Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Overview of Diversity of Genomes and Neurotoxins
2.2. Diversity and Phylogeny of C. botulinum Group I type A Strains and Their Botulinum Neurotoxin Genes
2.3. Diversity and Phylogeny of C. botulinum Group I type B Strains and Their Botulinum Neurotoxin Genes
2.4. Diversity and Phylogeny of C. botulinum Group I Type F Strains and Their Botulinum Neurotoxin Genes
2.5. Diversity and Phylogeny of Strains within the C. sporogenes Lineage and Their Botulinum Neurotoxin Genes
2.6. Impact of Genomic and Physiological Variability on the Botulism Risk
2.7. Pan-genome Comparison of C. botulinum Group I and C. sporogenes Genomic Clusters and Identification of C. botulinum Group I- and C. sporogenes-specific Genes
3. Conclusions
4. Materials and Methods
4.1. Strains of C. botulinum Group I and C. sporogenes
4.2. Genomic DNA Preparation and Whole Genome Sequencing
4.3. Genome Assembly and Quality Control
4.4. Identification of Botulinum Neurotoxin Sub-Types and Accessory Protein Configuration
4.5. Pangenome Analyses, Target Gene Identification and in silico PCR
4.6. Core Genome SNPs Analysis and Phylogenetic Trees
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bruggemann, H.; Wollherr, A.; Mazuet, C.; Popoff, M. Clostridium botulinum. In Genomes of Foodborne and Waterborne Pathogens; Fratamico, P., Liu, Y., Kathariou, S., Eds.; ASM Press: Washington, DC, USA, 2011; Volume 13, pp. 185–212. ISBN 978-1555814571. [Google Scholar]
- Brunt, J.; van Vliet, A.H.M.; Stringer, S.C.; Carter, A.T.; Lindström, M.; Peck, M.W. Pan-genomic analysis of Clostridium botulinum Group II (Non-Proteolytic C. botulinum) associated with foodborne botulism and isolated from the environment. Toxins 2020, 12, 306. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.T.; Peck, M.W. Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II. Res. Microbiol. 2015, 166, 303–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, E.A. Food Microbiology: Fundamentals and Frontiers; Doyle, M.P., Buchanan, R.L., Eds.; ASM Press: Washington, DC, USA, 2013; pp. 441–464. [Google Scholar]
- Peck, M.W. Biology and genomic analysis of Clostridium botulinum. Adv. Microb. Physiol. 2009, 55, 183–265, 320. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, M.; Greenfield, P.; Midgley, D.; Li, D.; Tran-Dinh, N.; Vriesekoop, F.; Brown, J.L. Draft genome sequence of Clostridium sporogenes PA 3679, the common nontoxigenic surrogate for proteolytic Clostridium botulinum. J. Bacteriol. 2012, 194, 1631–1632. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.R.; Schill, K.M.; Wang, Y.; Pombert, J.F. Genetic characterization of the exceptionally high heat resistance of the non-toxic surrogate Clostridium sporogenes PA 3679. Front. Microbiol. 2017, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.T.; Paul, C.J.; Mason, D.R.; Twine, S.M.; Alston, M.J.; Logan, S.M.; Austin, J.W.; Peck, M.W. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. BMC Genom. 2009, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.; East, A. Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J. Appl. Microbiol. 1998, 84, 5–17. [Google Scholar] [CrossRef]
- Dobritsa, A.P.; Kutumbaka, K.K.; Samadpour, M. Reclassification of Eubacterium combesii and discrepancies in the nomenclature of botulinum neurotoxin-producing clostridia: Challenging Opinion 69. Request for an Opinion. Int. J. Syst. Evol. Microbiol. 2018, 68, 3068–3075. [Google Scholar] [CrossRef]
- Nakano, K.; Terabayashi, Y.; Shiroma, A.; Shimoji, M.; Tamotsu, H.; Ashimine, N.; Ohki, S.; Shinzato, M.; Teruya, K.; Satou, K.; et al. First complete genome sequence of Clostridium sporogenes DSM 795T, a nontoxigenic surrogate for Clostridium botulinum, determined using PacBio single-molecule real-time technology. Genome Announc. 2015, 3, e00832-15. [Google Scholar] [CrossRef] [Green Version]
- Olsen, I.; Johnson, J.L.; Moore, L.V.H.; Moore, W.E.C. Rejection of Clostridium putrificum and conservation of Clostridium botulinum and Clostridium sporogenes. Int. J. Syst. Evol. Microbiol. 1995, 45, 414. [Google Scholar] [CrossRef]
- Peck, M.W.; Stringer, S.C.; Carter, A.T. Clostridium botulinum in the post-genomic era. Food Microbiol. 2011, 28, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L.; Tran-Dinh, N.; Chapman, B. Clostridium sporogenes PA 3679 and its uses in the derivation of thermal processing schedules for low-acid shelf-stable foods and as a research model for proteolytic Clostridium botulinum. J. Food Prot. 2012, 75, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Brunt, J.; Cross, K.L.; Peck, M.W. Apertures in the Clostridium sporogenes spore coat and exosporium align to facilitate emergence of the vegetative cell. Food Microbiol. 2015, 51, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClure, P.J. Spore-forming bacteria. In Food Spoilage Microorganisms, 122th ed.; Blackburn, C.D.W., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2006; pp. 579–623. [Google Scholar]
- Brunt, J.; Plowman, J.; Gaskin, D.J.; Itchner, M.; Carter, A.T.; Peck, M.W. Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes presents novel insights into spore germination systems. PLoS Pathog. 2014, 10, e1004382. [Google Scholar] [CrossRef]
- Diao, M.M.; André, S.; Membré, J.M. Meta-analysis of D-values of proteolytic Clostridium botulinum and its surrogate strain Clostridium sporogenes PA 3679. Int. J. Food Microbiol. 2014, 174, 23–30. [Google Scholar] [CrossRef]
- Schill, K.M.; Wang, Y.; Butler, R.R.; Pombert, J.F.; Reddy, N.R.; Skinner, G.E.; Larkin, J.W. Genetic diversity of Clostridium sporogenes PA 3679 isolates obtained from different sources as resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing. Appl. Environ. Microbiol. 2016, 82, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.H.; Dunn, M.L.; Ogden, L.V.; Jefferies, L.K.; Eggett, D.L.; Steele, F.M. Conditions associated with Clostridium sporogenes growth as a surrogate for Clostridium botulinum in nonthermally processed canned butter. J. Dairy Sci. 2013, 96, 2754–2764. [Google Scholar] [CrossRef]
- Fillo, S.; Giordani, F.; Anselmo, A.; Fortunato, A.; Palozzi, A.M.; De Santis, R.; Ciammaruconi, A.; Spagnolo, F.; Anniballi, F.; Fiore, A.; et al. Draft genome sequence of Clostridium botulinum B2 450 strain from wound botulism in a drug user in Italy. Genome Announc. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Peck, M.W.; van Vliet, A.H. Impact of Clostridium botulinum genomic diversity on food safety. Curr. Opin. Food Sci. 2016, 10, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.J.; Xie, G.; Williamson, C.H.D.; Hill, K.K.; Fernández, R.A.; Sahl, J.W.; Keim, P.; Johnson, S.L. Genomic characterization of newly completed genomes of Botulinum neurotoxin-producing species from Argentina, Australia, and Africa. Genome Biol. Evol. 2020, 12, 229–242. [Google Scholar] [CrossRef]
- Weigand, M.R.; Pena-Gonzalez, A.; Shirey, T.B.; Broeker, R.G.; Ishaq, M.K.; Konstantinidis, K.T.; Raphael, B.H. Implications of genome-based discrimination between Clostridium botulinum Group I and Clostridium sporogenes strains for bacterial taxonomy. Appl. Environ. Microbiol. 2015, 81, 5420–5429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, C.H.; Sahl, J.W.; Smith, T.J.; Xie, G.; Foley, B.T.; Smith, L.A.; Fernandez, R.A.; Lindström, M.; Korkeala, H.; Keim, P.; et al. Comparative genomic analyses reveal broad diversity in botulinum-toxin-producing Clostridia. BMC Genom. 2016, 17, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.; Williamson, C.H.D.; Hill, K.; Sahl, J.; Keim, P. Botulinum neurotoxin-producing bacteria. Isn’t It time that we called a species a species? mBio 2018, 9, e01469-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatheway, C.L. Toxigenic clostridia. Clin. Microbiol. Rev. 1990, 3, 66–98. [Google Scholar] [CrossRef]
- Johnson, A.L.; McAdams-Gallagher, S.C.; Aceto, H. Outcome of adult horses with botulism treated at a veterinary hospital: 92 cases (1989–2013). J. Vet. Intern. Med. 2015, 29, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Mazuet, C.; Legeay, C.; Sautereau, J.; Ma, L.; Bouchier, C.; Bouvet, P.; Popoff, M.R. Diversity of Group I and II Clostridium botulinum Strains from France Including Recently Identified Subtypes. Genome Biol. Evol. 2016, 8, 1643–1660. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Lemichez, E.; Popoff, M.R. Public health risk associated with botulism as foodborne zoonoses. Toxins 2019, 12, 17. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.D.S.; Sugiyama, H. Botulism: The Organism, Its Toxins, the Disease, 2nd ed.; Charles C Thomas Pub Ltd.: Springfield, IL, USA, 1988; p. 171. [Google Scholar]
- Juliao, P.C.; Maslanka, S.; Dykes, J.; Gaul, L.; Bagdure, S.; Granzow-Kibiger, L.; Salehi, E.; Zink, D.; Neligan, R.P.; Barton-Behravesh, C.; et al. National outbreak of type a foodborne botulism associated with a widely distributed commercially canned hot dog chili sauce. Clin. Infect. Dis. 2013, 56, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Marshall, K.M.; Nowaczyk, L.; Raphael, B.H.; Skinner, G.E.; Rukma Reddy, N. Identification and genetic characterization of Clostridium botulinum serotype A strains from commercially pasteurized carrot juice. Food Microbiol. 2014, 44, 149–155. [Google Scholar] [CrossRef]
- McCarty, C.L.; Angelo, K.; Beer, K.D.; Cibulskas-White, K.; Quinn, K.; de Fijter, S.; Bokanyi, R.; St Germain, E.; Baransi, K.; Barlow, K.; et al. Large outbreak of botulism associated with a church potluck meal--Ohio, 2015. Morb. Mortal. Wkly. Rep. 2015, 64, 802–803. [Google Scholar] [CrossRef]
- Peck, M.W.; Goodburn, K.E.; Betts, R.P.; Stringer, S.C. Assessment of the potential for growth and neurotoxin formation by non-proteolytic Clostridium botulinum in short shelf-life commercial foods designed to be stored chilled. Trends Food Sci. Technol. 2008, 19, 207–216. [Google Scholar] [CrossRef]
- Peck, M.W.; Webb, M.D.; Goodburn, K.E. Assessment of the risk of botulism from chilled, vacuum/modified atmosphere packed fresh beef, lamb and pork held at 3 °C–8 °C. Food Microbiol. 2020, 91, 103544. [Google Scholar] [CrossRef] [PubMed]
- Chatham-Stephens, K.; Fleck-Derderian, S.; Johnson, S.D.; Sobel, J.; Rao, A.K.; Meaney-Delman, D. Clinical features of foodborne and wound botulism: A systematic review of the literature, 1932–2015. Clin. Infect. Dis. 2017, 66, S11–S16. [Google Scholar] [CrossRef] [PubMed]
- Dabritz, H.A.; Hill, K.K.; Barash, J.R.; Ticknor, L.O.; Helma, C.H.; Dover, N.; Payne, J.R.; Arnon, S.S. Molecular epidemiology of infant botulism in California and elsewhere, 1976–2010. J. Infect. Dis. 2014, 210, 1711–1722. [Google Scholar] [CrossRef] [Green Version]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef]
- Rummel, A. The long journey of botulinum neurotoxins into the synapse. Toxicon Off. J. Int. Soc. Toxinol. 2015, 107, 9–24. [Google Scholar] [CrossRef]
- Burke, G.S. Notes on Bacillus botulinus. J. Bacteriol. 1919, 4, 555–570.1. [Google Scholar] [CrossRef] [Green Version]
- Leuchs, J. Beiträge zur kenntnis des toxins und antitoxins des Bacillus botulinus. Z. Für Hyg. Und Infekt. 1910, 65, 55–84. [Google Scholar] [CrossRef]
- Hill, K.K.; Smith, T.J. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr. Top. Microbiol. Immunol. 2013, 364, 1–20. [Google Scholar] [CrossRef]
- Hill, K.K.; Xie, G.; Foley, B.T.; Smith, T.J. Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins. Toxicon Off. J. Int. Soc. Toxinol. 2015, 107, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical perspectives and guidelines for Botulinum neurotoxin subtype nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Hill, K.K.; Raphael, B.H. Historical and current perspectives on Clostridium botulinum diversity. Res. Microbiol. 2015, 166, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Kaji, R. Clinical differences between A1 and A2 botulinum toxin subtypes. Toxicon Off. J. Int. Soc. Toxinol. 2015, 107, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Kohda, T.; Nakamura, K.; Hosomi, K.; Torii, Y.; Kozaki, S.; Mukamoto, M. Characterization of the functional activity of botulinum neurotoxin subtype B6. Microbiol. Immunol. 2017, 61, 482–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritz, M.S.; Tepp, W.H.; Inzalaco, H.N.; Johnson, E.A.; Pellett, S. Comparative functional analysis of mice after local injection with botulinum neurotoxin A1, A2, A6, and B1 by catwalk analysis. Toxicon Off. J. Int. Soc. Toxinol. 2019, 167, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Pellett, S.; Tepp, W.H.; Whitemarsh, R.C.; Bradshaw, M.; Johnson, E.A. In vivo onset and duration of action varies for botulinum neurotoxin A subtypes 1-5. Toxicon Off. J. Int. Soc. Toxinol. 2015, 107, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitemarsh, R.C.; Tepp, W.H.; Bradshaw, M.; Lin, G.; Pier, C.L.; Scherf, J.M.; Johnson, E.A.; Pellett, S. Characterization of botulinum neurotoxin A subtypes 1 through 5 by investigation of activities in mice, in neuronal cell cultures, and in vitro. Infect. Immun. 2013, 81, 3894–3902. [Google Scholar] [CrossRef] [Green Version]
- Brunt, J.; van Vliet, A.H.M.; van den Bos, F.; Carter, A.T.; Peck, M.W. Diversity of the Germination Apparatus in Clostridium botulinum Groups I, II, III, and IV. Front. Microbiol. 2016, 7, 1702. [Google Scholar] [CrossRef] [Green Version]
- Derman, Y.; Söderholm, H.; Lindström, M.; Korkeala, H. Role of csp genes in NaCl, pH, and ethanol stress response and motility in Clostridium botulinum ATCC 3502. Food Microbiol. 2015, 46, 463–470. [Google Scholar] [CrossRef]
- Kirk, D.G.; Dahlsten, E.; Zhang, Z.; Korkeala, H.; Lindstrom, M. Involvement of Clostridium botulinum ATCC 3502 sigma factor K in early-stage sporulation. Appl. Environ. Microbiol. 2012, 78, 4590–4596. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Brunt, J.; Peck, M.W.; Setlow, P.; Li, Y.Q. Analysis of the germination of individual Clostridium sporogenes spores with and without germinant receptors and cortex-lytic enzymes. Front. Microbiol. 2017, 8, 2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, C.H.D.; Vazquez, A.J.; Hill, K.; Smith, T.J.; Nottingham, R.; Stone, N.E.; Sobek, C.J.; Cocking, J.H.; Fernandez, R.A.; Caballero, P.A.; et al. Differentiating botulinum neurotoxin-producing Clostridia with a simple, multiplex PCR assay. Appl. Environ. Microbiol. 2017, 83, e00806-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebaihia, M.; Peck, M.W.; Minton, N.P.; Thomson, N.R.; Holden, M.T.; Mitchell, W.J.; Carter, A.T.; Bentley, S.D.; Mason, D.R.; Crossman, L.; et al. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res. 2007, 17, 1082–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fillo, S.; Giordani, F.; Anniballi, F.; Gorgé, O.; Ramisse, V.; Vergnaud, G.; Riehm, J.M.; Scholz, H.C.; Splettstoesser, W.D.; Kieboom, J.; et al. Clostridium botulinum group I strain genotyping by 15-locus multilocus variable-number tandem-repeat analysis. J. Clin. Microbiol. 2011, 49, 4252–4263. [Google Scholar] [CrossRef] [Green Version]
- Giordani, F.; Fillo, S.; Anselmo, A.; Palozzi, A.M.; Fortunato, A.; Gentile, B.; Tehran, D.A.; Ciammaruconi, A.; Spagnolo, F.; Pittiglio, V.; et al. Genomic characterization of Italian Clostridium botulinum group I strains. Infect. Genet. Evol. 2015, 36, 62–71. [Google Scholar] [CrossRef]
- Gonzalez-Escalona, N.; Timme, R.; Raphael, B.H.; Zink, D.; Sharma, S.K. Whole-genome single-nucleotide-polymorphism analysis for discrimination of Clostridium botulinum group I strains. Appl. Environ. Microbiol. 2014, 80, 2125–2132. [Google Scholar] [CrossRef] [Green Version]
- Lindström, M.; Hinderink, K.; Somervuo, P.; Kiviniemi, K.; Nevas, M.; Chen, Y.; Auvinen, P.; Carter, A.T.; Mason, D.R.; Peck, M.W.; et al. Comparative genomic hybridization analysis of two predominant Nordic group I (proteolytic) Clostridium botulinum type B clusters. Appl. Environ. Microbiol. 2009, 75, 2643–2651. [Google Scholar] [CrossRef] [Green Version]
- Raphael, B.H.; Joseph, L.A.; McCroskey, L.M.; Luquez, C.; Maslanka, S.E. Detection and differentiation of Clostridium botulinum type A strains using a focused DNA microarray. Mol. Cell. Probes 2010, 24, 146–153. [Google Scholar] [CrossRef]
- Umeda, K.; Wada, T.; Kohda, T.; Kozaki, S. Multi-locus variable number tandem repeat analysis for Clostridium botulinum type B isolates in Japan: Comparison with other isolates and genotyping methods. Infect. Genet. Evol. 2013, 16, 298–304. [Google Scholar] [CrossRef]
- Akbulut, D.; Grant, K.A.; McLauchlin, J. Development and application of Real-Time PCR assays to detect fragments of the Clostridium botulinum types A, B, and E neurotoxin genes for investigation of human foodborne and infant botulism. Foodborne Pathog. Dis. 2004, 1, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Grant, K.A.; Nwarfor, I.; Mpamugo, O.; Mithani, V.; Lister, P.; Dixon, G.; Nixon, G.; Planche, T.; Courtney, M.; Morgan, J.; et al. Report of two unlinked cases of infant botulism in the UK in October 2007. J. Med. Microbiol. 2009, 58, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- McLauchlin, J.; Grant, K.A.; Little, C.L. Food-borne botulism in the United Kingdom. J. Public Health 2006, 28, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trayner, K.M.A.; Weir, A.; McAuley, A.; Godbole, G.; Amar, C.; Grant, K.; Penrice, G.; Roy, K. A pragmatic harm reduction approach to manage a large outbreak of wound botulism in people who inject drugs, Scotland 2015. Harm Reduct. J. 2018, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.; Lin, G.; Whittam, T.; Johnson, E. Phylogenetic analysis of Clostridium botulinum type A by multi-locus sequence typing. Microbiology 2008, 154, 2408–2415. [Google Scholar] [CrossRef] [Green Version]
- Brunt, J.; Carter, A.T.; Stringer, S.C.; Peck, M.W. Identification of a novel botulinum neurotoxin gene cluster in Enterococcus. FEBS Lett. 2018, 592, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [Green Version]
- Stover, B.C.; Muller, K.F. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform. 2010, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Raphael, B.H.; Shirey, T.B.; Lúquez, C.; Maslanka, S.E. Distinguishing highly-related outbreak-associated Clostridium botulinum type A(B) strains. BMC Microbiol. 2014, 14, 192. [Google Scholar] [CrossRef]
- Browning, L.M.; Prempeh, H.; Little, C.; Houston, C.; Grant, K.; Cowden, J.M. An outbreak of food-borne botulism in Scotland, United Kingdom, November 2011. Eurosurveillance 2011, 16, 20036. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Escalona, N.; Sharma, S.K. Closing Clostridium botulinum group I genomes using a combination of short- and long-reads. Front. Microbiol. 2020, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.K.; Smith, T.J.; Helma, C.H.; Ticknor, L.O.; Foley, B.T.; Svensson, R.T.; Brown, J.L.; Johnson, E.A.; Smith, L.A.; Okinaka, R.T.; et al. Genetic diversity among Botulinum neurotoxin-producing clostridial strains. J. Bacteriol. 2007, 189, 818–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lúquez, C.; Raphael, B.H.; Joseph, L.A.; Meno, S.R.; Fernández, R.A.; Maslanka, S.E. Genetic diversity among Clostridium botulinum strains harboring bont/A2 and bont/A3 genes. Appl. Environ. Microbiol. 2012, 78, 8712–8718. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, C.O.; Ayubi, A.; Zulfiquer, F.; Santhanam, G.; Ahmed, M.A.; Deeb, J. Infant botulism following honey ingestion. BMJ Case Rep. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Franciosa, G.; Floridi, F.; Maugliani, A.; Aureli, P. Differentiation of the gene clusters encoding botulinum neurotoxin type A complexes in Clostridium botulinum type A, Ab, and A(B) strains. Appl. Environ. Microbiol. 2004, 70, 7192–7199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viray, M.A.; Wamala, J.; Fagan, R.; Luquez, C.; Maslanka, S.; Downing, R.; Biggerstaff, M.; Malimbo, M.; Kirenga, J.B.; Nakibuuka, J.; et al. Outbreak of type A foodborne botulism at a boarding school, Uganda, 2008. Epidemiol. Infect. 2014, 142, 2297–2301. [Google Scholar] [CrossRef] [Green Version]
- Leighton, G.R. Botulism and Food Preservation: (The Loch Maree Tragedy); Collins Sons & Company: Glasgow, Scotland, 1923. [Google Scholar]
- Hatheway, C.L.; McCroskey, L.M.; Lombard, G.L.; Dowell, V.R. Atypical toxin variant of Clostridium botulinum type B associated with infant botulism. J. Clin. Microbiol. 1981, 14, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Brett, M.; Hallas, G.; Mpamugo, O. Wound botulism in the UK and Ireland. J. Med. Microbiol. 2004, 53, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.T.; Pearson, B.M.; Crossman, L.C.; Drou, N.; Heavens, D.; Baker, D.; Febrer, M.; Caccamo, M.; Grant, K.A.; Peck, M.W. Complete genome sequence of the proteolytic Clostridium botulinum type A5 (B3’) strain H04402 065. J. Bacteriol. 2011, 193, 2351–2352. [Google Scholar] [CrossRef] [Green Version]
- Dover, N.; Barash, J.R.; Arnon, S.S. Novel Clostridium botulinum toxin gene arrangement with subtype A5 and partial subtype B3 botulinum neurotoxin genes. J. Clin. Microbiol. 2009, 47, 2349–2350. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.J.; Lin, G.; Tepp, W.; Dupuy, J.; Stenmark, P.; Stevens, R.C.; Johnson, E.A. Purification, modeling, and analysis of botulinum neurotoxin subtype A5 (BoNT/A5) from strain A661222. Appl. Environ. Microbiol. 2011, 77, 4217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorner, M.B.; Grant, K.A.; Godbole, G.; Marcus, U.; Desai, M.; Brunt, J.; van Vliet, A.H.M.; Stringer, S.C.; Peck, M.W.; Smith, T.J.; et al. Wound botulism among people who inject drugs in Germany and the United Kingdom in 2016–2017: A continuing problem. 2020. in preparation. [Google Scholar]
- O’Mahony, M.; Mitchell, E.; Gilbert, R.J.; Hutchinson, D.N.; Begg, N.T.; Rodhouse, J.C.; Morris, J.E. An outbreak of foodborne botulism associated with contaminated hazelnut yoghurt. Epidemiol. Infect. 1990, 104, 389–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpin, J.L.; Dykes, J.K.; Katz, L.; Centurioni, D.A.; Perry, M.J.; Egan, C.T.; Lúquez, C. Molecular characterization of Clostridium botulinum harboring the bont/B7 gene. Foodborne Pathog. Dis. 2019, 16, 428–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolman, C.E.; Murakami, L. Clostridium Botulinum Type F with Recent Observations on Other Types. J. Infect. Dis. 1961, 109, 107–128. [Google Scholar] [CrossRef]
- Franciosa, G.; Maugliani, A.; Scalfaro, C.; Aureli, P. Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS ONE 2009, 4, e4829. [Google Scholar] [CrossRef] [Green Version]
- Kenri, T.; Sekizuka, T.; Yamamoto, A.; Iwaki, M.; Komiya, T.; Hatakeyama, T.; Nakajima, H.; Takahashi, M.; Kuroda, M.; Shibayama, K. Genetic characterization and comparison of Clostridium botulinum isolates from botulism cases in Japan between 2006 and 2011. Appl. Environ. Microbiol. 2014, 80, 6954–6964. [Google Scholar] [CrossRef] [Green Version]
- Brett, M.M.; McLauchlin, J.; Harris, A.; O’Brien, S.; Black, N.; Forsyth, R.J.; Roberts, D.; Bolton, F.J. A case of infant botulism with a possible link to infant formula milk powder: Evidence for the presence of more than one strain of Clostridium botulinum in clinical specimens and food. J. Med. Microbiol. 2005, 54, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.A.; Tepp, W.H.; Bradshaw, M.; Gilbert, R.J.; Cook, P.E.; McIntosh, E.D. Characterization of Clostridium botulinum strains associated with an infant botulism case in the United Kingdom. J. Clin. Microbiol. 2005, 43, 2602–2607. [Google Scholar] [CrossRef] [Green Version]
- Paidhungat, M.; Setlow, B.; Driks, A.; Setlow, P. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J. Bacteriol. 2000, 182, 5505–5512. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Davis, A.; Korza, G.; Zhang, P.; Li, Y.-Q.; Setlow, B.; Setlow, P.; Hao, B. Role of a SpoVA protein in dipicolinic acid uptake into developing spores of Bacillus subtilis. J. Bacteriol. 2012, 194, 1875. [Google Scholar] [CrossRef] [Green Version]
- Velásquez, J.; Schuurman-Wolters, G.; Birkner, J.P.; Abee, T.; Poolman, B. Bacillus subtilis spore protein SpoVAC functions as a mechanosensitive channel. Mol. Microbiol. 2014, 92, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, E.M.; Boekhorst, J.; Kuipers, O.P.; Wells-Bennik, M.H.J. A mobile genetic element profoundly increases heat resistance of bacterial spores. ISME J. 2016, 10, 2633–2642. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Van Vliet, A.H.M. Use of pan-genome analysis for the identification of lineage-specific genes of Helicobacter pylori. FEMS Microbiol. Lett. 2017, 364, fnw296. [Google Scholar] [CrossRef]
- Brynildsrud, O.; Bohlin, J.; Scheffer, L.; Eldholm, V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016, 17, 238. [Google Scholar] [CrossRef] [Green Version]
- Kruczkiewicz, P.; Mutschalll, S.; Barker, D.; Thomas, J.; Van Domselaar, G.; Gannon, V.P.J.; Carrillo, C.D.; Taboada, E.N. MIST: A tool for rapid in silico generation of molecular data from bacterial genome sequences. In Bioinformatics 2013: Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms; SciTePress: Setúbal, Portugal, 2013; pp. 316–323. [Google Scholar]
- Pornsukarom, S.; van Vliet, A.H.M.; Thakur, S. Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genom. 2018, 19, 801. [Google Scholar] [CrossRef]
Year | Confirmed Cases (Probable Cases) a | Botulinum Toxin Type(s) From Outbreak Investigation | Botulinum Toxin Gene Sub-type(s) Detected in This Study | Comments |
---|---|---|---|---|
Foodborne botulism b | ||||
1989 | 27 | B | B5F2 | Commercial hazelnut yoghurt |
1998 | 2 | B | B2 | Bottled mushrooms (Italy) |
2003 | 1 | B | B1 | Sausage (Poland) |
2004 | 1 | un c | nt d | Hummus |
2004 | 1 | A | nt | Recent travel to Georgia |
2005 | 1 | B e | nt | Home preserved pork (Poland) |
2010 | 1 | B | nt | Recent travel to Algeria |
2011 | 3 | A | A1 | Commercial korma sauce |
2012 | 1 | B | B2 | Olives (Italy) |
2013 | 1 | un | nt | Mushroom (Poland) |
2016 | 1 | B | nt | Tuna (Italy) |
Infant botulism b | ||||
1989 | 1 | B | nt | Travel to Yemen, fed honey |
1993 | 1 | B | B2 | Travel to Spain |
1994 | 1 | A | nt | Fed honey, weaning |
2001 | 1 | B | nt | Weaning, infant formula milk |
2007 | 1 | A | A2 | Weaning |
2007 | 1 | B | B2 | Weaning |
2009 | 1 | A | A2 | Fed honey |
2009 | 1 | A | A2 | Fed honey |
2010 | 1 | E f | nt | Fed honey, kept terrapins |
2011 | 1 | A | A2 | Fed honey |
2011 | 1 | A | A2 | Fed honey |
2011 | 1 | B | B2 | Breast and bottle fed, dusty home |
2012 | 1 | B | B5 | Travel, dusty hostel rooms |
2013 | 1 | Bf | B5F2 | Fed honey |
2013 | 1 | Bf | B5F2 | Weaning |
2017 | 1 | B | nt | Travel to Western USA |
2018 | 1 | B | nt | Weaning |
Intestinal colonisation botulism | ||||
2018 | 1 | un | nt | Bowel obstruction, several co-morbidities |
Wound botulism g | ||||
2000 | 3 (2) | A | A5B3(1) | |
2001 | 3 (1) | A | nt | |
2002 | 14 (6) | A(12), B(2) | nt | |
2003 | 7 (8) | A(6), AB(1) | nt | |
2004 | 15 (26) | A(13), B(1), AB(1) | A5B2(33), A5B3(1) | |
2005 | 6 (22) | A(5), B(1) | A5B2(2) | |
2006 | 9 (21) | A(6), B(1), AB(2) | A5B2(1), A5B3(4), B3(1) | |
2007 | 3 | A(3) | A5B2(2) | |
2008 | 4 | A(1) | nt | |
2009 | 12 (8) | A(4), B(7), un(1) | A1B5(3), B3(5) | |
2010 | 3 | A(1), B(1), un(1) | A5B2(1), B3(2) | |
2012 | 1 (2) | A | A5B3(1) | |
2013 | 2 (2) | A (1), B (1) | A5B2(1) | |
2014 | 2 (3) | B | B3(3) | |
2015 | 19 (28) | B(16), un(2) | B3(13) | Large outbreak related to batch of contaminated heroin |
2016 | 5 (2) | B | B3(1) | |
2017 | 1 (1) | B | nt | |
2018 | 2 (2) | B | nt | |
2019 | 1 (1) | B | nt |
Strain | C. sporogenes Cluster * | Botulinum Neurotoxin Gene | Type of Botulism | Country (Year) | Reference |
---|---|---|---|---|---|
Prevot 594 | upper | B2 | Foodborne (ham) | France (1951) | [46] |
2345 | upper | B2 | Foodborne (ham) | France (1961) | [29] |
CDC 1632 | centre | B1 | Infant | USA (1977) | [91] |
B2 450 | centre | B2 | Wound (drug abuse) | Italy (2009) | [59] |
AM370 | centre | B6 | Foodborne (salted fish) | Australia (1979) | [25] |
AM1195 | centre | B6 | Infant | Australia (1987) | [25] |
R1125/03 | lower | B1 | Foodborne (meat) | UK (2003) | [66] |
R1135/03 | lower | B1 | Foodborne (meat) | UK (2003) | [66] |
Botulinum Neurotoxin Gene Sub-Type | Number of Strains Included in This Study |
---|---|
A1 | 64 |
A1 B5 | 20 |
A2 | 114 |
A2 B2 | 1 |
A2 B3 | 1 |
A2 B5 | 1 |
A2 B7 | 1 |
A2 F4 | 3 |
A2 F5 | 1 |
A2 F4 F5 | 6 |
A3 | 9 |
A4 B5 | 2 |
A5 B2 | 44 |
A5 B3 | 8 |
B1 | 37 |
B2 | 73 |
B2 FA | 1 |
B3 | 30 |
B5 | 2 |
B5 F2 | 6 |
B6 | 3 |
B7 | 6 |
F1 | 14 |
F4 | 1 |
F5 | 1 |
F8 | 1 |
none | 107 |
TOTAL | 556 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunt, J.; van Vliet, A.H.M.; Carter, A.T.; Stringer, S.C.; Amar, C.; Grant, K.A.; Godbole, G.; Peck, M.W. Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins 2020, 12, 586. https://doi.org/10.3390/toxins12090586
Brunt J, van Vliet AHM, Carter AT, Stringer SC, Amar C, Grant KA, Godbole G, Peck MW. Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins. 2020; 12(9):586. https://doi.org/10.3390/toxins12090586
Chicago/Turabian StyleBrunt, Jason, Arnoud H. M. van Vliet, Andrew T. Carter, Sandra C. Stringer, Corinne Amar, Kathie A. Grant, Gauri Godbole, and Michael W. Peck. 2020. "Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism" Toxins 12, no. 9: 586. https://doi.org/10.3390/toxins12090586
APA StyleBrunt, J., van Vliet, A. H. M., Carter, A. T., Stringer, S. C., Amar, C., Grant, K. A., Godbole, G., & Peck, M. W. (2020). Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins, 12(9), 586. https://doi.org/10.3390/toxins12090586