The Curious Case of the “Neurotoxic Skink”: Scientific Literature Points to the Absence of Venom in Scincidae
Abstract
:1. Introduction
2. The Evolutionary Origin of “Toxicofera” Venom Systems
3. Evidence Supports the Lack of Venom in Scincidae
4. Potential Causes of the Observed Neurotoxic Envenoming
5. A Typical Case of “Early Morning Neuroparalytic Syndrome”
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Modica, M.V.; Sunagar, K.; Holford, M.; Dutertre, S. Editorial: Diversity and Evolution of Animal Venoms: Neglected Targets, Ecological Interactions, Future Perspectives. Front. Ecol. Evol. 2020, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Daltry, J.C.; Wuster, W.; Thorpe, R.S. Diet and snake venom evolution. Nature 1996, 379, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.L.; Sanz, L.; Chiucchi, J.E.; Farrell, T.M.; Calvete, J.J. Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult Dusky Pigmy rattlesnakes (Sistrurus miliarius barbouri). J. Proteom. 2011, 74, 2169–2179. [Google Scholar] [CrossRef] [PubMed]
- Zancolli, G.; Calvete, J.J.; Cardwell, M.D.; Greene, H.W.; Hayes, W.K.; Hegarty, M.J.; Herrmann, H.W.; Holycross, A.T.; Lannutti, D.I.; Mulley, J.F.; et al. When one phenotype is not enough: Divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species. Proc. Biol. Sci. 2019, 286, 20182735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casewell, N.R.; Jackson, T.N.W.; Laustsen, A.H.; Sunagar, K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol. Sci. 2020, 41, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Laxme, R.R.S.; Khochare, S.; de Souza, H.F.; Ahuja, B.; Suranse, V.; Martin, G.; Whitaker, R.; Sunagar, K. Beyond the ‘big four’: Venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLoS Negl. Trop. Dis. 2019, 13, e0007899. [Google Scholar] [CrossRef]
- Li, M.; Fry, B.G.; Kini, R.M. Eggs-only diet: Its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii). J. Mol. Evol. 2005, 60, 81–89. [Google Scholar] [CrossRef]
- Mackessy, S.P.; Sixberry, N.M.; Heyborne, W.H.; Fritts, T. Venom of the Brown Treesnake, Boiga irregularis: Ontogenetic shifts and taxa-specific toxicity. Toxicon 2006, 47, 537–548. [Google Scholar] [CrossRef]
- Fry, B.G.; Wroe, S.; Teeuwisse, W.; van Osch, M.J.; Moreno, K.; Ingle, J.; McHenry, C.; Ferrara, T.; Clausen, P.; Scheib, H.; et al. A central role for venom in predation by Varanus komodoensis (Komodo Dragon) and the extinct giant Varanus (Megalania) priscus. Proc. Natl. Acad. Sci. USA 2009, 106, 8969–8974. [Google Scholar] [CrossRef] [Green Version]
- Kumari, M.; Kumar, R.; Kumar, R.; Abinaya. A Rare Neurotoxic Red-tailed-skink Bite. J. Assoc. Physicians India 2020, 68, 71. [Google Scholar]
- Kochva, E. Oral glands of the Reptilia. Biol. Reptil. 1978, 8, 43–162. [Google Scholar]
- Pough, F.H.; Andrews, R.M.; Cadle, J.E.; Crump, M.L.; Savitzky, A.H.; Wells, K.D. Herpetology, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Hargreaves, A.D.; Swain, M.T.; Logan, D.W.; Mulley, J.F. Testing the Toxicofera: Comparative transcriptomics casts doubt on the single, early evolution of the reptile venom system. Toxicon 2014, 92, 140–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, B.G.; Vidal, N.; Norman, J.A.; Vonk, F.J.; Scheib, H.; Ramjan, S.F.; Kuruppu, S.; Fung, K.; Hedges, S.B.; Richardson, M.K.; et al. Early evolution of the venom system in lizards and snakes. Nature 2006, 439, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Undheim, E.A.; Ali, S.A.; Jackson, T.N.; Debono, J.; Scheib, H.; Ruder, T.; Morgenstern, D.; Cadwallader, L.; Whitehead, D.; et al. Squeezers and leaf-cutters: Differential diversification and degeneration of the venom system in toxicoferan reptiles. Mol. Cell. Proteom. 2013, 12, 1881–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobson, J.S.; Zdenek, C.N.; Hay, C.; Violette, A.; Fourmy, R.; Cochran, C.; Fry, B.G. Varanid Lizard Venoms Disrupt the Clotting Ability of Human Fibrinogen through Destructive Cleavage. Toxins 2019, 11, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mebs, D.; Lomonte, B.; Fernández, J.; Calvete, J.J.; Sanz, L.; Mahlow, K.; Müller, J.; Köhler, G.; Zollweg, M. The earless monitor lizard Lanthanotus borneensis—A venomous animal? Toxicon 2021, 189, 73–78. [Google Scholar] [CrossRef]
- Vaiyapuri, S.; Vaiyapuri, R.; Ashokan, R.; Ramasamy, K.; Nattamaisundar, K.; Jeyaraj, A.; Chandran, V.; Gajjeraman, P.; Baksh, M.F.; Gibbins, J.M.; et al. Snakebite and its socio-economic impact on the rural population of Tamil Nadu, India. PLoS ONE 2013, 8, e80090. [Google Scholar] [CrossRef] [Green Version]
- Chinnasamy, R.; Subramanian, S.; Ponniah, T. Snakebites in Tamil Nadu, India. In Clinical Toxinology: Clinical Toxinology; Gopalakrishnakone, P., Faiz, S.M.A., Gnanathasan, C.A., Habib, A.G., Fernando, R., Yang, C.-C., Vogel, C.W., Tambourgi, D.V., Seifert, S.A., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 1–23. [Google Scholar] [CrossRef]
- Prabhakaran, A.P.; Periyasamy, R.; Parthiban, D.A. A Comprehensive Study of Patients Admitted with Snakebite in Tirunelveli Medical College Hospital. Int. J. Sci. Stud. 2019, 7. Available online: http://repository-tnmgrmu.ac.in/id/eprint/11202 (accessed on 2 February 2021).
- Chauhan, V.; Thakur, S. Painless Krait Bite in a Sleeping Victim: Delayed Diagnosis and High Mortality. J. Assoc. Physicians India 2017, 65, 102. [Google Scholar]
- Luu, V.Q.; Ha, N.V. Bungarus fasciatus (Banded Krait) Diet. Herpetol. Rev. 2018, 49, 543. [Google Scholar]
- Pandey, D.P.; Bhattarai, P.; Piya, R.C. Food Spectrum of Common Kraits (Bungarus caeruleus): An Implication for Snakebite Prevention and Snake Conservation. J. Herpetol. 2020, 54, 87–96. [Google Scholar] [CrossRef]
- Nayak, R. Practical approach to the patient with acute neuromuscular weakness. World J. Clin. Cases 2017, 5, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Ranawaka, U.K.; Lalloo, D.G.; de Silva, H.J. Neurotoxicity in snakebite--the limits of our knowledge. PLoS Negl. Trop. Dis. 2013, 7, e2302. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, R.; Kharbanda, P.S.; Bhalla, A.; Rajan, R.; Prabhakar, S. Acute Flaccid paralysis in adults: Our experience. J. Emerg. Trauma Shock. 2014, 7, 149–154. [Google Scholar] [CrossRef] [PubMed]
- WHO/Regional Office for South-East Asia. Guidelines for the Management of Snakebites, 2nd ed.; Warrell, D.A., Ed.; World Health Organization: New Delhi, India, 2016. [Google Scholar]
- Ariaratnam, C.A.; Sheriff, M.H.; Arambepola, C.; Theakston, R.D.; Warrell, D.A. Syndromic approach to treatment of snake bite in Sri Lanka based on results of a prospective national hospital-based survey of patients envenomed by identified snakes. Am. J. Trop. Med. Hyg. 2009, 81, 725–731. [Google Scholar] [CrossRef]
- Bolon, I.; Durso, A.M.; Mesa, S.B.; Ray, N.; Alcoba, G.; Chappuis, F.; de Castaneda, R.R. Identifying the snake: First scoping review on practices of communities and healthcare providers confronted with snakebite across the world. PLoS ONE 2020, 15, e0229989. [Google Scholar] [CrossRef] [Green Version]
- Warrell, D.A. Snake bite. Lancet 2010, 375, 77–88. [Google Scholar] [CrossRef]
- Saini, R.K.; Singh, S.; Sharma, S.; Rampal, V.; Manhas, A.S.; Gupta, V.K. Snake bite poisoning presenting as early morning neuroparalytic syndrome in jhuggi dwellers. J. Assoc. Physicians India 1986, 34, 415–417. [Google Scholar]
- Samprathi, M.; Gupta, V.; Jayashree, M.; Bansal, A.; Baranwal, A.; Nallasamy, K. Epidemiology and Outcomes of Early Morning Neuroparalytic Syndrome Following Snake Bite-A Retrospective Study. J. Trop. Pediatr. 2020, 66, 435–440. [Google Scholar] [CrossRef]
- Sharma, R.; Dogra, V.; Sharma, G.; Chauhan, V. Mass awareness regarding snake bite induced early morning neuroparalysis can prevent many deaths in North India. Int. J. Crit. Illn. Inj. Sci. 2016, 6, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Vikrant, S.; Verma, B.S. Monitor lizard bite-induced acute kidney injury—A case report. Ren. Fail. 2014, 36, 444–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.; Weinstein, S.A. Reply to Vikrant and Verma about “Monitor Lizard Envenoming”. Ren. Fail. 2015, 37, 740–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunagar, K.; Abraham, S.V. The Curious Case of the “Neurotoxic Skink”: Scientific Literature Points to the Absence of Venom in Scincidae. Toxins 2021, 13, 114. https://doi.org/10.3390/toxins13020114
Sunagar K, Abraham SV. The Curious Case of the “Neurotoxic Skink”: Scientific Literature Points to the Absence of Venom in Scincidae. Toxins. 2021; 13(2):114. https://doi.org/10.3390/toxins13020114
Chicago/Turabian StyleSunagar, Kartik, and Siju V Abraham. 2021. "The Curious Case of the “Neurotoxic Skink”: Scientific Literature Points to the Absence of Venom in Scincidae" Toxins 13, no. 2: 114. https://doi.org/10.3390/toxins13020114
APA StyleSunagar, K., & Abraham, S. V. (2021). The Curious Case of the “Neurotoxic Skink”: Scientific Literature Points to the Absence of Venom in Scincidae. Toxins, 13(2), 114. https://doi.org/10.3390/toxins13020114