The Effect of Using New Synbiotics on the Turkey Performance, the Intestinal Microbiota and the Fecal Enzymes Activity in Turkeys Fed Ochratoxin A Contaminated Feed
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of Tested Formulas on Turkey Performance
2.2. The Effects of Synbiotics on the Ochratoxin A Content in Tissues and Intestinal Contents of Turkeys
2.3. The Effect of Synbiotics on the Dominant Intestinal Microbiota of Turkeys
2.4. The Effect of Synbiotics on the Activity of Fecal Enzymes in the Excreta of Turkeys
3. Conclusions
4. Materials and Methods
4.1. Probiotic and Synbiotic Preparations
4.2. Animal Treatment
4.3. Determination of the Turkey Performance
4.4. Determination of the Ochratoxin A Content in Feed, Tissues and the Intestinal Content
4.5. Determination of Intestinal Microbiota of Turkeys
4.6. Determination of the Activity of Fecal Enzymes in the Excreta of Turkeys
5. Statistical Analysis
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yiannikouris, A.; Jouany, J.P. Mycotoxins in feeds and their fate in animals: A review. Anim. Res. 2002, 51, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Patil, R.D.; Sharma, R.; Asrani, R.K. Mycotoxicosis and its control in poultry: A review. J. Poult. Sci. Technol. 2014, 2, 1–10. [Google Scholar]
- Santos Pereira, C.; C Cunha, S.; Fernandes, J.O. Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef] [Green Version]
- Hassen, W.; Ayed-Boussema, I.; Bouslimi, A.; Bacha, H. Heat shock proteins (Hsp 70) response is not systematic to cell stress: Case of the mycotoxin ochratoxin A. Toxicology 2007, 242, 63–70. [Google Scholar] [CrossRef]
- Mishra, S.; Dwivedi, P.D.; Pandey, H.P.; Das, M. Role of oxidative stress in Deoxynivalenol induced toxicity. Food Chem. Toxicol. 2014, 72, 20–29. [Google Scholar] [CrossRef]
- Akande, K.E.; Abubakar, M.M.; Adegbola, T.A.; Bogoro, S.E. Nutritional and health implications of mycotoxins in animal feeds: A review. Pak. J. Nutr. 2006, 5, 398–403. [Google Scholar]
- Official Journal of the European Union 2006/576/EU. Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Comm. 2006, 229, 7–9. [Google Scholar]
- Maresca, M.; Mahfoud, R.; Pfohl-Leszkowicz, A.; Fantini, J. The mycotoxin ochratoxin A alters intestinal barrier and absorption functions but has no effect on chloride secretion. Toxicol. Appl. Pharmacol. 2001, 176, 54–63. [Google Scholar] [CrossRef]
- Hamilton, P.B.; Huff, W.E.; Harris, J.R.; Wyatt, R.D. Natural occurrences of ochratoxicosis in poultry. Poult. Sci. 1982, 51, 1832–1841. [Google Scholar] [CrossRef]
- Raju, M.V.L.N.; Devegowda, G. Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). Br. Poult. Sci. 2000, 41, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Johri, T.S.; Swain, B.K.; Ameena, S. Effect of graded levels of aflatoxin, ochratoxin and their combinations on the performance and immune response of broilers. Br. Poult. Sci. 2004, 45, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Elaroussi, M.A.; Mohamed, F.R.; El Barkouky, E.M.; Atta, A.M.; Abdou, A.M.; Hatab, M.H. Experimental ochratoxicosis in broiler chickens. Avian Pathol. 2006, 35, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Abidin, Z.; Khan, M.Z.; Khatoon, A.; Saleemi, M.K.; Khan, A. Protective effects of lcarnitine upon toxicopathological alterations induced by ochratoxin A in white Leghorn cockerels. Toxin Rev. 2016, 35, 157–164. [Google Scholar] [CrossRef]
- Grajewski, J. Mikotoksyny I Mikotoksykozy Zagrożeniem dla Człowieka i Zwierząt. In Mikotoksyny I Grzyby Pleśniowe—Zagrożenia dla Człowieka I Zwierząt; Grajewski, J., Ed.; Wydawnictwo UKW: Bydgoszcz, Poland, 2006; pp. 57–58. (In Polish) [Google Scholar]
- Markowiak, P.; Śliżewska, K.; Nowak, A.; Chlebicz, A.; Żbikowski, A.; Pawłowski, K.; Szeleszczuk, P. Probiotic microorganisms detoxify ochratoxin A in both a chicken liver cell line and chickens. J. Sci. Food Agric. 2019, 99, 4309–4318. [Google Scholar] [CrossRef] [PubMed]
- Schatzmayr, G.; Zehner, F.; Täubel, M.; Schatzmayr, D.; Klimitsch, A.; Loibner, A.P.; Binder, E.M. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res. 2006, 50, 543–551. [Google Scholar] [CrossRef]
- McCormick, S.P. Microbial detoxification of mycotoxins. J. Chem. Ecol. 2013, 39, 907–918. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Guidelines for the Evaluation of Probiotics in Food; Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; FAO: London, UK; Quebec City, ON, Canada, 2002. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization (FAO). Technical Meeting on Prebiotics: Food Quality and Standards Service (AGNS); FAO Technical Meeting Report; FAO: Rome, Italy, 2007. [Google Scholar]
- Topcu, A.; Bulat, T.; Wishah, R.; Boyaci, I.H. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int. J. Food Microbiol. 2010, 139, 202–205. [Google Scholar] [CrossRef]
- Vinderola, G.; Ritieni, A. Role of probiotics against mycotoxins and their deleterious effects. J. Food Res. 2015, 4, 10–21. [Google Scholar] [CrossRef]
- Armando, M.R.; Pizzolitto, R.P.; Dogi, C.A.; Cristofolini, A.; Merkis, C.; Poloni, V.; Dalcero, A.M.; Cavaglieri, L.R. Adsorption of ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness. J. Appl. Microbiol. 2012, 113, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Śliżewska, K.; Markowiak, P.; Żbikowski, A.; Szeleszczuk, P. Effects of synbiotics on the gut microbiota, blood and rearing parameters of chickens. FEMS Microbiol. Lett. 2019, 366, fnz116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Śliżewska, K.; Markowiak-Kopeć, P.; Żbikowski, A.; Szeleszczuk, P. The effect of synbiotic preparations on the intestinal microbiota and her metabolism in broiler chickens. Sci. Rep. 2020, 10, 4281. [Google Scholar] [CrossRef] [Green Version]
- Biernasiak, J.; Piotrowska, M.; Libudzisz, Z. Detoxification of mycotoxins by probiotic preparation for broiler chickens. Mycotoxin Res. 2006, 22, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Kabak, B.; Brandon, E.F.; Var, I.; Blokland, M.; Sips, A.J. Effects of probiotic bacteria on the bioaccessibility of aflatoxin B1 and ochratoxin A using an in vitro digestion model under fed conditions. J. Environ. Sci. Health 2009, 44, 472–480. [Google Scholar] [CrossRef]
- Ślizewska, K.; Piotrowska, M. Reduction of ochratoxin A in chicken feed using probiotic. Ann. Agric. Environ. Med. 2014, 21, 676–680. [Google Scholar] [CrossRef]
- Mazur-Kuśnirek, M.; Antoszkiewicz, Z.; Lipiński, K.; Fijałkowska, M.; Purwin, C.; Kotlarczyk, S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed diets naturally contaminated with ochratoxin A. Arch. Anim. Nutr. 2019, 73, 431–444. [Google Scholar] [CrossRef]
- Santin, E.; Paulillo, A.C.; Nakagui, L.S.O.; Alessi, A.C.; Polveiro, W.J.C.; Maiorka, A. Evaluation of cell wall yeast as adsorbent of ochratoxin in broiler diets. Int. J. Poult. Sci. 2003, 2, 465–468. [Google Scholar]
- Duarte, S.C.; Lino, C.M.; Pena, A. Ochratoxin A in feed of food-producing animals: An undesirable mycotixn with health and performance effects. Vet. Microbiol. 2011, 154, 1–13. [Google Scholar] [CrossRef]
- Pozzo, L.; Cavallarin, L.; Antoniazzi, S.; Guerre, P.; Biasibetti, E.; Capucchio, M.T.; Schiavone, A. Feeding a diet contaminated with ochratoxin A for broiler chickens at the maximum level recommended by the EU for poultry feeds (0.1 mg/kg). 2. Effects on meat quality, oxidative stress, residues and histological traits. Anim. Physiol. Anim. Nutr. 2013, 97, 23–31. [Google Scholar] [CrossRef]
- Bozzo, G.; Ceci, E.; Bonerba, E.; Desantis, S.; Tantillo, G. Ochratoxin A in laying hens: High-performance liquid chromatography detection and cytological and histological analysis of target tissues. J. Appl. Poult. Res. 2008, 17, 151–156. [Google Scholar] [CrossRef]
- Denli, M.; Blandon, J.C.; Guynot, M.E.; Salado, S.; Perez, J.F. Efficacy of a new ochratoxin-binding agent (OcraTox) to counteract the deleterious effects of ochratoxin A in laying hens. Poult. Sci. 2008, 87, 2266–2272. [Google Scholar] [CrossRef] [PubMed]
- Zaghini, A.; Simioli, M.; Roncada, P.; Rizzi, L. Effect of Saccharomyces cerevisiae and esterified glucomannan on residues of Ochratoxin A in kidney, muscle and blood of laying hens. Ital. J. Anim. Sci. 2007, 6 (Suppl. S1), 737–739. [Google Scholar] [CrossRef]
- Kozaczynski, W. Experimental ochratoxicosis A in chickens. Histopathological and histochemical study. Arch. Vet. Pol. 1994, 34, 205–219. [Google Scholar]
- Khatoon, A.; Abidin, Z. An extensive review of experimental ochratoxicosis in poultry: I. Growth and production parameters along with histopathological alterations. World Poult. Sci. J. 2018, 74, 627–646. [Google Scholar] [CrossRef]
- Petzinger, E.; Ziegler, K. Ochratoxin A from a toxicological perspective. J. Vet. Pharmacol. Ther. 2000, 23, 91–98. [Google Scholar] [CrossRef]
- Ringot, D.; Chango, A.; Schneider, Y.J.; Larondelle, Y. Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem. Biol. Interact. 2006, 159, 18–46. [Google Scholar] [CrossRef]
- Huwig, A.; Freimund, S.; Ka¨ppeli, O.; Dutler, H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001, 122, 179–188. [Google Scholar] [CrossRef]
- Dibaji, S.M.; Seidavi, A.; Asadpour, L.; da Silva, F.M. Effect of a synbiotic on the intestinal microflora of chickens. J. Appl. Poult. Res. 2014, 23, 1–6. [Google Scholar] [CrossRef]
- Biernasiak, J.; Śliżewska, K.; Libudzisz, Z.; Smulikowska, S. Effects of dietary probiotic containing Lactobacillus bacteria, yeasts and yucca extract on the performance and faecal microflora of broiler chickens. Pol. J. Food. Nutr. Sci. 2007, 57, 19–25. [Google Scholar]
- Lan, P.T.N.; Binh, L.T.; Banno, Y. Impact of two probiotic Lactobacillus strains feeding on fecal lactobacilli and weigth gains in chickens. J. Gen. Appl. Microbiol. 2003, 49, 29–36. [Google Scholar] [PubMed] [Green Version]
- Uccello, M.; Malaguarnera, G.; Basile, F.; D’agata, V.; Malaguarnera, M.; Bertino, G.; Vacante, M.; Drago, F.; Biondi, A. Potential role of probiotics on colorectal cancer prevention. BMC Surg. 2012, 12, S35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.Z.; Ho, Y.W.; Abdullah, N.; Jalaludin, S. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult. Sci. 2000, 79, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Shokryazdan, P.; Jahromi, M.F.; Liang, J.B.; Ramasamy, K.; Sieo, C.C.; Ho, Y.W. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens (online). PLoS ONE 2017, 12, e0175959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boostani, A.; Mahmoodian Fard, H.R.; Ashayerizadeh, A.; Aminafshar, M. Growth performance, carcass yield and intestinal microflora populations of broilers fed diets containing Thepax and yogurt. Braz. J. Poult. Sci. 2013, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Juśkiewicz, J.; Jankowski, J.; Zduńczyk, Z.; Mikulski, D. Performance and gastrointestinal tract metabolism of turkeys fed diets with different contents of fructooligosaccharides. Poult. Sci. 2006, 85, 886–891. [Google Scholar] [CrossRef]
- Čokášová, D.; Bomba, A.; Strojný, L.; Pramuková, B.; Szabadosová, V.; Salaj, R.; Žofčáková, J.; Brandeburová, A.; Supuková, A.; Šoltésová, A.; et al. The effect of new probiotic strain Lactobacillus plantarum on counts of coliforms, lactobacilli and bacterial enzyme activities in rats exposed to N,N-dimethylhydrazine (chemical carcinogen). Acta Vet. Brno 2012, 81, 189–194. [Google Scholar] [CrossRef]
- Śliżewska, K.; Nowak, A.; Piotrowska, M.; Żakowska, Z.; Gajęcka, M.; Zielonka, Ł.; Gajęcki, M. Cecal enzyme activity in gilts following experimentally induced Fusarium mycotoxicosis. Pol. J. Vet. Sci. 2015, 18, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Śliżewska, K.; Chlebicz-Wójcik, A. The In Vitro Analysis of Prebiotics to Be Used as a Component of a Synbiotic Preparation. Nutrients 2020, 12, 1272. [Google Scholar] [CrossRef]
- Śliżewska, K.; Chlebicz-Wójcik, A.; Nowak, A. Probiotic Properties of New Lactobacillus Strains Intended to Be Used as Feed Additives for Monogastric Animals. Probiotics Antimicrob. Prot. 2020, 1–17. [Google Scholar] [CrossRef]
- Chlebicz, A.; Śliżewska, K. In Vitro Detoxification of Aflatoxin B1, Deoxynivalenol, Fumonisins, T-2 Toxin and Zearalenone by Probiotic Bacteria from Genus Lactobacillus and Saccharomyces cerevisiae Yeast. Probiotics Antimicrob. Proteins 2020, 12, 289–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PN-EN 16007-2012-U. Animal Feed—Determination of Ochratoxin A in Animal Feed by Immunoaffinity Column Clean-Up and High-Performance Liquid Chromatography with Fluorescence Detection; PKN: Warszawa, Poland, 2012. [Google Scholar]
- Śliżewska, K.; Chlebicz, A. Lactic Bacterial Strain of Lactobacillus pentosus. U.S. Patent 422589, Patent Description no. PL 233 261, 21 August 2017. [Google Scholar]
- Śliżewska, K.; Chlebicz, A. Lactic Bacterial Strain of Lactobacillus reuteri. U.S. Patent 422593, Patent Description no. PL 233 263, 21 August 2017. [Google Scholar]
- Śliżewska, K.; Chlebicz, A. Lactic Bacterial Strain of Lactobacillus rhamnosus. U.S. Patent 422602, Patent Description no. PL 233 582, 21 August 2017. [Google Scholar]
- Śliżewska, K.; Chlebicz, A. Strain of Yeast Saccharomyces cerevisiae. U.S. Patent 422709, Patent Description no. PL 233 581, 31 August 2017. [Google Scholar]
- Śliżewska, K.; Chlebicz, A. Lactic Bacterial Strain of Lactobacillus paracasei. U.S. Patent 422603, Patent Description no. PL 233 262, 21 August 2017. [Google Scholar]
- Śliżewska, K.; Motyl, I.; Libudzisz, Z.; Otlewska, A.; Burchardt, H.; Klecha, J.; Henzler, J. Lactobacillus plantarum Lactic Bacteria Strain. U.S. Patent 401554, Patent Description no. PL 221 959 B1, 12 November 2012. [Google Scholar]
The Age of Birds (Weeks) | Feed Additives | The Body Weight (Mean ± SD) (kg) | Daily Cumulative Mortality Rate (%) | FCR | EPEF |
---|---|---|---|---|---|
6 | Control | 1.85 ± 0.07 | 0.83 | 1.76 b | 248.18 a |
OTA | 1.65 ± 0.17 | 0.24 | 2.31 a | 169.66 b | |
Synbiotic A + OTA | 1.78 ± 0.15 | 0.24 | 2.23 a | 189.60 ab | |
Synbiotic B + OTA | 1.67 ± 0.14 | 0.24 | 2.34 a | 169.52 b | |
Synbiotic C + OTA | 1.78 ± 0.15 | 0.36 | 2.32 a | 182.02 ab | |
BioPlus 2B + OTA | 1.64 ± 0.19 | 0.24 | 2.36 a | 165.06 b | |
Cylactin + OTA | 1.65 ± 0.16 | 0.36 | 2.37 a | 165.17 b | |
15 | Control | 9.67 ± 0.13 a | 0.83 | 2.32 | 393.65 a |
OTA | 7.60 ± 0,40 b | 0.48 | 2.79 | 257.27 b | |
Synbiotic A + OTA | 7.80 ± 0.47 b | 0.24 | 2.71 | 273.46 b | |
Synbiotic B + OTA | 7.63 ± 0.48 b | 0.24 | 2.80 | 258.91 b | |
Synbiotic C + OTA | 7.72 ± 0.67 b | 0.36 | 2.80 | 261.65 b | |
BioPlus 2B + OTA | 7.63 ± 0.51 b | 0.24 | 2.79 | 258.91 b | |
Cylactin + OTA | 7.79 ± 0.52 b | 0.36 | 2.80 | 264.97 b |
The Age of Birds (weeks) | Feed Additives | The Content of OTA (Mean ± SD) (µg/kg) | |||
---|---|---|---|---|---|
The Liver | The Kidneys | The Jejunum | The Caecum | ||
6 | Control | 0.00 ± 0.00 | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d |
OTA | 4.51 ± 1.55 | 5.78 ± 0.61 a | 151.82 ± 46.88 a | 100.36 ± 4.85 a | |
Synbiotic A + OTA | 3.40 ± 0.27 | 2.93 ± 0.52 c | 57.04 ± 18.87 c | 78.79 ± 7.49 b | |
Synbiotic B + OTA | 2.46 ± 0.61 | 3.62 ± 0.56 bc | 105.97 ± 18.31 b | 46.87 ± 1.73 c | |
Synbiotic C + OTA | 2.95 ± 0.36 | 3.66 ± 1.50 bc | 106.83 ± 15.22 b | 111.82 ± 11.11 a | |
BioPlus 2B + OTA | 3.60 ± 0.96 | 4.46 ± 1.02 ab | 102.81 ± 16.83 b | 53.73 ± 1.84 c | |
Cylactin + OTA | 3.52 ± 0.41 | 3.67 ± 1.11 bc | 126.07 ± 29.28 ab | 106.43 ± 7.65 a | |
15 | Control | 0.00 ± 0.00 c | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 0.00 ± 0.00 c |
OTA | 3.80 ± 0.68 a | 4.54 ± 0.74 a | 177.62 ± 33.04 a | 73.34 ± 50.21 a | |
Synbiotic A + OTA | 2.16 ± 0.24 b | 3.17 ± 0.73 a | 97.40 ± 33.36 bc | 34.63 ± 7.37 bc | |
Synbiotic B + OTA | 2.14 ± 0.28 b | 3.23 ± 1.24 a | 96.21 ± 43.98 c | 54.93 ± 2.16 ab | |
Synbiotic C + OTA | 2.74 ± 0.42 b | 3.52 ± 0.54 a | 147.26 ± 24.38 ab | 45.98 ± 3.92 ab | |
BioPlus 2B + OTA | 2.36 ± 0.57 b | 3.82 ± 1.77 a | 163.31 ± 19.80 a | 60.16 ± 34.54 ab | |
Cylactin + OTA | 2.83 ± 1.18 b | 4.50 ± 0.59 a | 116.66 ± 33.23 bc | 40.26 ± 11.43 ab |
Age | Feed Additives | The Activity of Enzyme (Mean ± SD) [μMh/g] | ||||
---|---|---|---|---|---|---|
α-glucosidase | β-glucosidase | α-galactosidase | β-galactosidase | β-glucuronidase | ||
2 days | Control | 86.37 ± 1.32 | 7.01 ± 1.51 | 81.55 ± 2.88 | 65.36 ± 2.07 | 39.05 ± 2.14 |
15 weeks | Control | 88.33 ± 2.77 a | 8.09 ± 1.97 b | 94.00 ± 2.89 a | 89.33 ± 2.38 cd | 42.31 ± 2.10 c |
OTA | 69.46 ± 0.35 c | 11.23 ± 1.14 a | 81.03 ± 1.89 c | 97.77 ± 1.57 a | 51.92 ± 2.53 a | |
Synbiotic A + OTA | 90.32 ± 1.66 a | 8.50 ± 1.04 b | 93.84 ± 0.98 a | 94.11 ± 1.52 b | 50.50 ± 1.69 a | |
Synbiotic B + OTA | 78.77 ± 4.55 b | 8.22 ± 1.11 b | 96.85 ± 3.59 a | 91.04 ± 1.04 c | 47.99 ± 2.90 ab | |
Synbiotic C + OTA | 86.47 ± 2.48 a | 9.47 ± 1.14 ab | 98.03 ± 3.47 a | 87.08 ± 0.89 d | 42.51 ± 1.00 c | |
BioPlus 2B + OTA | 75.91 ± 2.99 bc | 8.31 ± 0.67 b | 87.17 ± 1.80 b | 94.32 ± 0.87 b | 45.00 ± 2.36 bc | |
Cylactin + OTA | 78.85 ± 2.86 b | 9.41 ± 0.67 ab | 84.77 ± 1.88 a | 93.59 ± 1.67 b | 49.42 ± 2.17 ab |
Type of Preparation | Name of Preparation | Probiotic Microorganisms | Prebiotics |
---|---|---|---|
Synbiotics | A | Lb. plantarum ŁOCK 0860 Lb. reuteri ŁOCK 1092 Lb. pentosus ŁOCK 1094 S. cerevisiae ŁOCK 0119 | inulin |
B | Lb. plantarum ŁOCK 0860 Lb. reuteri ŁOCK 1092 Lb. pentosus ŁOCK 1094 Lb. rhamnosus ŁOCK 1087 S. cerevisiae ŁOCK 0119 | ||
C | Lb. plantarum ŁOCK 0860 Lb. reuteri ŁOCK 1092 Lb. pentosus ŁOCK 1094 Lb. rhamnosus ŁOCK 1087 Lb. paracasei ŁOCK 1091 S. cerevisiae ŁOCK 0119 | ||
Probiotics | BioPlus 2B | B. licheniformis DSM 5749 B. subtilis DSM 5750 | without |
Cylactin | E. faecium NCIMB 10415 (SF68) |
Type of Feed | Starter 1 0–3 Weeks | Starter 2 4–6 Weeks | Grower 1 7–9 Weeks | Grower 2 10–12 Weeks | Finisher 13–15 Weeks | |
---|---|---|---|---|---|---|
The Composition of Feed (g/kg) | ||||||
Wheat | 261.9 | 310.3 | 416.7 | 515.8 | 590.4 | |
Corn | 200.0 | 200.0 | 150.0 | 100.0 | 100.0 | |
Soybean meal | 358.2 | 360.9 | 347.4 | 300.0 | 225.1 | |
Full-fat soybeans | 100.0 | 50.0 | - | - | - | |
Blood meal | 20.0 | 10.0 | - | - | - | |
Soybean oil | 5.2 | 19.2 | 39.1 | 45.1 | 47.8 | |
L-lysine HCl | 3.1 | 3.6 | 3.7 | 3.2 | 4.0 | |
DL-methionine | 3.5 | 2.6 | 2.4 | 2.6 | 2.5 | |
L-threonine | 0.7 | 0.7 | 1.1 | 0.7 | 1.0 | |
Limestone | 18.8 | 14.5 | 13.4 | 11.1 | 9.7 | |
Monocalcium phosphate | 22.1 | 19.9 | 17.7 | 13.1 | 11.1 | |
Sodium bicarbonate | 0.1 | 1.3 | 1.2 | 0.7 | 0.7 | |
NaCl | 2.0 | 1.9 | 2.2 | 2.6 | 2.7 | |
Feed enzymes | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
Premix * | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | |
The nutritional value of feed | ||||||
Metabolizable energy (kcal/kg) | 2800 | 2880 | 3000 | 3100 | 3200 | |
Crude protein (g) | 27.00 | 25.20 | 23.00 | 21.50 | 19.00 | |
Lysine (%) | 1.77 | 1.65 | 1.45 | 1.30 | 1.17 | |
Methionine and Cysteine (%) | 1.15 | 1.02 | 0.95 | 0.93 | 0.85 | |
Ca (g) | 1.40 | 1.20 | 1.15 | 1.00 | 0.90 | |
Available P (g) | 0.70 | 0.65 | 0.60 | 0.50 | 0.45 | |
Na (g) | 0.13 | 0.15 | 0.15 | 0.15 | 0.15 | |
The mycotoxin content in feed | ||||||
Ochratoxin A (µg/kg) ** | 198.6 | 251.6 | 331.0 | 397.2 | 462.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śliżewska, K.; Markowiak-Kopeć, P.; Sip, A.; Lipiński, K.; Mazur-Kuśnirek, M. The Effect of Using New Synbiotics on the Turkey Performance, the Intestinal Microbiota and the Fecal Enzymes Activity in Turkeys Fed Ochratoxin A Contaminated Feed. Toxins 2020, 12, 578. https://doi.org/10.3390/toxins12090578
Śliżewska K, Markowiak-Kopeć P, Sip A, Lipiński K, Mazur-Kuśnirek M. The Effect of Using New Synbiotics on the Turkey Performance, the Intestinal Microbiota and the Fecal Enzymes Activity in Turkeys Fed Ochratoxin A Contaminated Feed. Toxins. 2020; 12(9):578. https://doi.org/10.3390/toxins12090578
Chicago/Turabian StyleŚliżewska, Katarzyna, Paulina Markowiak-Kopeć, Anna Sip, Krzysztof Lipiński, and Magdalena Mazur-Kuśnirek. 2020. "The Effect of Using New Synbiotics on the Turkey Performance, the Intestinal Microbiota and the Fecal Enzymes Activity in Turkeys Fed Ochratoxin A Contaminated Feed" Toxins 12, no. 9: 578. https://doi.org/10.3390/toxins12090578
APA StyleŚliżewska, K., Markowiak-Kopeć, P., Sip, A., Lipiński, K., & Mazur-Kuśnirek, M. (2020). The Effect of Using New Synbiotics on the Turkey Performance, the Intestinal Microbiota and the Fecal Enzymes Activity in Turkeys Fed Ochratoxin A Contaminated Feed. Toxins, 12(9), 578. https://doi.org/10.3390/toxins12090578