0 | 0.158 |
Systolic BP, mmHg | 130 | ± | 14 | 127 | ± | 20 | 135 | ± | 18 | 136 | ± | 18 | 0.487 |
Diastolic BP, mmHg | 82 | ± | 14 | 81 | ± | 14 | 87 | ± | 13 | 90 | ± | 11 | 0.334 |
mGFR, mL/min/1.73m2 | 102 | ± | 9 | 75 | ± | 11 | 46 | ± | 8 | 20 | ± | 6 | <0.001 |
Creatinine, µmol/L | 66 | ± | 17 | 82 | ± | 17 | 127 | ± | 41 | 393 | ± | 149 | <0.001 |
Urea, mmol/L | 5.3 | ± | 1.6 | 6.4 | ± | 2.4 | 9.0 | ± | 2.4 | 14.7 | ± | 6.6 | <0.001 |
Bicarbonate, mmol/L | 26.3 | ± | 2.0 | 25.2 | ± | 2.9 | 24.6 | ± | 2.7 | 22.6 | ± | 2.9 | 0.143 |
Proteins, g/L | 76.7 | ± | 5.0 | 72.5 | ± | 15.0 | 75.6 | ± | 2.3 | 72.3 | ± | 4.9 | 0.808 |
Hypertension, % | 30.0 | 36.8 | 40.0 | 54.5 | 0.468 | ||||||||
Lipid-lowering therapy, % | 0 | 0 | 20 | 54.5 | 0.006 | ||||||||
RAAS inhibitors, % | 0 | 21.1 | 40 | 54.5 | 0.038 |
4-HNE | 4-HHE | |||
---|---|---|---|---|
rs | p-Value | rs | p-Value | |
Age, y | 0.326 | 0.022 | 0.430 | 0.004 |
BMI, kg/m2 | 0.068 | 0.640 | 0.253 | 0.098 |
MAP, mm Hg | 0.161 | 0.269 | 0.223 | 0.145 |
Proteins, g.L−1 | 0.011 | 0.953 | −0.201 | 0.305 |
4-HHE, ng/mL | 0.146 | 0.318 | - | - |
Bicarbonate, mmol/L | −0.075 | 0.688 | 0.070 | 0.729 |
mGFR, mL/min/1.73m2 | −0.444 | 0.002 | −0.377 | 0.012 |
Urea, mmol/L | 0.146 | 0.337 | 0.164 | 0.312 |
Creatinine, µmol/L | 0.628 | <0.001 | 0.152 | 0.326 |
Urine albumin/Creatinine ratio | 0.307 | 0.042 | −0.067 | 0.685 |
4-HNE protein adducts, AU | 0.163 | 0.457 | 0.408 | 0.083 |
4-HHE protein adducts, AU | −0.043 | 0.858 | 0.661 | 0.003 |
β-Coefficient | 95% CI | p-Value | |
---|---|---|---|
Outcome Variable: 4-HHE Plasma Concentration | |||
Predictor variables: | |||
Age, y | 3.455 | [0.825, 6.085] | 0.012 |
Gender | 11.66 | [−57.73, 81.04] | 0.735 |
mGFR, mL/min/1.73m2 | −1.245 | [−2.484, −0.006] | 0.049 |
Intercept | 44.8 | [−115.8, 205.3] | 0.575 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soulage, C.O.; Pelletier, C.C.; Florens, N.; Lemoine, S.; Dubourg, L.; Juillard, L.; Guebre-Egziabher, F. Two Toxic Lipid Aldehydes, 4-hydroxy-2-hexenal (4-HHE) and 4-hydroxy-2-nonenal (4-HNE), Accumulate in Patients with Chronic Kidney Disease. Toxins 2020, 12, 567. https://doi.org/10.3390/toxins12090567
Soulage CO, Pelletier CC, Florens N, Lemoine S, Dubourg L, Juillard L, Guebre-Egziabher F. Two Toxic Lipid Aldehydes, 4-hydroxy-2-hexenal (4-HHE) and 4-hydroxy-2-nonenal (4-HNE), Accumulate in Patients with Chronic Kidney Disease. Toxins. 2020; 12(9):567. https://doi.org/10.3390/toxins12090567
Chicago/Turabian StyleSoulage, Christophe O., Caroline C. Pelletier, Nans Florens, Sandrine Lemoine, Laurence Dubourg, Laurent Juillard, and Fitsum Guebre-Egziabher. 2020. "Two Toxic Lipid Aldehydes, 4-hydroxy-2-hexenal (4-HHE) and 4-hydroxy-2-nonenal (4-HNE), Accumulate in Patients with Chronic Kidney Disease" Toxins 12, no. 9: 567. https://doi.org/10.3390/toxins12090567
APA StyleSoulage, C. O., Pelletier, C. C., Florens, N., Lemoine, S., Dubourg, L., Juillard, L., & Guebre-Egziabher, F. (2020). Two Toxic Lipid Aldehydes, 4-hydroxy-2-hexenal (4-HHE) and 4-hydroxy-2-nonenal (4-HNE), Accumulate in Patients with Chronic Kidney Disease. Toxins, 12(9), 567. https://doi.org/10.3390/toxins12090567