Biomarkers of Deoxynivalenol, Citrinin, Ochratoxin A and Zearalenone in Pigs after Exposure to Naturally Contaminated Feed Close to Guidance Values
Abstract
:1. Introduction
- (1)
- Find a reliable correlation between the concentration of mycotoxin in contaminated feed and mycotoxin biomarker levels in biological matrices (urine and serum) after the simultaneous oral ingestion of multiple mycotoxins: DON, ZEN (at concentrations close to the guidance values), OTA and CIT.
- (2)
- Select adequate pig urinary and serum biomarkers for OTA and CIT.
- (3)
- Check whether exposure time affected the toxin levels in the serum and urine of pigs (to establish adequate sampling time).
- (4)
- Assess the kinetics of the disappearance of mycotoxin biomarkers in urine and serum samples for multiple mycotoxins (with the initial data being attained for urinary OTA and CIT biomarkers). In order to ensure conditions as close to the natural ones as possible, the experimental feed was prepared from cereals–corn—which was naturally contaminated with mycotoxins and rye–inoculated in the field with the Fusarium species.
2. Results and Discussion
2.1. Development of a Multi-Mycotoxin Method for the Quantification of Biomarkers in Pig Serum Samples
2.2. Urinary and Serum Mycotoxin Biomarkers
2.2.1. Deoxynivalenol Biomarkers
2.2.2. Zearalenone Biomarkers
2.2.3. Ochratoxin A Biomarkers
2.2.4. Citrinine Biomarkers
2.3. The Impact of the Duration of Exposure to Mycotoxins on the Biomarker Levels in Biological Matrices and the Kinetics of the Dissapearance of Mycotoxin Biomarkers
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents for the LC-MS/MS Analysis of Serum Biomarkers
4.2. Preparation of Standard Mixtures for Serum Analysis
4.3. Preparation of Experimental Diets
4.4. Pig Trial
4.5. Mycotoxin Biomarkers LC-MS/MS Analysis
4.5.1. Urine Samples Analysis
4.5.2. Blood Sample Analysis—Method Development
4.5.3. LC-MS/MS Conditions
4.6. Statystical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Parliament and the Council of the, EU. Directive of The European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed 2002/32. Off. J. Eur. Communities 2002, L140, 10–22. [Google Scholar]
- Pierron, A.; Alassane-Kpembi, I.; Oswald, I. Impact of mycotoxin on immune response and consequences for pig health. Anim. Nutr. 2016, 2, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed. Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J.; Frazier, K.S. Swine as Models in Biomedical Research and Toxicology Testing. Vet. Pathol. 2011, 49, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Gasthuys, E.; Vandecasteele, T.; De Bruyne, P.; Walle, J.V.; De Backer, P.; Cornillie, P.; Devreese, M.; Croubels, S. The Potential Use of Piglets as Human Pediatric Surrogate for Preclinical Pharmacokinetic and Pharmacodynamic Drug Testing. Curr. Pharm. Des. 2016, 22, 4069–4085. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- European Commission (EC). Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins inproducts intended for animal feeding. Off. J. Eur. Union 2006, L299, 7–9. [Google Scholar]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.R.; Ou, S.X.; Long, W.P.; Wei, Z.; Yan, X.; Yu, L. Simultaneous Detection Method for Mycotoxins and their Metabolites in Animal Urine by Using Impurity Adsorption Purification followed by Liquid Chromatography-Tandem Mass Detection. J. Chromatogr. Sep. Tech. 2015, 6, 7. [Google Scholar] [CrossRef]
- Song, S.; Ediage, E.N.; Wu, A.; De Saeger, S. Development and application of salting-out assisted liquid/liquid extraction for multi-mycotoxin biomarkers analysis in pig urine with high performance liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2013, 1292, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thieu, N.Q.; Pettersson, H. Zearalenone, deoxynivalenol and aflatoxin B1 and their metabolites in pig urine as biomarkers for mycotoxin exposure. Mycotoxin Res. 2009, 25, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Lauwers, M.; Croubels, S.; Letor, B.; Gougoulias, C.; Devreese, M. Biomarkers for Exposure as A Tool for Efficacy Testing of A Mycotoxin Detoxifier in Broiler Chickens and Pigs. Toxins 2019, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Nagl, V.; Woechtl, B.; Schwartz-Zimmermann, H.; Hennig-Pauka, I.; Moll, W.-D.; Adam, G.; Berthiller, F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicol. Lett. 2014, 229, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, G.S.; Pettersson, H.; Lindberg, J.E. Absorption, metabolism and excretion of 3-acetyl DON in pigs. Arch. Anim. Nutr. 2003, 57, 335–345. [Google Scholar] [CrossRef]
- Binder, S.B.; Schwartz-Zimmermann, H.E.; Varga, E.; Bichl, G.; Michlmayr, H.; Adam, G.; Berthiller, F. Metabolism of Zearalenone and Its Major Modified Forms in Pigs. Toxins 2017, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Gambacorta, L.; Olsen, M.; Solfrizzo, M. Pig Urinary Concentration of Mycotoxins and Metabolites Reflects Regional Differences, Mycotoxin Intake and Feed Contaminations. Toxins 2019, 11, 378. [Google Scholar] [CrossRef] [Green Version]
- Brezina, U.; Rempe, I.; Kersten, S.; Valenta, H.; Humpf, H.-U.; Dänicke, S. Diagnosis of intoxications of piglets fed with Fusarium toxin-contaminated maize by the analysis of mycotoxin residues in serum, liquor and urine with LC-MS/MS. Arch. Anim. Nutr. 2014, 68, 425–447. [Google Scholar] [CrossRef] [PubMed]
- Döll, S.; Dänicke, S.; Ueberschär, K.-H.; Valenta, H.; Schnurrbusch, U.; Ganter, M.; Klobasa, F.; Flachowsky, G. Effects of graded levels of Fusarium toxin contaminated maize in diets for female weaned piglets. Arch. Anim. Nutr. 2003, 57, 311–334. [Google Scholar] [CrossRef]
- Dänicke, S.; Brüssow, K.-P.; Valenta, H.; Ueberschär, K.-H.; Tiemann, U.; Schollenberger, M. On the effects of graded levels of Fusarium toxin contaminated wheat in diets for gilts on feed intake, growth performance and metabolism of deoxynivalenol and zearalenone. Mol. Nutr. Food Res. 2005, 49, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Thanner, S.; Czeglédi, L.; Schwartz-Zimmermann, H.E.; Berthiller, F.; Gutzwiller, A. Urinary deoxynivalenol (DON) and zearalenone (ZEA) as biomarkers of DON and ZEA exposure of pigs. Mycotoxin Res. 2016, 32, 69–75. [Google Scholar] [CrossRef]
- Gambacorta, S.; Solfrizzo, H.; Visconti, A.; Powers, S.; Cossalter, A.; Pinton, P.; Oswald, I. Validation study on urinary biomarkers of exposure for aflatoxin B1, ochratoxin A, fumonisin B1, deoxynivalenol and zearalenone in piglets. World Mycotoxin J. 2013, 6, 299–308. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J. 2012, 10, 1–82. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.; Nebbia, C.S.; et al. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, e06113. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, G.; Zhao, H.; Zheng, J.; Hu, F.; Fang, B. Liquid chromatography–tandem mass spectrometry method for toxicokinetics, tissue distribution, and excretion studies of T-2 toxin and its major metabolites in pigs. J. Chromatogr. B 2014, 958, 75–82. [Google Scholar] [CrossRef]
- Devreese, M.; De Baere, S.; De Backer, P.; Croubels, S. Quantitative determination of several toxicological important mycotoxins in pig plasma using multi-mycotoxin and analyte-specific high performance liquid chromatography–tandem mass spectrometric methods. J. Chromatogr. A 2012, 1257, 74–80. [Google Scholar] [CrossRef]
- De Baere, S.; Osselaere, A.; Devreese, M.; Vanhaecke, L.; De Backer, P.; Croubels, S. Development of a liquid–chromatography tandem mass spectrometry and ultra-high-performance liquid chromatography high-resolution mass spectrometry method for the quantitative determination of zearalenone and its major metabolites in chicken and pig plasma. Anal. Chim. Acta 2012, 756, 37–48. [Google Scholar] [CrossRef]
- Devreese, M.; De Baere, S.; De Backer, P.; Croubels, S. Quantitative determination of the Fusarium mycotoxins beauvericin, enniatin A, A1, B and B1 in pig plasma using high performance liquid chromatography–tandem mass spectrometry. Talanta 2013, 106, 212–219. [Google Scholar] [CrossRef]
- Broekaert, N.; Devreese, M.; De Mil, T.; Fraeyman, S.; De Baere, S.; De Saeger, S.; De Backer, P.; Croubels, S. Development and validation of an LC–MS/MS method for the toxicokinetic study of deoxynivalenol and its acetylated derivatives in chicken and pig plasma. J. Chromatogr. B 2014, 971, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Lauwers, M.; De Baere, S.; Letor, B.; Rychlik, M.; Croubels, S.; Devreese, M. Multi LC-MS/MS and LC-HRMS Methods for Determination of 24 Mycotoxins including Major Phase I and II Biomarker Metabolites in Biological Matrices from Pigs and Broiler Chickens. Toxins 2019, 11, 171. [Google Scholar] [CrossRef] [Green Version]
- Brezina, U.; Valenta, H.; Rempe, I.; Kersten, S.; Humpf, H.-U.; Dänicke, S. Development of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of zearalenone, deoxynivalenol and their metabolites in pig serum. Mycotoxin Res. 2014, 30, 171–186. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Jedziniak, P. Dilute-and-Shoot HPLC-UV Method for Determination of Urinary Creatinine as a Normalization Tool in Mycotoxin Biomonitoring in Pigs. Molecules 2020, 25, 2445. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim. Feed. Sci. Technol. 2007, 137, 283–298. [Google Scholar] [CrossRef]
- Fleck, S.C.; Churchwell, M.I.; Doerge, D.R. Metabolism and pharmacokinetics of zearalenone following oral and intravenous administration in juvenile female pigs. Food Chem. Toxicol. 2017, 106, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Malekinejad, H.; Maas-Bakker, R.; Fink-Gremmels, J. Species differences in the hepatic biotransformation of zearalenone. Vet. J. 2006, 172, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Catteuw, A.; Broekaert, N.; De Baere, S.; Lauwers, M.; Gasthuys, E.; Huybrechts, B.; Callebaut, A.; Ivanova, L.; Uhlig, S.; De Boevre, M.; et al. Insights into In Vivo Absolute Oral Bioavailability, Biotransformation, and Toxicokinetics of Zearalenone, α-Zearalenol, β-Zearalenol, Zearalenone-14-glucoside, and Zearalenone-14-sulfate in Pigs. J. Agric. Food Chem. 2019, 67, 3448–3458. [Google Scholar] [CrossRef] [PubMed]
- Blank, R.; Wolffram, S. Alkalinization of Urinary pH Accelerates Renal Excretion of Ochratoxin A in Pigs. J. Nutr. 2004, 134, 2355–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoev, S.; Vitanov, S.; Anguelov, G.; Petkova-Bocharova, T.; Creppy, E. Experimental Mycotoxic Nephropathy in Pigs Provoked by a Diet Containing Ochratoxin A and Penicillic Acid. Vet. Res. Commun. 2001, 25, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Muñoz, K.; Degen, G.H. Ochratoxin A and its metabolites in urines of German adults—An assessment of variables in biomarker analysis. Toxicol. Lett. 2017, 275, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.C.; Pena, A.; Lino, C. Human ochratoxin A biomarkers—From exposure to effect. Crit. Rev. Toxicol. 2011, 41, 187–212. [Google Scholar] [CrossRef]
- Märtlbauer, E.; Usleber, E.; Dietrich, R.; Schneider, E. Ochratoxin A in human blood serum—Retrospective long-term data. Mycotoxin Res. 2009, 25, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Coronel, M.B.; Sanchis, V.; Ramos, A.J.; Marin, S. Review. Ochratoxin A: Presence in Human Plasma and Intake Estimation. Food Sci. Technol. Int. 2010, 16, 5–18. [Google Scholar] [CrossRef]
- Ali, N.; Hossain, K.; Degen, G.H. Blood plasma biomarkers of citrinin and ochratoxin A exposure in young adults in Bangladesh. Mycotoxin Res. 2017, 34, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Hult, K.; Hökby, E.; Gatenbeck, S.; Rutqvist, L. Ochratoxin A in blood from slaughter pigs in Sweden: Use in evaluation of toxin content of consumed feed. Appl. Environ. Microbiol. 1980, 39, 828–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo-Manzanares, N.; Rodríguez-Estévez, V.; Arenas-Fernández, P.; García-Campaña, A.M.; Gámiz-Gracia, L. Occurrence of Mycotoxins in Swine Feeding from Spain. Toxins 2019, 11, 342. [Google Scholar] [CrossRef] [Green Version]
- Aland, A.; Madec, F. (Eds.) Sustainable Animal Production; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Föllmann, W.; Behm, C.; Degen, G.H. Toxicity of the mycotoxin citrinin and its metabolite dihydrocitrinone and of mixtures of citrinin and ochratoxin A in vitro. Arch. Toxicol. 2014, 88, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Huybrechts, B.; Martins, J.C.; Debongnie, P.; Uhlig, S.; Callebaut, A. Fast and sensitive LC–MS/MS method measuring human mycotoxin exposure using biomarkers in urine. Arch. Toxicol. 2014, 89, 1993–2005. [Google Scholar] [CrossRef]
- Ali, N.; Blaszkewicz, M.; Degen, G.H. Occurrence of the mycotoxin citrinin and its metabolite dihydrocitrinone in urines of German adults. Arch. Toxicol. 2014, 89, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Meerpoel, C.; Vidal, A.; Huybrechts, B.; Tangni, E.K.; De Saeger, S.; Croubels, S.; Devreese, M. Comprehensive toxicokinetic analysis reveals major interspecies differences in absorption, distribution and elimination of citrinin in pigs and broiler chickens. Food Chem. Toxicol. 2020, 141, 111365. [Google Scholar] [CrossRef]
- Dietrich, D.; Heussner, A.H.; O’Brien, E. Ochratoxin A: Comparative pharmacokinetics and toxicological implications (experimental and domestic animals and humans). Food Addit. Contam. 2005, 22, 45–52. [Google Scholar] [CrossRef]
- Jedziniak, P.; Panasiuk, Ł.; Pietruszka, K.; Posyniak, A. Multiple mycotoxins analysis in animal feed with LC-MS/MS: Comparison of extract dilution and immunoaffinity clean-up. J. Sep. Sci. 2019, 42, 1240–1247. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Jedziniak, P. Development of a multi-mycotoxin LC-MS/MS method for the determination of biomarkers in pig urine. Mycotoxin Res. 2021, 37, 169–181. [Google Scholar] [CrossRef] [PubMed]
Mycotoxin Biomarkers | Urine | Serum | ||
---|---|---|---|---|
r | p | r | p | |
DON | 0.999 | <0.001 | 0.999 | <0.001 |
DOM-1 | 0.978 | <0.001 | - | - |
ZEN | 0.987 | <0.001 | - | - |
α-ZEL | 0.966 | <0.001 | - | - |
OTA | 0.988 | <0.001 | 0.999 | <0.001 |
OTα | 0.997 | <0.001 | - | - |
CIT | 0.998 | <0.001 | 0.999 | <0.001 |
DH-CIT | 0.995 | <0.001 | - | - |
Urinary Biomarkers | LLOQ [ng/mL] | C Mean Level ± SD [ng/mL] | C Range [ng/mL] | D1 Mean Level ± SD [ng/mL] | D1 Range [ng/mL] | D2 Mean Level ± SD [ng/mL] | D2 Range [ng/mL] |
---|---|---|---|---|---|---|---|
DON | 2.0 | 4.05 ± 0.83 | 2.11–7.27 | 45.3 ± 9.58 | 16.6–87.8 | 92.4 ± 11.6 | 51.5–127 |
DOM-1 | 6.0 | <LLOQ | - | 9.50 ± 2.51 | 2.06–20.1 | 24.2 ± 4.47 | 8.96–42.3 |
ZEN | 0.1 | 0.38 ± 0.12 | 0.15–1.66 | 1.63 ± 0.29 | 0.49–2.96 | 2.63 ± 0.71 | 0.55–6.51 |
α-ZEL | 0.4 | <LLOQ | - | 1.29 ± 0.31 | 0.43–2.46 | 2.10 ± 0.55 | 0.68–4.42 |
OTA | 1.5 | <LLOQ | - | 18.8 ± 6.40 | 2.38–39.1 | 36.5 ± 11.6 | 5.76–77.2 |
OTα | 4.0 | <LLOQ | - | 9.48 ± 2.62 | 3.87–17.8 | 16.2 ± 5.49 | 4.04–28.5 |
CIT | 1.5 | <LLOQ | - | 30.6 ± 4.17 | 20.1–44.9 | 64.9 ± 6.45 | 44.7–89.5 |
DH-CIT | 4 | <LLOQ | - | 31 ± 6.63 | 13.9–59.9 | 61.1 ± 5.94 | 40.5–81.3 |
Serum Biomarkers | LLOQ [ng/mL] | C Mean Level ± SD [ng/mL] | C Range [ng/mL] | D1 Mean Level ± SD [ng/mL] | D1 Range [ng/mL] | D2 Mean Level ± SD [ng/mL] | D2 Range [ng/mL] |
---|---|---|---|---|---|---|---|
DON | 2 | <LLOQ | - | 7.13 ± 1.26 | 5.42–8.42 | 14.3 ± 1.06 | 12.8–15.3 |
OTA | 2 | <LLOQ | - | 141 ± 47.9 | 71.5–177 | 278 ± 106 | 129–368 |
OTα | 0.5 | <LLOQ | - | <LLOQ | - | 0.69 ± 0.10 | 0.51–1.10 |
CIT | 0.5 | 0.19 ± 0.04 | <LLOQ-0.22 | 5.77 ± 1.07 | 4.50–6.78 | 13.03 ± 1.20 | 12.3–14.8 |
DH-CIT | 0.1 | <LLOQ | - | <LLOQ | - | 2.76 ± 0.55 | 2.02–3.83 |
Mycotoxin Ingested | Urinary Biomarkers | Metabolite/ Mycotoxin +Metabolite [%] | Kinetics of the Disappearance of Urinary Biomarkers | Serum Biomarkers | Kinetic of the Disappearance of Serum Biomarkers | Impact of Experiment Duration on Biomarker Levels |
---|---|---|---|---|---|---|
DON | DON DOM-1 | 18 | <48 h | DON | <48 h | - |
ZEN | ZEN α-ZEL | 44 | <72 h | n.d. | - | - |
OTA | OTA OTα | 31 | >14 days >6 days | OTA | >14 days | + |
CIT | CIT DH-CIT | 50 | >2 days >9 days | CIT | >14 days | - |
Mycotoxin Concentration [µg/kg] | Corn | Rye | EU Guidance Value | Control Group | RSD [%] | D1 Group | RSD [%] | D2 Group | RSD [%] |
---|---|---|---|---|---|---|---|---|---|
DON | 1200 ± 103 | 4200 ± 234 | 900 | <LLOQ | - | 559 ± 23.0 | 4.11 | 1126 ± 91.4 | 8.12 |
ZEN | 76.4 ± 11.2 | 6.34 ± 3.24 | 100 * | <LLOQ | - | 15.8 ± 2.11 | 13.3 | 34.7 ± 4.34 | 12.5 |
250 ** | |||||||||
OTA | 535 ± 32.4 | n.d. | 50 | 4.46 ± 0.48 | 10.8 | 114 ± 8.38 | 7.33 | 226 ± 21.8 | 9.68 |
CIT | 207 ± 24.8 | n.d. | - | 7.50 ± 1.05 | 14.1 | 35.7 ± 5.02 | 14.1 | 71.3 ± 8.28 | 11.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkaczyk, A.; Jedziniak, P.; Zielonka, Ł.; Dąbrowski, M.; Ochodzki, P.; Rudawska, A. Biomarkers of Deoxynivalenol, Citrinin, Ochratoxin A and Zearalenone in Pigs after Exposure to Naturally Contaminated Feed Close to Guidance Values. Toxins 2021, 13, 750. https://doi.org/10.3390/toxins13110750
Tkaczyk A, Jedziniak P, Zielonka Ł, Dąbrowski M, Ochodzki P, Rudawska A. Biomarkers of Deoxynivalenol, Citrinin, Ochratoxin A and Zearalenone in Pigs after Exposure to Naturally Contaminated Feed Close to Guidance Values. Toxins. 2021; 13(11):750. https://doi.org/10.3390/toxins13110750
Chicago/Turabian StyleTkaczyk, Agnieszka, Piotr Jedziniak, Łukasz Zielonka, Michał Dąbrowski, Piotr Ochodzki, and Adrianna Rudawska. 2021. "Biomarkers of Deoxynivalenol, Citrinin, Ochratoxin A and Zearalenone in Pigs after Exposure to Naturally Contaminated Feed Close to Guidance Values" Toxins 13, no. 11: 750. https://doi.org/10.3390/toxins13110750
APA StyleTkaczyk, A., Jedziniak, P., Zielonka, Ł., Dąbrowski, M., Ochodzki, P., & Rudawska, A. (2021). Biomarkers of Deoxynivalenol, Citrinin, Ochratoxin A and Zearalenone in Pigs after Exposure to Naturally Contaminated Feed Close to Guidance Values. Toxins, 13(11), 750. https://doi.org/10.3390/toxins13110750