Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense
Abstract
:1. Introduction
2. Results
2.1. Plasmid Integration in C. sporogenes CDC 1632
2.2. Plasmid Integration in C. argentinense Strain CDC 2741 (GM 77/78)
2.3. Plasmid Integration in C. parabotulinum DFPST0006 (NCTC 7273, Beans)
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Whole-Genome Sequencing
5.2. Identification of Bont Genes and Their Genomic Locations
5.3. Identification of Prophage Sequences
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef]
- Smith, T.J.; Williamson, C.H.; Hill, K.; Sahl, J.W.; Keim, P. Botulinum neurotoxin -producing bacteria—Isn’t it time we called a species a species? MBio 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.J.; Williamson, C.H.; Hill, K.K.; Johnson, S.J.; Xie, G.; Anniballi, F.; Auricchio, B.; Fernandez, R.A.; Caballero, P.A.; Keim, P.; et al. The distinctive evolution of orfX Clostridium parabotulinum strains and their botulinum neurotoxin type A and F gene clusters is influenced by environmental factors and gene interactions via mobile genetic elements. Front. Microbiol. 2021, 12, 1–19. [Google Scholar] [CrossRef]
- Eklund, M.W.; Poysky, F.T. Interconversion of type C and D strains of Clostridium botulinum by specific bacteriophages. Appl. Microbiol. 1974, 27, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Oguma, K.; Iida, H.; Shiozaki, M.; Inoue, K. Antigenicity of converting phages obtained from Clostridium botulinum types C and D. Infect. Immun. 1976, 13, 855–860. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Sugiyama, H.; Nakano, H.; Johnson, E.A. The genes for the Clostridium botulinum type G toxin complex are on a plasmid. Infect. Immun. 1995, 63, 2087–2091. [Google Scholar] [CrossRef] [Green Version]
- Popoff, M.R. Ecology of neurotoxigenic strains of clostridia. In Clostridial Neurotoxins, The Molecular Pathogenesis of Tetanus and Botulism; Montecucco, C., Ed.; Springer: Berlin, Germany, 1995. [Google Scholar]
- Marshall, K.M.; Bradshaw, M.; Pellett, S.; Johnson, E.A. Plasmid encoded neurotoxin genes in Clostridium botulinum serotype A subtypes. Biochem. Biophys. Res. Commun. 2007, 361, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.J.; Hill, K.K.; Foley, B.T.; Detter, J.C.; Munk, A.C.; Bruce, D.C.; Doggett, N.A.; Smith, L.A.; Marks, J.D.; Xie, G.; et al. Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS ONE 2007, 2, e1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franciosa, G.; Maugliani, A.; Scalfaro, C.; Aureli, P. Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS ONE 2009, 4, e4829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Hintsa, H.; Chen, Y.; Korkeala, H.; Lindstrom, M. Plasmid-borne type E neurotoxin gene clusters in Clostridium botulinum strains. Appl. Environ. Microbiol. 2013, 79, 3856–3859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, A.T.; Austin, J.W.; Weedmark, K.A.; Peck, M.W. Evolution of Chromosomal Clostridium botulinum Type E Neurotoxin Gene Clusters: Evidence Provided by Their Rare Plasmid-Borne Counterparts. Genome Biol. Evol. 2016, 8, 540–555. [Google Scholar] [CrossRef]
- Hill, K.K.; Xie, G.; Foley, B.T.; Smith, T.J.; Munk, A.C.; Bruce, D.; Smith, L.A.; Brettin, T.S.; Detter, J.C. Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol. 2009, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Dover, N.; Barash, J.R.; Hill, K.K.; Davenport, K.W.; Teshima, H.; Xie, G.; Arnon, S.S. Clostridium botulinum strain Af84 contains three neurotoxin gene clusters: Bont/A2, bont/F4 and bont/F5. PLoS ONE 2013, 8, e61205. [Google Scholar] [CrossRef]
- Raphael, B.H.; Bradshaw, M.; Kalb, S.R.; Joseph, L.A.; Luquez, C.; Barr, J.R.; Johnson, E.A.; Maslanka, S.E. Clostridium botulinum strains producing BoNT/F4 or BoNT/F5. Appl. Environ. Microbiol. 2014, 80, 3250–3257. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.J.; Hill, K.K.; Xie, G.; Foley, B.T.; Williamson, C.H.D.; Foster, J.T.; Johnson, S.L.; Chertkov, O.; Teshima, H.; Gibbons, H.S.; et al. Genomic sequences of six botulinum neurotoxin-producing strains representing three clostridial species illustrate the mobility and diversity of botulinum neurotoxin genes. Infect. Genet. Evol. 2015, 30, 102–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, A.T.; Austin, J.W.; Weedmark, K.A.; Corbett, C.; Peck, M.W. Three classes of plasmid (47-63 kb) carry the type B neurotoxin gene cluster of group II Clostridium botulinum. Genome Biol. Evol. 2014, 6, 2076–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skarin, H.; Hafstrom, T.; Westerberg, J.; Segerman, B. Clostridium botulinum group III: A group with dual identity shaped by plasmids, phages and mobile elements. BMC Genom. 2011, 12, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamakawa, K.; Karasawa, T.; Kakinuma, H.; Maruyama, H.; Takahashi, H.; Nakamura, S. Emergence of Clostridium botulinum type B-like nontoxigenic organisms in a patient with type B infant botulism. J. Clin. Microbiol. 1997, 35, 2163–2164. [Google Scholar] [CrossRef] [Green Version]
- Weigand, M.R.; Pena-Gonzalez, A.; Shirey, T.B.; Broeker, R.G.; Ishaq, M.K.; Konstantinidis, K.T.; Raphael, B.H. Implications of genome-based discrimination between Clostridium botulinum Group I and Clostridium sporogenes strains for bacterial taxonomy. Appl. Environ. Microbiol. 2015, 81, 5420–5429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellett, S.; Tepp, W.H.; Stanker, L.H.; Band, P.A.; Johnson, E.A.; Ichtchenko, K. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A. Biochem. Biophys. Res. Commun. 2011, 405, 673–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, A.T.; Stringer, S.C.; Webb, M.D.; Peck, M.W. The type F6 neurotoxin gene cluster locus of group II Clostridium botulinum has evolved by successive disruption of two different ancestral precursors. Genome Biol. Evol. 2013, 5, 1032–1037. [Google Scholar] [CrossRef] [Green Version]
- Williamson, C.H.; Sahl, J.W.; Smith, T.J.; Xie, G.; Foley, B.T.; Smith, L.A.; Fernandez, R.A.; Lindstrom, M.; Korkeala, H.; Keim, P.; et al. Comparative genomic analyses reveal broad diversity in botulinum-toxin-producing Clostridia. BMC Genom. 2016, 17, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.J.; Xie, G.; Williamson, C.H.D.; Hill, K.K.; Sahl, J.W.; Keim, P.; Johnson, S.L. Genomic characterization of newly completed genomes of botulinum neurotoxin-producing species from Argentina, Australia and Africa. Genome Biol. Evol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Brunt, J.; van Vliet, A.H.M.; Carter, A.T.; Stringer, S.C.; Amar, C.; Grant, K.A.; Godbole, G.; Peck, M.W. Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins 2020, 12, 586. [Google Scholar] [CrossRef] [PubMed]
- Halpin, J.L.; Hill, K.; Johnson, S.L.; Bruce, D.C.; Shirey, T.B.; Dykes, J.K.; Luquez, C. Finished Whole-Genome Sequence of Clostridium argentinense Producing Botulinum Neurotoxin Type G. Genome Announc. 2017, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambowitz, A.M.; Zimmerly, S. Group II introns: Mobile ribozymes that invade DNA. Cold Spring Harb. Perspect. Biol. 2011, 3, a003616. [Google Scholar] [CrossRef]
- Kuehne, S.A.; Minton, N.P. ClosTron-mediated engineering of Clostridium. Bioengineered 2012, 3, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A fast phage search tool. Nucleic Acids Res. 2011, 39, W347–W352. [Google Scholar] [CrossRef]
- Gimenez, D.F.; Ciccarelli, A.S. Another type of Clostridium botulinum. Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt. I 1970, 215, 221–224. [Google Scholar]
- Sonnabend, O.; Sonnabend, W.; Heinzle, R.; Sigirst, T.; Dirnhofer, R.; Krech, U. Isolation of Clostridium botulinum type G and identification of type G botulinal toxin in humans: Report of five sudden unexpected deaths. J. Infect. Dis. 1981, 143, 22–27. [Google Scholar] [CrossRef]
- Suen, J.C.; Hatheway, C.L.; Steigerwalt, A.G.; Brenner, D.J. Clostridium argentinense sp. nov.: A genetically homogeneous group composed of all strains of Clostridium botulinum toxin type G and some nontoxigenic strains previously identified as Clostridium subterminale or Clostridium hastiforme. Int. J. Syst. Bacteriol. 1988, 38, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Eklund, M.W.; Poysky, F.T.; Mseitif, L.M.; Strom, M.S. Evidence for plasmid-mediated toxin and bacteriocin production in Clostridium botulinum type G. Appl. Environ. Microbiol. 1988, 54, 1405–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filee, J.; Siguier, P.; Chandler, M. Insertion sequence diversity in archaea. Microbiol. Mol. Biol. Rev. 2007, 71, 121–157. [Google Scholar] [CrossRef] [Green Version]
- Bowmer, E.J. Antitoxins of Clostridium botulinum Types A, B, C, D, and E; Preparation and Assay of Proposed International Standards; University of Liverpool: Liverpool, UK, 1962. [Google Scholar]
- Guedon, G.; Libante, V.; Coluzzi, C.; Payot, S.; Leblond-Bourget, N. The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems. Genes 2017, 8, 337. [Google Scholar] [CrossRef] [Green Version]
- Bennett, S. Solexa Ltd. Pharmacogenomics 2004, 5, 433–438. [Google Scholar] [CrossRef]
- Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; et al. Real-time DNA sequencing from single polymerase molecules. Science 2009, 323, 133–138. [Google Scholar] [CrossRef]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Chin, C.S.; Alexander, D.H.; Marks, P.; Klammer, A.A.; Drake, J.; Heiner, C.; Clum, A.; Copeland, A.; Huddleston, J.; Eichler, E.E.; et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 2013, 10, 563–569. [Google Scholar] [CrossRef]
- Ewing, B.; Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998, 8, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Ewing, B.; Hillier, L.; Wendl, M.C.; Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998, 8, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Gordon, D.; Green, P. Consed: A graphical editor for next-generation sequencing. Bioinformatics 2013, 29, 2936–2937. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Hemmerich, C.; Buechlein, A.; Podicheti, R.; Revanna, K.V.; Dong, Q. An Ergatis-based prokaryotic genome annotation web server. Bioinformatics 2010, 26, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Schill, K.M.; Wang, Y.; Butler, R.R.; Pombert, J.-F.; Reddy, N.R.; Skinner, G.E.; Larkin, J.W. Genetic Diversity of Clostridium sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing. Appl. Environ. Microbiol. 2016, 82, 384–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
Average Read Coverage | |||||||
---|---|---|---|---|---|---|---|
Strain | Genomic Element | NCBI Accession | Size (Mb) | Contigs | Illumina | PacBio | 454 |
CDC 1632 | chromosome | CP013243 | 4.39305 | 1 | 319X | 52.6X | |
CDC 67071 | chromosome | CP013242 | 4.11655 | 1 | 649.91X | 4.34X | |
plasmid pNPD7 | CP013241 | 0.23565 | 1 | 664.75X | 5.05X | ||
CDC 2741 | chromosome | AYSO0100000 [16] | 4.74256 | 20 | 171.8X | - | 9.9x |
89G | chromosome | CP014176 [26] | 4.66299 | 1 | 104.22X | 18.98X | |
plasmid pRSJ17_1 | CP014175 [26] | 0.14007 | 1 | 128.79X | 36.39X | ||
DFPST0006 | chromosome | JACBDK0100000 | 4.06783 | 29 | 100.5X | ||
Okra | chromosome | CP000939 [13] | 3.95823 | 1 | |||
plasmid pCLD | CP000940 [13] | 0.14878 | 1 |
CDC1632 Chromosome | CDC 67071 Chromosome | ||||
---|---|---|---|---|---|
Locus Tag | Location (bp) | Identity * | Locus Tag | Location (bp) | Identity * |
NPD5_257 | 264,722–266,545 | 100% | NPD7_1244 | 1,338,963–1,340,786 | 100% |
NPD5_3598 | 3,820,672–3,822,498 | 95% | |||
NPD5_3758 | 3,977,797–3,979,620 | 100% | CDC 67071 Plasmid | ||
NPD5_3760 | 3,981,276–3,983,102 | 95% | Locus tag | Location (bp) | Identity * |
NPD5_3788 | 4,000,956–4,002,782 | 95% | NPD7_3844 | 22,924–24,747 | 100% |
NPD5_3940 | 4,120,953–4,122,775 | 100% | NPD7_4079 | 225,791–227,614 | 100% |
NPD5_4078 | 4,239,250–4,241,076 | 95% |
DC 1632 Chromosome | |||
Size | State | Location (bp) | Phage Name (Closest Match) |
51.9 Kb | intact | 261,289–313,268 | PHAGE_Clostr_phiCD6356_NC_015262(9) |
50.2 Kb | intact | 3,627,037–3,677,326 | PHAGE_Clostr_phiCTC2B_NC_030951(8) |
CDC 67071 Chromosome | |||
Size | State | Location (bp) | Phage Name (Closest Match) |
46.5 Kb | intact | 1,345,771–1,392,323 | PHAGE_Clostr_phiCD6356_NC_015262(9) |
CDC 67071 Plasmid | |||
No intact phage present; no incomplete phage associated with ltrA present. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, T.J.; Tian, R.; Imanian, B.; Williamson, C.H.D.; Johnson, S.L.; Daligault, H.E.; Schill, K.M. Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense. Toxins 2021, 13, 473. https://doi.org/10.3390/toxins13070473
Smith TJ, Tian R, Imanian B, Williamson CHD, Johnson SL, Daligault HE, Schill KM. Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense. Toxins. 2021; 13(7):473. https://doi.org/10.3390/toxins13070473
Chicago/Turabian StyleSmith, Theresa J., Renmao Tian, Behzad Imanian, Charles H. D. Williamson, Shannon L. Johnson, Hajnalka E. Daligault, and Kristin M. Schill. 2021. "Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense" Toxins 13, no. 7: 473. https://doi.org/10.3390/toxins13070473
APA StyleSmith, T. J., Tian, R., Imanian, B., Williamson, C. H. D., Johnson, S. L., Daligault, H. E., & Schill, K. M. (2021). Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense. Toxins, 13(7), 473. https://doi.org/10.3390/toxins13070473