Role of Sesamia nonagrioides and Ostrinia nubilalis as Vectors of Fusarium spp. and Contribution of Corn Borer-Resistant Bt Maize to Mycotoxin Reduction
Abstract
:1. Introduction
2. Results
2.1. Occurrence of Fusarium Species in Maize Ears
2.2. Occurrence of Fusarium Species in Corn Borers
2.3. Relationship between the Occurrence of Fusarium Species in Ears and Corn Borer Larvae
2.4. Mycotoxin Analyses
3. Discussion
4. Materials and Methods
4.1. Collection and Processing of Maize Ears and Corn Borers
4.2. Molecular Identification of Fungi Producing Mycotoxins in Flour Maize and Corn Borers. DNA Extraction and Specific PCR Detection
4.3. Extraction, Detection, and Quantification of Mycotoxins
4.3.1. Deoxynivalenol (DON), Zearalenone (ZEA), Toxins T-2, and HT-2 Analysis
Protocol for Samples of 2011
Protocol for Samples of 2012 and 2013
4.3.2. Fumonisins (B1 and B2) Analyses
Protocol for Samples of 2011
Protocol for Samples of 2012 and 2013
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT—Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 13 July 2021).
- WHO (World Health Organization). Evaluation of Certain Contaminants in Food, 72th ed.; WHO Tech Rep Ser. WHO Press; World Health Organization: Geneva, Switzerland, 2011; Volume 959, pp. 1–105. [Google Scholar]
- Pitt, J.I.; Taniwaki, M.H.; Cole, M.B. Mycotoxin production in major crops as influenced by growing, harvesting, storage and processing, with emphasis on the achievement of Food Safety Objectives. Food Control 2013, 32, 205–215. [Google Scholar] [CrossRef]
- Cheli, F.; Battaglia, D.; Gallo, R.; Dell′Ort, V. EU legislation on cereal safety: An update with a focus on mycotoxins. Food Control 2014, 37, 315–325. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F. Potential economic losses to the US corn industry from aflatoxin contamination. Food Additi. Contam. Part A 2016, 33, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.E.B.; Freire, F.C.O.; Maia, F.E.F.; Guedes, M.I.F.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control 2014, 36, 159–165. [Google Scholar] [CrossRef]
- Wu, F. Mycotoxin reduction in Bt corn: Potential economic, health, and regulatory impacts. Transgen. Res. 2006, 15, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Vandicke, J.; De Visschere, K.; Croubels, S.; De Saeger, S.; Audenaert, K.; Haesaert, G. Mycotoxins in Flanders’ fields: Occurrence and correlations with Fusarium species in whole-plant harvested maize. Microorganisms 2019, 7, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell′Orto, V.; Cheli, F. Mycotoxin contamination in the EU feed supply chain: A focus on cereal byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckard, S.; Wettstein, F.E.; Forrer, H.R.; Vogelgsang, S. Incidence of Fusarium species and mycotoxins in silage maize. Toxins 2011, 3, 949–967. [Google Scholar] [CrossRef] [Green Version]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual, 1st ed.; Blackwell Publishing: Ames, IA, USA, 2006; p. 388. [Google Scholar]
- Munkvold, G.P. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 2003, 109, 705–713. [Google Scholar] [CrossRef]
- Marín, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Reduction of mycotoxins and toxigenic fungi in the Mediterranean basin maize chain. Phytopathol. Mediter. 2012, 51, 93–118. [Google Scholar] [CrossRef]
- Alma, A.; Lessio, F.; Reyneri, A.; Blandino, M. Relationships between Ostrinia nubilalis (Lepidoptera: Crambidae) feeding activity, crop technique and mycotoxin contamination of corn kernel in northwestern Italy. Int. J. Pest. Manag. 2005, 51, 165–173. [Google Scholar] [CrossRef]
- Magg, T.; Melchinger, A.E.; Klein, D.; Bohn, M. Relationship between European corn borer resistance and concentration of mycotoxins produced by Fusarium spp. in grains of transgenic Bt maize hybrids, their isogenic counterparts, and commercial varieties. Plant Breed. 2002, 121, 146–154. [Google Scholar] [CrossRef]
- Munkvold, G.P.; Hellmich, R.L.; Rice, L.G. Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids. Plant Dis. 1999, 83, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Curtis, F.; de Cicco, V.; Haidukowski, M.; Pascale, M.; Somma, S.; Moretti, A. Effects of agrochemical treatments on the occurrence of Fusarium ear rot and fumonisin contamination of maize in Southern Italy. Field Crops Res. 2011, 123, 161–169. [Google Scholar] [CrossRef]
- Folcher, L.; Delos, M.; Marengue, E.; Jarry, M.; Weissenberger, A.; Eychenne, N.; Regnault-Roger, C. Lower mycotoxin levels in Bt maize grain. Agron. Sustain. Dev. 2010, 30, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Santiago, R.; Rosa, A.; Malvar, A.; Butrón, A. Is it possible to control fumonisin contamination in maize kernels by using genotypes resistant to the Mediterranean corn borer? J. Econ. Entomol. 2013, 106, 2241–2246. [Google Scholar] [CrossRef] [Green Version]
- Avantaggiato, G.; Quaranta, F.; Desiderio, E.; Visconti, A. Fumonisin contamination of maize hybrids visibly damaged by Sesamia. J. Sci. Food Agric. 2003, 83, 1318. [Google Scholar] [CrossRef]
- Darvas, B.; Bánáti, H.; Takács, E.; Lauber, É.; Szécsi, Á.; Székács, A. Relationships of Helicoverpa armigera, Ostrinia nubilalis and Fusarium verticillioides on MON 810 maize. Insects 2011, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobek, E.A.; Munkvold, G.P. European corn borer (Lepidoptera: Pyralidae) larvae as vectors of Fusarium moniliforme, causing kernel rot and symptomless infection of maize kernels. J. Econ. Entomol. 1999, 92, 503–509. [Google Scholar] [CrossRef]
- Ostry, V.; Ovesna, J.; Skarkova, J.; Pouchova, V.; Ruprich, J. A review on comparative data concerning Fusarium mycotoxins in Bt maize and non-Bt isogenic maize. Mycotox. Res. 2010, 26, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Pazzi, F.; Lener, M.; Colombo, L.; Monastra, G. Bt maize and mycotoxins: The current state of research. Ann. Microbiol. 2006, 56, 223–230. [Google Scholar] [CrossRef]
- Clements, M.J.; Campbell, K.W.; Maragos, C.M.; Pilcher, C.; Headrick, J.M.; Pataky, J.K.; White, D.G. Influence of Cry1Ab protein and hybrid genotype on fumonisin contamination and Fusarium ear rot of corn. Crop Sci. 2003, 43, 1283–1293. [Google Scholar] [CrossRef]
- Schaafsma, A.W.; Hooker, D.C.; Baute, T.S.; Illincic-Tamburic, L. Effect of Bt-corn hybrids on deoxynivalenol content in grain at harvest. Plant Dis. 2002, 86, 1123–1126. [Google Scholar] [CrossRef] [Green Version]
- Duvick, J. Prospects for reducing fumonisin contamination of maize through genetic modification. Environ. Health Perspect. 2001, 109, 337–342. [Google Scholar] [CrossRef]
- Barros, G.; Magnoli, C.; Reynoso, M.M.; Ramírez, M.L.; Farnochi, M.C.; Torres, A.; Dalcero, M.; Sequeira, J.; Rubinstein, C.; Chulze, S. Fungal and mycotoxin contamination in Bt maize and non-Bt maize grown in Argentina. World Mycotox. J. 2006, 2, 53–60. [Google Scholar] [CrossRef]
- Papst, C.; Utz, H.F.; Melchinger, A.E.; Eder, J.; Magg, T.; Klein, D.; Bohn, M. Mycotoxins produced by Fusarium spp. in isogenic Bt vs. non-Bt maize hybrids under European corn borer pressure. Agron. J. 2005, 97, 219–224. [Google Scholar] [CrossRef]
- Bakan, B.; Melcion, D.; Richard-Molard, D.; Cahagnier, B. Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J. Agric. Food Chem. 2002, 50, 728–731. [Google Scholar] [CrossRef]
- Herrera, M.; Conchello, P.; Juan, T.; Estopañan, G.; Herrera, A.; Ariño, A. Fumonisins concentrations in maize as affected by physico-chemical, environmental and agronomical conditions. Maydica 2010, 55, 121–126. [Google Scholar]
- Ariño, A.; Herrera, M.; Juan, T.; Estopañan, G.; Carramiñana, J.J.; Rota, C.; Herrera, A. Influence of agricultural practices on the contamination of maize by fumonisin mycotoxins. J. Food Prot. 2009, 72, 898–902. [Google Scholar] [CrossRef]
- GENVCE. Evaluación de las nuevas variedades de maíz para grano de ciclo 700 y transgénicas. Vida Rural 2011, 323, 60–66. [Google Scholar]
- GENVCE. Evaluación de las nuevas variedades de maíz para grano en España. Vida Rural 2007, 245, 70–75. [Google Scholar]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO′ estimat of 25%. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Farinós, G.P.; Hernández-Crespo, P.; Ortego, F.; Castañera, P. Monitoring of Sesamia nonagrioides resistance to MON 810 maize in the European Union: Lessons from a long-term harmonized plan. Pest Manag. Sci. 2018, 74, 557–568. [Google Scholar] [CrossRef]
- Thieme, T.G.M.; Buuk, C.; Gloyna, K.; Ortego, F.; Farinós, G.P. Ten years of MON 810 resistance monitoring of field populations of Ostrinia nubilalis in Europe. J. Appl. Entomol. 2018, 142, 192–200. [Google Scholar] [CrossRef]
- Eizaguirre, M.; Tort, S.; López, C.; Albajes, R. Effects of sublethal concentrations of Bacillus thuringiensis on larval development of Sesamia nonagrioides. J. Econ. Entomol. 2005, 98, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Munkvold, G.P.; Desjardins, A.E. Fumonisins in maize: Can we reduce their occurrence? Plant Dis. 1997, 81, 556–565. [Google Scholar] [CrossRef] [Green Version]
- Leite, M.; Freitas, A.; Sanches Silva, A.; Barbosa, J.; Ramos, F. Maize food chain and mycotoxins: A review on occurrence studies. Trends Food Sci. Technol. 2021, 115, 307–331. [Google Scholar] [CrossRef]
- García-Díaz, M.; Gil-Serna, J.; Vázquez, C.; Botia, M.N.; Patiño, B.A. Comprehensive study on the occurrence of mycotoxins and their producing fungi during the maize production cycle in Spain. Microorganisms 2020, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Jurado, M.; Vázquez, C.; Marín, S.; Sanchis, V.; González-Jaén, M.T. PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Syst. Appl. Microbiol. 2006, 29, 681–689. [Google Scholar] [CrossRef]
- Camargo, A.M.; Andow, D.A.; Castañera, P.; Farinós, G.P. First detection of a Sesamia nonagrioides resistance allele to Bt maize in Europe. Sci. Rep. 2018, 8, 3977. [Google Scholar] [CrossRef]
- Pellegrino, E.; Bedini, S.; Nuti, M.; Ercoli, L. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: A meta-analysis of 21 years of field data. Sci. Rep. 2018, 8, 3113. [Google Scholar] [CrossRef] [Green Version]
- De la Campa, R.D.L.; Hooker, D.C.; Miller, J.D.; Schaafsma, A.W.; Hammond, B.G. Modeling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines. Mycopathologia 2005, 159, 539–552. [Google Scholar] [CrossRef]
- Hammond, B.G.; Campbell, K.W.; Pilcher, C.D.; Degooyer, T.A.; Robinson, A.E.; Mcmillen, B.L.; Spangler, S.M.; Riordan, S.G.; Rice, L.G.; Richard, J.L. Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000−2002. J. Agric. Food Chem. 2004, 52, 1390–1397. [Google Scholar] [CrossRef]
- Folcher, L.; Jarry, M.; Weissenberger, A.; Gérault, F.; Eychenne, N.; Delos, M.; Regnault-Roger, C. Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers and Fusarium mycoflora in maize (Zea mays L.) fields. Crop Prot. 2009, 28, 302–308. [Google Scholar] [CrossRef]
- Sutton, J.C. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can. J. Plant Pathol. 1982, 4, 195–209. [Google Scholar] [CrossRef]
- Marín, P.; Jurado, M.; Magan, N.; Vázquez, C.; González-Jaén, M.T. Effect of solute stress and temperature on growth rate and TRI5 gene expression using real time RT–PCR in Fusarium graminearum from Spanish wheat. Int. J. Food Microbiol. 2010, 140, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Velluti, A.; Marín, S.; Bettucci, L.; Ramos, A.J.; Sanchis, V. The effect of fungal competition on colonization of maize grain by Fusarium moniliforme, F proliferatum and F. graminearum and on fumonisin B-1 and zearalenone formation. Int. J. Food Microbiol. 2000, 59, 59–66. [Google Scholar] [CrossRef]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P. On the increased frequency of Mediterranean drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef] [Green Version]
- Miraglia, M.; Marvin, H.J.P.; Kleter, G.A. Climate change and food safety: An emerging issue with special focus on Europe. Food Chem. Toxicol. 2009, 47, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Magan, N.; Medina, A.; Aldred, D. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol. 2011, 60, 150–163. [Google Scholar] [CrossRef]
- Marín, P.; Magan, N.; Vázquez, C.; González-Jaén, M.T. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene FUM1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum. FEMS Microbiol. Ecol. 2010, 73, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, H.K.; Zablotowicz, R.M.; Weaver, M.A.; Shier, W.T.; Bruns, H.A.; Bellwloui, N.; Accinelli, C.; Abel, C.A. Implications of Bt traits on mycotoxin contamination in maize: Overview and recent experimental results in southern United States. J. Agric. Food Chem. 2013, 61, 11759–11770. [Google Scholar] [CrossRef]
- Guía de Gestión Integrada de Plagas. Available online: https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/guiamaiz_tcm30-57958.pdf (accessed on 8 October 2021).
- Liu, D.; Coloe, S.; Baird, R.; Pederson, J. Rapid mini-preparation of fungal DNA for PCR. J. Clin. Microbiol. 2000, 38, 471. [Google Scholar] [CrossRef]
- White, T.J.; Burns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Method and Application; Innis, M.A., Gelfald, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Henry, T.; Iwen, P.C.; Hinrichs, S.H. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J. Clin. Microbiol. 2000, 38, 1510–1515. [Google Scholar] [CrossRef] [Green Version]
- Patiño, B.; Mirete, S.; González-Jaén, M.T.; Mulé, G.; Rodríguez, M.T.; Vázquez, C. PCR detection assay of fumonisin-producing Fusarium verticillioides strains. J. Food Prot. 2004, 67, 1278–1283. [Google Scholar] [CrossRef]
- Jurado, M.; Vázquez, C.; Patiño, B.; González-Jaén, M.T. PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poae, Fusarium equiseti and Fusarium sporotrichioides. Syst. Appl. Microbiol. 2005, 28, 562–568. [Google Scholar] [CrossRef]
- Mulè, G.; Susca, A.; Stea, G.; Moretti, A. A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium Verticillioides, F. Proliferatum and F. Subglutinans. Eur. J. Plant Pathol. 2004, 110, 495–502. [Google Scholar] [CrossRef]
- Lattanzio, V.M.T.; Della Gatta, S.; Suman, M.; Visconti, A. Development and in-house validation of a robust and sensitive solid-phase extraction liquid chromatography/tandem mass spectrometry method for the quantitative determination of aflatoxins B-1, B-2, G(1), G(2), ochratoxin A, deoxynivalenol, zearalenone, T-2 and HT-2 toxins in cereal-based foods. Rapid Commun. Mass Spectrom. 2011, 25, 1869–1880. [Google Scholar] [CrossRef]
- Klötzel, M.; Lauber, U. New SPE Sorbent for Clean-Up of Fusarium Toxin-Contaminated Cereals & Cereal-Based Foods, Bond Elut Mycotoxin; Chemisches u. Veterinäruntersuchungsamt Stuttgart. Application Note; Agilent Tecnologies: Waldbronn, Germany, 2006. [Google Scholar]
- De Girolamo, A.; Pereboom-de Fauw, D.; Sizoo, E.; van Egmond, H.P.; Gambacorta, L.; Bouten, K.; Stroka, J.; Visconti, A.; Solfrizzo, M. Determination of fumonisins B-1 and B-2 in maize based baby food products by HPLC with fluorimetric detection after immunoaffinity column cleanup. World Mycotox. J. 2010, 3, 135–146. [Google Scholar] [CrossRef]
- Cao, A.; Santiago, R.; Ramos, A.J.; Souto, X.C.; Aguín, O.; Malvar, R.A.; Butrón, A. Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain. Int. J. Food Microbiol. 2014, 177, 6371. [Google Scholar] [CrossRef] [Green Version]
- IBM SPSS Statistics for Windows; Version 25.0; IBM Corporation: Armonk, NY, USA, 2017.
Maize Ears Contaminated by Field (% Mean ± S.E.) a | GLM Results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Area | Fusarium Species | 2011 | 2012 | 2013 | Year | Maize Type | Year × Maize Type | |||
Bt | Non-Bt | Bt | Non-Bt | Bt | Non-Bt | F (p) | F (p) | F (p) | ||
(g.l. = 1) | (g.l. = 1) | (g.l. = 1) | ||||||||
Extremadura | F. verticillioides | 35.0 ± 5.0 | 90.0 ± 5.8 | 86.7 ± 13.3 | 93.3 ± 6.7 | # | # | 8.96 (0.03) * | ||
F. proliferatum | 5.0 ± 5.0 | 70.0 ± 12.9 | 26.7 ± 17.6 | 13.3 ± 13.3 | # | # | 13.49 (0.02) * | |||
F. subglutinans | 0 | 80.0 ± 20.0 | 0 | 0 | # | # | 15.61 (0.01) * | |||
F. graminearum | 0 | 15.0 ± 9.6 | 0 | 20.0 ± 11.6 | 0.13 (0.73) | 6.43 (0.05) | 0.13 (0.73) | |||
F. sporotrichioides | 5.0 ± 5.0 | 10.0 ± 10.0 | 0 | 13.3 ± 13.3 | 0.04 (0.84) | 0.7 (0.44) | 0.26 (0.63) | |||
Albacete | F. verticillioides | 60.0 ± 23.1 | 86.7 ± 13.3 | 20.0 ± 8.2 | 55.00 ± 9.57 | 37.51 (<0.00) * | 2.37 (0.18) | 0.02 (0.90) | ||
F. proliferatum | 0 | 80.0 ± 11.6 | 5.0 ± 5.0 | 50.00 ± 12.91 | 2.11 (0.21) | 31.76 (<0.00) * | 2.47 (0.18) | |||
F. subglutinans | 33.3 ± 24.0 | 60.0 ± 23.0 | 5.0 ± 5.0 | 33.33 ± 9.57 | 3.7 (0.11) | 4.44 (0.09) | 0.89 (0.39) | |||
F. graminearum | 6.7 ± 6.7 | 40.0 ± 23.0 | 0 | 0 | 22.66 (0.01) * | 1.27 (0.31) | 1.27 (0.31) | |||
F. sporotrichioides | 0 | 26.7 ± 26.7 | 0 | 0 | 1.43 (0.29) | 1.43 (0.29) | 1.43 (0.29) | |||
Ebro Valley | F. verticillioides | 5.0 ± 5.0 | 15.0 ± 5.0 | 31.3 ± 12.7 | 25.0 ± 9.6 | 1.86 (0.22) | 0.83 (0.40) | 2.63 (0.16) | ||
F. proliferatum | 10.0 ± 5.8 | 65.0 ± 15.0 | 0 | 50.0 ± 17.3 | 1.35 (0.29) | 19.00 (<0.00) * | 0.14 (0.72) | |||
F. subglutinans | 10.0 ± 5.8 | 70.0 ± 12.9 | 5.0 ± 5.0 | 25.0 ± 18.9 | 4.15 (0.09) | 9.9 (0.02) * | 2.48 (0.17) | |||
F. graminearum | 20.0 ± 14.1 | 20.0 ± 14.1 | 5.0 ± 5.0 | 15.0 ± 9.6 | 0.71 (0.43) | 0.18 (0.69) | 0.18 (0.69) | |||
F. sporotrichioides | 0 | 10.0 ± 5.8 | 0 | 0 | 3.00 (0.13) | 3.00 (0.13) | 3.00 (0.13) |
Corn Borers Contaminated by Field (% mean ± S.E.) a | GLM Results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Area | Fusarium Species | 2011 | 2012 | 2013 | Year | Corn Borer Species | Year x Corn Borer Species | |||
O. nubilalis | S. nonagrioides | O. nubilalis | S. nonagrioides | O. nubilalis | S. nonagrioides | F (p) | F (p) | F (p) | ||
(g.l. = 1) | (g.l. = 1) | (g.l. = 1) | ||||||||
Extremadura | F. verticillioides | 50.1 ± 5.7 | 41.1 ± 4.8 | 1.46 (0.29) | ||||||
F. proliferatum | 12.5 ± 6.6 | 38.1 ± 12.3 | 3.38 (0.14) | |||||||
F. subglutinans | 16.2 ± 9.6 | 20.7 ± 15.1 | 0.06 (0.82) | |||||||
F. graminearum | 25.1 ± 7.0 | 25.7 ± 12.6 | 0.002 (0.97) | |||||||
F. sporotrichioides b | 6.3 ± 3.3 | 0 | - | |||||||
F. equiseti | 0 | 0 | - | |||||||
Albacete | F. verticillioides | 66.7 ± 22.0 | 15.8 | 24.8 ± 12.7 | 14.7 ± 11.1 | 0.82 (0.42) | 5.07 (0.39) | 1.34 (0.55) | ||
F. proliferatum | 16.7 ± 16.7 | 2.6 | 55.7 ± 26.0 | 25.9 ± 15.8 | 1.2 (0.32) | 0.87 (0.42) | 0.45 (0.55) | |||
F. subglutinans | 50.0 ± 14.4 | 21.1 | 3.3 ± 3.3 | 3.0 ± 3.0 | 11.33 (0.02) * | 1.99 (0.40) | 0.17 (0.75) | |||
F. graminearum | 33.3 ± 16.7 | 10.5 | 0 | 0 | 1.22 (0.32) | 11.84 (0.08) | 11.84 (0.08) | |||
F. sporotrichioides | 0 | 0 | 0 | 0 | - | - | - | |||
F. equiseti b | 0 | 7.9 | 0 | 0 | - | - | - | |||
Ebro Valley | F. verticillioides | 25.0 ± 14.4 | 61.3 ± 15.1 | 25.2 ± 16.2 | 23.8 ± 7.8 | 1.88 (0.20) | 1.64 (0.23) | 1.91 (0.19) | ||
F. proliferatum | 30.0 ± 12.2 | 64.4 ± 14.6 | 14.1 ± 7.1 | 1.4 ± 1.4 | 13.52 (<0.00) * | 1.03 (0.33) | 4.82 (0.05) | |||
F. subglutinans | 33.6 ± 22.5 | 69.2 ± 20.3 | 13.3 ± 13.3 | 27.7 ± 9.7 | 2.11 (0.19) | 3.12 (0.13) | 0.63 (0.46) | |||
F. graminearum | 7.1 ± 7.1 | 3.6 ± 3.6 | 24.1 ± 14.5 | 1.4 ± 1.4 | 0.91 (0.37) | 4.84 (0.07) | 2.59 (0.16) | |||
F. sporotrichioides b | 1.8 ± 1.8 | 0 | 0 | 0 | - | - | - | |||
F. equiseti | 0 | 0 | 0 | 0 | - | - | - |
Ears Contaminated (%) a | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Extremadura | Albacete | Ebro Valley | ||||||||||
2011 | 2012 | 2011 | 2012 | 2012 | 2013 | |||||||
Bt | non-Bt | Bt | non-Bt | Bt | non-Bt | Bt | non-Bt | Bt | non-Bt | Bt | non-Bt | |
Fumonisinas (FB1 + FB2) | 50.0 | 85.0 | 30.0 | 100.0 | 46.7 | 73.3 | 30.0 | 100.0 | 10.0 | 50.0 | 31.6 | 70.0 |
DON | 0 | 5.0 | 0 | 0 | 0 | 20.0 | 0 | 0 | 20.0 | 20.0 | 5.3 | 20.0 |
T-2 | 10.0 | 5.0 | 0 | 0 | 6.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
HT-2 | 15.0 | 10.0 | 0 | 0 | 0 | 13.3 | 0 | 0 | 0 | 0 | 0 | 0 |
ZEA | 0 | 0 | 0 | 0 | 0 | 6.7 | 0 | 5.5 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias-Martín, M.; Haidukowski, M.; Farinós, G.P.; Patiño, B. Role of Sesamia nonagrioides and Ostrinia nubilalis as Vectors of Fusarium spp. and Contribution of Corn Borer-Resistant Bt Maize to Mycotoxin Reduction. Toxins 2021, 13, 780. https://doi.org/10.3390/toxins13110780
Arias-Martín M, Haidukowski M, Farinós GP, Patiño B. Role of Sesamia nonagrioides and Ostrinia nubilalis as Vectors of Fusarium spp. and Contribution of Corn Borer-Resistant Bt Maize to Mycotoxin Reduction. Toxins. 2021; 13(11):780. https://doi.org/10.3390/toxins13110780
Chicago/Turabian StyleArias-Martín, María, Miriam Haidukowski, Gema P. Farinós, and Belén Patiño. 2021. "Role of Sesamia nonagrioides and Ostrinia nubilalis as Vectors of Fusarium spp. and Contribution of Corn Borer-Resistant Bt Maize to Mycotoxin Reduction" Toxins 13, no. 11: 780. https://doi.org/10.3390/toxins13110780
APA StyleArias-Martín, M., Haidukowski, M., Farinós, G. P., & Patiño, B. (2021). Role of Sesamia nonagrioides and Ostrinia nubilalis as Vectors of Fusarium spp. and Contribution of Corn Borer-Resistant Bt Maize to Mycotoxin Reduction. Toxins, 13(11), 780. https://doi.org/10.3390/toxins13110780