Tissue-Biased and Species-Specific Regulation of Glutathione Peroxidase (GPx) Genes in Scallops Exposed to Toxic Dinoflagellates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Genome-Wide Identification of GPx Genes in C. farreri and P. yessoensis
2.2. Conserved Structures of GPx Genes in C. farreri and P. yessoensis
2.3. Phylogenetic Relationship of GPxs between Bivalves and Other Organisms
2.4. Spatio-Temporal Expression of Scallop GPxs During Development and in Adult Tissues
2.5. Expression Regulation of Scallop GPxs in Response to PST-Producing Dinoflagellates
3. Conclusions
4. Materials and Methods
4.1. Screening GPx Genes from the C. farreri and P. yessoensis Genomes
4.2. Multiple Sequence Alignment and Phylogenetic Analysis of the GPx Gene Family
4.3. Expression Analysis of GPxs During Scallop Development and in Adult Organs/Tissues
4.4. Expression Analysis of GPx Genes in Scallops Exposed to Toxic Dinoflagellates
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lesser, M.P. Oxidative stress in marine environments: Biochemistry and Physiological Ecology. Annu. Rev. Physiol. 2006, 68, 253–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, H.; Nakamura, K.; Yodoi, J. Redox regulation of cellular activation. Annu. Rev. Immunol. 1997, 15, 351–369. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, J.D.; Kaufman, R.J. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Cycle or a Double-Edged Sword? Antioxid. Redox Signal. 2007, 9, 2277–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxidative Med. Cell. Longev. 2016, 2016, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Migdal, C.; Serres, M. Reactive oxygen species and oxidative stress. Med. Sci. 2011, 27, 405–412. [Google Scholar]
- Herbette, S.; Roeckel-Drevet, P.; Drevet, J.R. Seleno-independent glutathione peroxidases: More than simple antioxidant scav-engers. FEBS J. 2007, 274, 2163–2180. [Google Scholar] [CrossRef]
- Margis, R.; Dunand, C.; Teixeira, F.K.; Margis-Pinheiro, M. Glutathione peroxidase family–an evolutionary overview. FEBS J. 2008, 275, 3959–3970. [Google Scholar] [CrossRef]
- Drevet, J.R. The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Mol. Cell. Endocrinol. 2006, 250, 70–79. [Google Scholar] [CrossRef]
- Arthur, J.R. The glutathione peroxidases. Cell. Mol. Life Sci. 2001, 57, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- Almar, M.; Otero, L.; Santos, C.; Gallego, J.G. Liver glutathione content and glutathione-dependent enzymes of two species of freshwater fish as bioindicators of chemical pollution. J. Environ. Sci. Heal. Part. B 1998, 33, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Sun, R.-R.; Zhao, X.-F.; Wang, J.-X. A selenium-dependent glutathione peroxidase (Se-GPx) and two glutathione S-transferases (GSTs) from Chinese shrimp (Fenneropenaeus chinensis). Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2009, 149, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, X.; Chen, L.; You, L.; Pei, D.; Cong, M.; Zhao, J.; Li, C.; Liu, N.; Yu, J.; et al. Transcriptional regulation of selenium-dependent glutathione peroxidase from Venerupis philippinarum in response to pathogen and contaminants challenge. Fish. Shellfish. Immunol. 2011, 31, 831–837. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Saaranen, M.J.; Karala, A.-R.; Lappi, A.-K.; Wang, L.; Raykhel, I.B.; Alanen, H.I.; Salo, K.E.; Wang, C.-C.; Ruddock, L.W. Two Endoplasmic Reticulum PDI Peroxidases Increase the Efficiency of the Use of Peroxide during Disulfide Bond Formation. J. Mol. Biol. 2011, 406, 503–515. [Google Scholar] [CrossRef]
- Wang, Q.; Ning, X.; Zhang, Q.; Liu, F.; Wu, H.; Zhang, Y.; Zhao, J. Molecular characterization of two glutathione peroxidase genes in Mytilus galloprovincialis and their transcriptional responses to sub-chronic arsenate and cadmium exposure. Invertebr. Surviv. J. 2014, 11, 149–162. [Google Scholar]
- Doyen, P.; Vasseur, P.; Rodius, F. Identification, sequencing and expression of selenium-dependent glutathione peroxidase transcript in the freshwater bivalve Unio tumidus exposed to Aroclor 1254. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2006, 144, 122–129. [Google Scholar] [CrossRef]
- Shan, Z.; Li, H.; Bao, X.; He, C.; Yu, H.; Liu, W.; Hou, L.; Wang, J.; Zhu, D.; Sui LZhu, B. A selenium-dependent glutathione peroxidase in the Japanese scallop, Mi-zuhopecten yessoensis: cDNA cloning, promoter sequence analysis and mRNA expression. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2011, 159, 1–9. [Google Scholar] [CrossRef]
- Mu, C.; Ni, D.; Zhao, J.; Wang, L.; Song, L.; Li, L.; Zhang, H.; Qiu, L.; Cong, M. cDNA cloning and mRNA expression of a selenium-dependent glutathione peroxidase from Zhikong scallop Chlamys farreri. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 2010, 157, 182–188. [Google Scholar] [CrossRef]
- Zhang, L.; Ning, X.; Chen, L.; Li, C.; Liu, F.; Wang, Q.; Wu, H.; Zhao, J. Molecular cloning and expression analysis of a selenium-independent glutathione peroxidase identified from Manila clam Venerupis philippinarum. Aquac. Res. 2011, 43, 1176–1183. [Google Scholar] [CrossRef]
- De Zoysa, M.; Pushpamali, W.A.; Oh, C.; Whang, I.; Kim, S.J.; Lee, J. Transcriptional up-regulation of disk abalone selenium dependent glutathione peroxidase by H2O2 oxidative stress and Vibrio alginolyticus bacterial infection. Fish. Shellfish. Immunol. 2008, 25, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huan, P.; Yue, X.; Yan, M.; Liu, B. Molecular characterization of a glutathione peroxidase gene and its expression in the selected Vibrio-resistant population of the clam Meretrix meretrix. Fish. Shellfish. Immunol. 2011, 30, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Cong, M.; Zhang, L.; Zhang, L.; Zhao, J.; Wu, H.; Chen, H.; Kong, J. Molecular characterization of a Se-containing glutathione peroxidases gene and its expressions to heavy metals compared with non-Se-containing glutathione peroxidases in Venerupis philippinarum. Agri Gene 2016, 1, 46–52. [Google Scholar] [CrossRef]
- Xia, X.; Hua, C.; Xue, S.; Shi, B.; Gui, G.; Zhang, N.; Wang, X.; Guo, L. Response of selenium-dependent glutathione peroxidase in the freshwater bivalve Anodonta woodiana exposed to 2,4-dichlorophenol,2,4,6-trichlorophenol and pentachlorophenol. Fish. Shellfish. Immunol. 2016, 55, 499–509. [Google Scholar] [CrossRef]
- Qu, C.; Liu, S.; Tang, Z.; Li, J.; Liao, Z.; Qi, P. Response of a novel selenium-dependent glutathione peroxidase from thick shell mussel Mytilus coruscus exposed to lipopolysaccharide, copper and benzo[α]pyrene. Fish. Shellfish. Immunol. 2019, 89, 595–602. [Google Scholar] [CrossRef]
- Jo, P.G.; Choi, Y.K.; Choi, C.Y. Cloning and mRNA expression of antioxidant enzymes in the Pacific oyster, Crassostrea gigas in response to cadmium exposure. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2008, 147, 460–469. [Google Scholar] [CrossRef]
- Wu, C.; Mai, K.; Zhang, W.; Ai, Q.; Xu, W.; Wang, X.; Ma, H.; Liufu, Z. Molecular cloning, characterization and mRNA expression of seleni-um-dependent glutathione peroxidase from abalone Haliotis discus hannai Ino in response to dietary selenium, zinc and iron. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2010, 152, 121–132. [Google Scholar] [CrossRef]
- Deeds, J.R.; Landsberg, J.H.; Etheridge, S.M.; Pitcher, G.C.; Longan, S.W. Non-traditional vectors for paralytic shellfish poisoning. Mar. Drugs 2008, 6, 308–348. [Google Scholar] [CrossRef]
- Estrada, N.; de Jesús Romero, M.; Campa-Córdova, A.; Luna, A.; Ascencio, F. Effects of the toxic dinoflagellate, Gymnodinium cat-enatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2007, 146, 502–510. [Google Scholar] [CrossRef]
- Fabioux, C.; Sulistiyani, Y.; Haberkorn, H.; Hégaret, H.; Amzil, Z.; Soudant, P. Exposure to toxic Alexandrium minutum activates the detoxifying and antioxidant systems in gills of the oyster Crassostrea gigas. Harmful Algae 2015, 48, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Ma, F.; Fan, H.; Li, A. Effects of feeding Alexandrium tamarense, a paralytic shellfish toxin producer, on antioxidant enzymes in scallops (Patinopecten yessoensis) and mussels (Mytilus galloprovincialis). Aquaculture 2013, 76–81. [Google Scholar] [CrossRef]
- Lian, S.; Zhao, L.; Xun, X.; Lou, J.; Li, M.; Li, X.; Wang, S.; Zhang, L.; Hu, X.; Bao, Z. Genome-Wide Identification and Characterization of SODs in Zhikong Scallop Reveals Gene Expansion and Regulation Divergence after Toxic Dinoflagellate Exposure. Mar. Drugs 2019, 17, 700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, J.; Cheng, J.; Xun, X.; Li, X.; Li, M.; Zhang, X.; Li, T.; Bao, Z.; Hu, X. Glutathione S-transferase genes in scallops and their diverse expression patterns after exposure to PST-producingdinoflagellates. Mar. Life Sci. Technol. 2020, 2, 252–261. [Google Scholar] [CrossRef]
- Freitas, R.; Marques, F.; De Marchi, L.; Vale, C.; Botelho, M. Biochemical performance of mussels, cockles and razor shells con-taminated by paralytic shellfish toxins. Environ. Res. 2020, 188, 109846. [Google Scholar] [CrossRef] [PubMed]
- Mat, A.M.; Klopp, C.; Payton, L.; Jeziorski, C.; Chalopin, M.; Amzil, Z.; Tran, D.; Wikfors, G.H.; Hégaret, H.; Soudant PHuvet, A. Oyster transcriptome response to Alexandrium exposure is related to saxitoxin load and characterized by disrupted digestion, energy balance, and calcium and sodium signaling. Aquat. Toxicol. 2018, 199, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Prego-Faraldo, M.V.; Vieira, L.R.; Eirin-Lopez, J.M.; Mendez, J.; Guilhermino, L. Transcriptional and biochemical analysis of anti-oxidant enzymes in the mussel Mytilus galloprovincialis during experimental exposures to the toxic dinoflagellate Prorocentrum lima. Mar. Environ. Res. 2017, 129, 304–315. [Google Scholar] [CrossRef]
- Zhu, M.Y.; Zou, Y.L.; Wu, R.J.; Hall, S. Accumulation and depuration of paralytic shellfish poisons (PSP) in Chinese scallop Chlamys farreri. Acta Oceanol. Sin. 2003, 25, 75–83. [Google Scholar]
- Li, Y.; Sun, X.; Hu, X.; Xun, X.; Zhang, J.; Guo, X.; Jiao, W.; Zhang, L.; Liu, W.; Wang, J.; et al. Scallop genome reveals molecular adaptations to semi-sessile life and neu-rotoxins. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, F.-Z.; Xun, X.-G.; Dai, L.; Geng, H.-X.; Hu, X.-L.; Yu, R.-C.; Bao, Z.-M.; Zhou, M.-J. Biokinetics and biotransformation of paralytic shellfish toxins in different tissues of Yesso scallops, Patinopecten yessoensis. Chemosphere 2020, 261, 128063. [Google Scholar] [CrossRef]
- Doyen, P.; Bigot, A.; Vasseur, P.; Rodius, F. Molecular cloning and expression study of pi-class glutathione S-transferase (pi-GST) and selenium-dependent glutathione peroxidase (Se-GPx) transcripts in the freshwater bivalve Dreissena polymorpha. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2008, 147, 69–77. [Google Scholar] [CrossRef]
- Churin, Y.; Schilling, S.; Börner, T. A gene family encoding glutathione peroxidase homologues in Hordeum vulgare (barley). FEBS Lett. 1999, 459, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Aumann, K.D.; Bedorf, N.; Brigelius-Flohé, R.; Schomburg, D.; Flohé, L. Glutathione peroxidase revisited—Simulation of the catalytic cycle by computer-assisted molecular modelling. Biomed. Environ. Sci. 1997, 10, 136–155. [Google Scholar] [PubMed]
- Maiorino, F.M.; Brigelius-Flohé, R.; Aumann, K.; Roveri, A.; Schomburg, D.; Flohé, L. [5] Diversity of glutathione peroxidases. Methods Enzymol. 1995, 252, 38–53. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Jiao, W.; Li, J.; Xun, X.; Sun, Y.; Guo, X.; Huan, L.; Dong, B.; Zhang, L.; et al. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat. Ecol. Evol. 2017, 1, 120. [Google Scholar] [CrossRef]
- Cossu, C.; Doyotte, A.; Jacquin, M.; Babut, M.; Exinger, A.; Vasseur, P. Glutathione reductase, selenium-dependent glutathione peroxidase, glutathione levels, and lipid peroxidation in freshwater bivalves, Unio tumidus, as biomarkers of aquatic con-tamination in field studies. Ecotoxicol. Environ. Saf. 1997, 38, 122–131. [Google Scholar] [CrossRef]
- Liu, C.; Tseng, M.-C.; Cheng, W. Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei, and its expression following Vibrio alginolyticus infection. Fish. Shellfish. Immunol. 2007, 23, 34–45. [Google Scholar] [CrossRef]
- Cheng, J.; Xun, X.; Kong, Y.; Wang, S.; Yang, Z.; Li, Y.; Kong, D.; Wang, S.; Zhang, L.; Hu, X.; et al. Hsp70 gene expansions in the scallop Patinopecten yessoensis and their expression regulation after exposure to the toxic dinoflagellate Alexandrium catenella. Fish. Shellfish. Immunol. 2016, 58, 266–273. [Google Scholar] [CrossRef]
- Hu, B.; Li, M.; Yu, X.; Xun, X.; Lu, W.; Li, X.; Li, Y.; Lou, J.; Wang, S.; Zhang, L.; et al. Diverse expression regulation of Hsp70 genes in scallops after exposure to toxic Alexandrium dinoflagellates. Chemosphere 2019, 234, 62–69. [Google Scholar] [CrossRef]
- Zhou, Z.; Tang, X.; Chen, H.; Wang, Y. Comparative studies of saxitoxin (STX) -induced cytotoxicity in Neuro-2a and RTG-2 cell lines: An explanation with respect to changes in ROS. Chemosphere 2018, 192, 66–74. [Google Scholar] [CrossRef]
- Liu, W.; He, C.; Li, W.; Zhou, Z.; Gao, X.; Fu, L. Discovery of host defence genes in the Japanese scallop Mizuhopecten yessoensis Jay by expressed sequence tag analysis of kidney tissue. Aquac. Res. 2010, 41, 1602–1613. [Google Scholar] [CrossRef]
- Mat, A.M.; Haberkorn, H.; Bourdineaud, J.-P.; Massabuau, J.-C.; Tran, D. Genetic and genotoxic impacts in the oyster Crassostrea gigas exposed to the harmful alga Alexandrium minutum. Aquat. Toxicol. 2013, 140, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Mello, D.F.; Da Silva, P.M.; Barracco, M.A.; Soudant, P.; Hégaret, H. Effects of the dinoflagellate Alexandrium minutum and its toxin (saxitoxin) on the functional activity and gene expression of Crassostrea gigas hemocytes. Harmful Algae 2013, 26, 45–51. [Google Scholar] [CrossRef]
- García-Lagunas, N.; Romero-Geraldo, R.D.J.; Hernández-Saavedra, N.Y. Changes in gene expression and histological injuries as a result of exposure of Crassostrea gigas to the toxic dinoflagellate Gymnodinium catenatum. J. Molluscan Stud. 2015, 82, 193–200. [Google Scholar] [CrossRef] [Green Version]
- García-Lagunas, N.; Romero-Geraldo, R.; Hernandez-Saavedra, N.Y. Genomics Study of the Exposure Effect of Gymnodinium catenatum, a Paralyzing Toxin Producer, on Crassostrea gigas’ Defense System and Detoxification Genes. PLoS ONE 2013, 8, e72323. [Google Scholar] [CrossRef] [Green Version]
- Romero-Geraldo, R.D.J.; Hernández-Saavedra, N.Y. Stress Gene Expression in Crassostrea gigas (Thunberg, 1793) in response to experimental exposure to the toxic dinoflagellate Prorocentrum lima (Ehrenberg) Dodge, 1975. Aquac. Res. 2014, 45, 1512–1522. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; Mcgettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, K.B. GeneDoc: Analysis and visualization of genetic variation. Embnew. News 1997, 4, 14. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Escobedo-Lozano, A.Y.; Estrada, N.; Ascencio, F.; Contreras, G.; Alonso-Rodriguez, R. Accumulation, biotransformation, histo-pathology and paralysis in the Pacific calico scallop Argopecten ventricosus by the paralyzing toxins of the dinoflagellate Gymnodinium catenatum. Mar. Drugs 2012, 10, 1044–1065. [Google Scholar] [CrossRef]
- Navarro, J.; Muñoz, M.; Contreras, A. Temperature as a factor regulating growth and toxin content in the dinoflagellate Alex-andrium catenella. Harmful Algae 2006, 5, 762–769. [Google Scholar] [CrossRef]
Gene | Genomic Position | No. Intron | Amino Acid (aa) | GPx Domain Position | Isoelectric Point (pI) | Molecular Weight (KDa) |
---|---|---|---|---|---|---|
CfGPx1-1 | 20345.14:285273–290196 | 1 | 145 | 1–71 | 7.63 | 16.92 |
CfGPx1-2 | 723835.1:769–1754 | 1 | 121 | 1–47 | 7.66 | 14.22 |
CfGPx3-1 | 16535.52:1096572–1102808 | 2 | 130 | 1–63 | 5.86 | 16.33 |
CfGPx3-2 | 41509.77:1599940–1606070 | 2 | 145 | 1–73 | 5.62 | 16.23 |
CfGPx3-3a | 41509.75:1596971–1598762 | 2 | 173 | 1–24 | 6.70 | 19.79 |
CfGPx3-3b | 41509.78:1608479–1610027 | 2 | 221 | 96–143 | 8.24 | 24.68 |
CfGPx3-4 | 41509.74:1587475–1591661 | 2 | 192 | 1–24 | 6.23 | 22.01 |
CfGPx4 | 57527.11:265310–274184 | 4 | 141 | 3–83 | 8.90 | 15.00 |
CfGPx7 | 61639.7:153594–157975 | 3 | 280 | 102–210 | 4.35 | 31.83 |
PyGPx1 | 7781.4:46294–55646 | 1 | 143 | 1–71 | 8.73 | 16.67 |
PyGPx3-1 | 2921.10:304644–315700 | 2 | 141 | 1–63 | 5.03 | 16.09 |
PyGPx3-2 | 7441.4:20641–24946 | 2 | 141 | 1–73 | 5.40 | 15.89 |
PyGPx3-3 | 7441.1:18051–19124 | 1 | 108 | 1–94 | 9.41 | 12.73 |
PyGPx3-4 | 9581.1:21483–23254 | 1 | 108 | 1–100 | 8.76 | 12.83 |
PyGPx3-5 | 10997.2:56916–60988 | 2 | 203 | 3–108 | 8.31 | 23.38 |
PyGPx4 | 2091.24:1003767–1022307 | 4 | 173 | 9–97 | 9.26 | 20.10 |
PyGPx7 | 7907.21:716289–720446 | 3 | 277 | 99–207 | 4.43 | 31.41 |
GPx | H. sapiens | M. musculus | A. carolinensis | G. gallus | X. tropicalis | D. rerio | L. gigantea | C. gigas | C. farreri | P. yessoensis |
---|---|---|---|---|---|---|---|---|---|---|
GPx1 | 1 | 1 | 1 | 1 | 1 | 2 | 0 | 1 | 2 | 1 |
GPx2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
GPx3 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 3 | 5 | 5 |
GPx4 | 1 | 1 | 0 | 1 | 0 | 2 | 1 | 1 | 1 | 1 |
GPx5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
GPx6 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
GPx7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
GPx8 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
Total | 8 | 8 | 3 | 5 | 4 | 7 | 4 | 6 | 9 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlaing, S.M.M.; Lou, J.; Cheng, J.; Xun, X.; Li, M.; Lu, W.; Hu, X.; Bao, Z. Tissue-Biased and Species-Specific Regulation of Glutathione Peroxidase (GPx) Genes in Scallops Exposed to Toxic Dinoflagellates. Toxins 2021, 13, 21. https://doi.org/10.3390/toxins13010021
Hlaing SMM, Lou J, Cheng J, Xun X, Li M, Lu W, Hu X, Bao Z. Tissue-Biased and Species-Specific Regulation of Glutathione Peroxidase (GPx) Genes in Scallops Exposed to Toxic Dinoflagellates. Toxins. 2021; 13(1):21. https://doi.org/10.3390/toxins13010021
Chicago/Turabian StyleHlaing, Sein Moh Moh, Jiarun Lou, Jie Cheng, Xiaogang Xun, Moli Li, Wei Lu, Xiaoli Hu, and Zhenmin Bao. 2021. "Tissue-Biased and Species-Specific Regulation of Glutathione Peroxidase (GPx) Genes in Scallops Exposed to Toxic Dinoflagellates" Toxins 13, no. 1: 21. https://doi.org/10.3390/toxins13010021
APA StyleHlaing, S. M. M., Lou, J., Cheng, J., Xun, X., Li, M., Lu, W., Hu, X., & Bao, Z. (2021). Tissue-Biased and Species-Specific Regulation of Glutathione Peroxidase (GPx) Genes in Scallops Exposed to Toxic Dinoflagellates. Toxins, 13(1), 21. https://doi.org/10.3390/toxins13010021