Detection and Isolation of Emetic Bacillus cereus Toxin Cereulide by Reversed Phase Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Establishing a Work Flow for Cereulide Detection from Emetic B. cereus by RPC: Cultivation of Bacteria and Crude Cereulide Extraction (Step 1–2)
2.2. Identification and Isolation of Purified Cereulide Toxin (Step 3-4): Cereulide Chromatogram on an Äkta™ Pure 25M Using a Silica Based RP C12 Column
2.3. Method Validation by UPLC-MS/MS-Analysis
3. Conclusions
4. Materials and Methods
4.1. Test Set of B. cereus Group Strains
4.2. Cultivation of Bacterial Strains (Step 1)
4.3. Cereulide Extraction Procedure (Step 2)
4.4. Cereulide Toxin Purification by RPC, (Step 3–4)
- Preparation step: the flow rate was set to 0.5 mL/min, and the column was washed with 1 CV of 65% acetonitrile. A linear gradient was performed from 65% to 6.5% of acetonitrile within 2 CV.
- Equilibration step: the column was equilibrated with 4 CV of 10% ethanol.
- Sample application: the sample was applied directly to the column using a prefilled 5 mL capillary loop (GE Healthcare, Solingen, Germany).
- Washing step: an equilibration buffer was used to remove all unbound hydrophilic substances. Fractions of unbound protein were collected using the fraction collector F9-C.
- Elution step: to elute bound molecules, a 11.50 CV linear gradient of 10% ethanol to ethanol absolute in running buffer (MQH2O) was applied. Subsequently, the column was washed with ethanol absolute for 5 CV in running buffer (MQH2O). A linear gradient from ethanol absolute to 10% ethanol in running buffer (MQH2O) within 3 CV was performed, and the column was washed with 1 CV of 10% ethanol in running buffer (MQH2O). Automatic peak fractionation was used to collect fractions >200 mAU (milli-absorbance unit). Cereulide eluting from the column was detected in the 55.5 ± 0.1 mL fraction at a wavelength of 210 nm. Fractions of eluted cereulide were transferred to screw neck vials N9 (1.5 mL, 11.6 × 32 mm with N9 PP screw caps with red rubber; Machery–Nagel, Düren, Germany) for UPLC-MS/MS analysis.
- Follow-up step 1: the column was washed with 10% ethanol in running buffer (MQH2O) for 2 CV.
- Follow-up step 2: a linear gradient from 10% ethanol to ethanol absolute in running buffer (MQH2O) within 1.5 CV was performed.
- Follow-up step 3: the column was washed with 2 CV ethanol absolute.
- Equilibration step No. 1: the column was equilibrated with 95% acetonitrile for 4 CV.
- Equilibration step No. 2: the column was equilibrated with 61.75% acetonitrile for 4 CV.
4.5. Method Validation by Ultraperformance Liquid Chromatography-Mass Spectrometry (UPLC-MS/MS)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agata, N.; Ohta, M.; Mori, M.; Isobe, M.; Isobe, M. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 1995, 129, 17–19. [Google Scholar] [PubMed]
- Ehling-Schulz, M.; Koehler, T.M.; Lereclus, D. The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiol. Spectr. 2019, 7, 875–902. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Svensson, B.; Guinebretiere, M.H.; Lindbäck, T.; Andersson, M.; Schulz, A.; Fricker, M.; Christiansson, A.; Granum, P.E.; Märtlbauer, E.; et al. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 2005, 151, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Ehling-Schulz, M.; Vukov, N.; Schulz, A.; Shaheen, R.; Andersson, M.; Märtlbauer, E.; Scherer, S.; Shaheen, R.; Scherer, S. Identification and Partial Characterization of the Nonribosomal Peptide Synthetase Gene Responsible for Cereulide Production in Emetic Bacillus cereus. Appl. Environ. Microbiol. 2005, 71, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Dommel, M.K.; Frenzel, E.; Strasser, B.; Blöchinger, C.; Scherer, S.; Ehling-Schulz, M. Identification of the main promoter directing cereulide biosynthesis in emetic Bacillus cereus and its application for real-time monitoring of ces gene expression in foods. Appl. Environ. Microbiol. 2010, 76, 1232–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magarvey, N.A.; Ehling-Schulz, M.; Walsh, C.T. Characterization of the cereulide NRPS alpha-hydroxy acid specifying modules: Activation of alpha-keto acids and chiral reduction on the assembly line. J. Am. Chem. Soc. 2006, 128, 10698–10699. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Fricker, M.; Grallert, H.; Rieck, P.; Wagner, M.; Scherer, S. Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 2006, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Dommel, M.K.; Lücking, G.; Scherer, S.; Ehling-Schulz, M. Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiol. 2011, 28, 284–290. [Google Scholar] [CrossRef]
- Lücking, G.; Frenzel, E.; Rütschle, A.; Marxen, S.; Stark, T.D.; Hofmann, T.; Scherer, S.; Ehling-Schulz, M. Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels. Front. Microbiol. 2015, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gacek-Matthews, A.; Chromiková, Z.; Sulyok, M.; Lücking, G.; Barák, I.; Ehling-Schulz, M. Beyond Toxin Transport: Novel Role of ABC Transporter for Enzymatic Machinery of Cereulide NRPS Assembly Line. mBio 2020, 11, e1577. [Google Scholar] [CrossRef]
- Kranzler, M.; Stollewerk, K.; Rouzeau-Szynalski, K.; Blayo, L.; Sulyok, M.; Ehling-Schulz, M. Temperature exerts control of Bacillus cereus emetic toxin production on post-transcriptional levels. Front. Microbiol. 2016, 7, 1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouzeau-Szynalski, K.; Stollewerk, K.; Messelhäusser, U.; Ehling-Schulz, M. Why be serious about emetic Bacillus cereus: Cereulide production and industrial challenges. Food Microbiol. 2020, 85, 103279. [Google Scholar] [CrossRef]
- Agata, N.; Ohta, M.; Yokoyama, K. Production of Bacillus cereus emetic toxin (cereulide) in various foods. Int. J. Food Microbiol. 2002, 73, 23–27. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Fricker, M.; Scherer, S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 2004, 48, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Apetroaie, C.; Andersson, M.A.; Spröer, C.; Tsitko, I.; Shaheen, R.; Jääskeläinen, E.L.; Wijnands, L.M.; Heikkilä, R.; Salkinoja-Salonen, M.S. Cereulide-producing strains of Bacillus cereus show diversity. Arch. Microbiol. 2005, 184, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Häggblom, M.M.; Apetroaie, C.; Andersson, M.A.; Salkinoja-Salonen, M.S. Quantitative Analysis of Cereulide, the Emetic Toxin of Bacillus cereus, Produced under Various Conditions. Appl. Environ. Microbiol. 2002, 68, 2479–2483. [Google Scholar] [CrossRef] [Green Version]
- Rajkovic, A.; Uyttendaele, M.; Vermeulen, A.; Andjelkovic, M.; Fitz-James, I.; In’t Veld, P.; Denon, Q.; Vérhe, R.; Debevere, J. Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett. Appl. Microbiol. 2008, 46, 536–541. [Google Scholar] [CrossRef]
- Shinagawa, K.; Konuma, H.; Sekita, H.; Sugii, S. Emesis of rhesus monkeys induced by intragastric administration with the HEp-2 vacuolation factor (cereulide) produced by Bacillus cereus. FEMS Microbiol. Lett. 1995, 130, 87–90. [Google Scholar]
- Mikami, T.; Horikawa, T.; Murakami, T.; Matsumoto, T.; Yamakawa, A.; Murayama, S.; Katagiri, S.; Shinagawa, K.; Suzuki, M. An improved method for detecting cytostatic toxin (emetic toxin) of Bacillus cereus and its application to food samples. FEMS Microbiol. Lett. 1994, 119, 53–57. [Google Scholar] [CrossRef]
- Melling, J.; Capel, B.J. Characteristics of Bacillus cereus emetic toxin. FEMS Microbiol. Lett. 1978, 4, 133–135. [Google Scholar] [CrossRef]
- Messelhäußer, U.; Ehling-Schulz, M. Bacillus cereus—A Multifaceted Opportunistic Pathogen. Curr. Clin. Microbiol. Rep. 2018, 5, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Tschiedel, E.; Rath, P.; Steinmann, J.; Becker, H.; Dietrich, R.; Paul, A.; Felderhoff-Müser, U.; Dohna-Schwake, C. Lifesaving liver transplantation for multi-organ failure caused by Bacillus cereus food poisoning. Pediatr. Transpl. 2015, 19, E11–E14. [Google Scholar] [CrossRef] [PubMed]
- Dierick, K.; Van Coillie, E.; Swiecicka, I.; Meyfroidt, G.; Devlieger, H.; Meulemans, A.; Hoedemaekers, G.; Fourie, L.; Heyndrickx, M.; Mahillon, J. Fatal family outbreak of Bacillus cereus-associated food poisoning. J. Clin. Microbiol. 2005, 43, 4277–4279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drobniewski, F.A. Bacillus cereus and related species. Clin. Microbiol. Rev. 1993, 6, 324–338. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Fricker, M.; Scherer, S. Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiol. Lett. 2004, 232, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, P.C.; Kramer, J.M.; Jørgensen, K.; Gilbert, R.J.; Melling, J. Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of Bacillus cereus. Am. J. Clin. Nutr. 1979, 32, 219–228. [Google Scholar] [CrossRef]
- Sakurai, N.; Koike, K.A.; Irie, Y.; Hayashi, H. The rice culture filtrate of Bacillus cereus isolated from emetic-type food poisoning causes mitochondrial swelling in a HEp-2 cell. Microbiol. Immunol. 1994, 38, 337–343. [Google Scholar] [CrossRef]
- Vangoitsenhoven, R.; Rondas, D.; Crèvecoeur, I.; D’Hertog, W.; Baatsen, P.; Masini, M.; Andjelkovic, M.; Van Loco, J.; Matthys, C.; Mathieu, C. Foodborne cereulide causes beta-cell dysfunction and apoptosis. PLoS ONE 2014, 9, e104866. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.; Sipos, W.; Stark, T.; Kaeser, T.; Knecht, C.; Brunnthaler, R.; Saalmueller, A.; Hofmann, T.; Ehling-Schulz, M. First insights into within host translocation of the Bacillus cereus toxin cereulide using a porcine model. Front. Microbiol. 2018, 9, 2652. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, R.; Jeßberger, N.; Ehling-Schulz, M.; Märtlbauer, E.; Granum, P.E. The food poisoning toxins of Bacillus cereus. Toxins 2021, 13, 98. [Google Scholar] [CrossRef]
- Doellinger, J.; Schneider, A.; Stark, T.D.; Ehling-Schulz, M.; Lasch, P. Evaluation of MALDI-ToF Mass Spectrometry for Rapid Detection of Cereulide from Bacillus cereus Cultures. Front. Microbiol. 2020, 11, 2483. [Google Scholar] [CrossRef]
- Ulrich, S.; Gottschalk, C.; Dietrich, R.; Märtlbauer, E.; Gareis, M. Identification of cereulide producing Bacillus cereus by MALDI-TOF MS. Food Microbiol. 2019, 82, 75–81. [Google Scholar] [CrossRef]
- Bauer, T.; Stark, T.; Hofmann, T.; Ehling-Schulz, M. Development of a stable isotope dilution analysis for the quantification of the Bacillus cereus toxin cereulide in foods. J. Agric. Food Chem. 2010, 58, 1420–1428. [Google Scholar] [CrossRef]
- Stark, T.; Marxen, S.; Rütschle, A.; Lücking, G.; Scherer, S.; Ehling-Schulz, M.; Hofmann, T. Mass spectrometric profiling of Bacillus cereus strains and quantitation of the emetic toxin cereulide by means of stable isotope dilution analysis and HEp-2 bioassay. Anal. Bioanal. Chem. 2013, 405, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Biesta-Peters, E.G.; Reij, M.W.; Blaauw, R.H.; In’t Veld, P.H.; Rajkovic, A.; Ehling-Schulz, M.; Abee, T. Quantification of the emetic toxin cereulide in food products by liquid chromatography-mass spectrometry using synthetic cereulide as a standard. Appl. Environ. Microbiol. 2010, 76, 7466–7472. [Google Scholar] [CrossRef] [Green Version]
- Marxen, S.; Stark, T.D.; Rütschle, A.; Lücking, G.; Frenzel, E.; Scherer, S.; Ehling-Schulz, M.; Hofmann, T. Multiparametric Quantitation of the Bacillus cereus Toxins Cereulide and Isocereulides A-G in Foods. J. Agric. Food Chem. 2015, 63, 8307–8313. [Google Scholar] [CrossRef] [PubMed]
- In’t Veld, P.H.; van der Laak, L.F.J.; van Zon, M.; Biesta-Peters, E.G. Elaboration and validation of the method for the quantification of the emetic toxin of Bacillus cereus as described in EN-ISO 18465-Microbiology of the food chain–Quantitative determination of emetic toxin (cereulide) using LC-MS/MS. Int. J. Food Microbiol. 2019, 288, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Frankland, G.C.; Frankland, P.F. XI. Studies on some new micro-organisms obtained from air. Philos. Trans. R. Soc. Lond. 1887, 178, 257–287. [Google Scholar]
- Skerman, V.B.D.; McGowan, V.; Sneath, P.H.A. Approved lists of bacterial names. Int. J. Syst. Bacteriol. 1980, 30, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Lücking, G.; Dommel, M.K.; Scherer, S.; Fouot, A.; Ehling-Schulz, M. Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology 2009, 155, 922–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, M. Variation in Bacillus anthracis. Onderstepoort J. Vet. Sci. Anim. Ind. 1937, 8, 271–348. [Google Scholar]
- Teplova, V.V.; Mikkola, R.; Tonshin, A.A.; Saris, N.-E.L.; Salkinoja-Salonen, M.S. The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Toxicol. Appl. Pharmacol. 2006, 210, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Spoof, L.; Vesterkvist, P.; Lindholm, T.; Meriluoto, J. Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography–electrospray ionisation mass spectrometry. J. Chromatogr. 2003, 1020, 105–119. [Google Scholar] [CrossRef]
- Brillard, J.; Dupont, C.; Berge, O.; Dargaignaratz, C.; Oriol-Gagnier, S.; Doussan, C.; Broussolle, V.; Gillon, M.; Clavel, T.; Berard, A. The water cycle, a potential source of the bacterial pathogen Bacillus cereus. Biomed. Res. Int. 2015, 2015, 356928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartoszewicz, M.; Czyżewska, U. Spores and vegetative cells of phenotypically and genetically diverse Bacillus cereus sensu lato are common bacteria in fresh water of northeastern Poland. Can. J. Microbiol. 2017, 63, 939–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Østensvik, Ø.; From, C.; Heidenreich, B.; O’Sullivan, K.; Granum, P.E. Cytotoxic Bacillus spp. belonging to the B. cereus and B. subtilis groups in Norwegian surface waters. J. Appl. Microbiol. 2004, 96, 987–993. [Google Scholar] [CrossRef] [PubMed]
Strain-ID | Relevant Genotype and Characteristics | References |
---|---|---|
ATCC 14579 | Non-emetic Bacillus cereus type strain | [38] |
F4810/72 | Emetic B. cereus reference strain, also termed AH187, isolated from vomit; emetic food-borne outbreak in UK | [3,26] |
ATCC 10792 | Bacillus thuringiensis type strain | [39] |
RIVM BC90 a | B. cereus isolated from human faces; diarrheal outbreak in The Netherlands | [3,26] |
F48∆cesP/polar b | F4810/72 ∆cesP::spc, Spcr; cereulide deficient due to transcriptional inactivation of cesABCD genes | [9] |
F48∆abrB c | F4810/72 ∆abrB::spc, Spcr; cereulide overproduction due to deletion of transcription regulator abrB | [40] |
F48∆pBCE b | F4810/72 ∆pBCE270; cereulide deficient due to deletion of ces locus encoding plasmid pBCE270 | [Dommel and Ehling-Schulz; unpublished] |
F5881/94 | Emetic toxin producing B. cereus strain isolated from Chinese takeaway fried rice; emetic food-borne outbreak in UK | [3,26] |
RIVM BC379 | Emetic toxin producing B. cereus isolated from chicken; The Netherlands | [34] |
Bacillus anthracis Sterne | Attenuated vaccine strain, which lacks virulence plasmid pXO2 | [41] |
Ethanol Extracts of B. cereus Directly Subjected to UPLC-MS/MS Analysis | RPC-Enriched Cereulide Fractions (55.5 mL) Subjected to UPLC-MS/MS | Cereulide-Specific Peak Area of RPC at 55.5 mL | |
---|---|---|---|
Strain-ID 1 | Cereulide [µg/mL] ± Std. Dev. 2 | Cereulide [µg/mL] ± Std. Dev. 2 | mL*mAU ± Std. Dev. 2 |
F4810/72 | 3.8 ± 2.7 | 33.4 ± 10.0 | 91.6 ± 28.4 |
F48∆abrB | 10.4 ± 1.3 | 82.9 ± 18.1 | 113.8 ± 27.0 |
F5881/94 | 17.9 ± 7.2 | 95.7 ± 12. 9 | 127.8 ± 26.4 |
RIVM BC379 | 2.1 ± 1.3 | 24.4 ± 6.4 | 23.0 ± 10.7 |
ATCC 14579 | N.D. | N.D. | N.D. |
RIVM BC90 | N.D. | N.D. | N.D. |
F48∆cesP/polar | N.D. | N.D. | N.D. |
F48∆pBCE | N.D. | N.D. | N.D. |
ATCC 10792 | N.D. | N.D. | N.D. |
B. anthracis Sterne | N.D. | N.D. | N.D. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalbhenn, E.M.; Bauer, T.; Stark, T.D.; Knüpfer, M.; Grass, G.; Ehling-Schulz, M. Detection and Isolation of Emetic Bacillus cereus Toxin Cereulide by Reversed Phase Chromatography. Toxins 2021, 13, 115. https://doi.org/10.3390/toxins13020115
Kalbhenn EM, Bauer T, Stark TD, Knüpfer M, Grass G, Ehling-Schulz M. Detection and Isolation of Emetic Bacillus cereus Toxin Cereulide by Reversed Phase Chromatography. Toxins. 2021; 13(2):115. https://doi.org/10.3390/toxins13020115
Chicago/Turabian StyleKalbhenn, Eva Maria, Tobias Bauer, Timo D. Stark, Mandy Knüpfer, Gregor Grass, and Monika Ehling-Schulz. 2021. "Detection and Isolation of Emetic Bacillus cereus Toxin Cereulide by Reversed Phase Chromatography" Toxins 13, no. 2: 115. https://doi.org/10.3390/toxins13020115
APA StyleKalbhenn, E. M., Bauer, T., Stark, T. D., Knüpfer, M., Grass, G., & Ehling-Schulz, M. (2021). Detection and Isolation of Emetic Bacillus cereus Toxin Cereulide by Reversed Phase Chromatography. Toxins, 13(2), 115. https://doi.org/10.3390/toxins13020115