Occurrence of Free and Conjugated Mycotoxins in Aromatic and Medicinal Plants and Dietary Exposure Assessment in the Moroccan Population
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation
2.2. Natural Occurrence of Mycotoxins
2.2.1. Aflatoxins (AFG1 and AFG2)
2.2.2. Fusarium Toxins (ZEN and HT-2)
2.2.3. Emerging Mycotoxins (ENA1 and ENB)
2.2.4. Alternaria Toxins (AOH and TENT)
2.3. Co-Occurrence of Mycotoxins in AMP
2.4. Conjugated Mycotoxins in AMP
2.5. Dietary Exposure
3. Conclusions
4. Material and Methods
4.1. Chemicals and Reagents
4.2. Plant Sampling
4.3. Mycotoxin Extraction Procedure
4.4. Analysis of Mycotoxins by LC-MS/MS
4.5. Method Validation
4.6. Analysis of Mycotoxin Metabolites by LC-QTOF-MS
4.7. Risk of Dietary Exposure
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
List of Abbreviations
AFB1 | aflatoxin B1 |
AFB2 | aflatoxin B2 |
AFG1 | aflatoxin G1 |
AFG2 | aflatoxin G2 |
AFs | aflatoxins |
AMP | aromatic and medicinal plants |
AOH | alternariol |
BEA | beauvericin |
DON-3-G | DON-3-glucoside |
DON | deoxynivalenol |
PDI | probable daily intake |
ENA | enniatin A |
ENA1 | enniatin A1 |
ENB | enniatin B |
ENB1 | enniatin B1 |
ENs | enniatins |
OTA | ochratoxin A |
TENT | tentoxin |
TDI | tolerable daily intake |
ZEN | zearalenone |
α-ZEL | α-zearalenol |
β-ZEL | β-zearalenol |
ZEN-4-Glc | zearalenone-4-glucoside |
ZEN-4-Sulf | zearalenone-4-sulfate |
α-ZEL-14-Glc | α–ZEL-14-glucoside |
β-ZEL-14-Glc | β–ZEL-14-glucoside |
ZEN-16-Glc | zearalenone-16-glucoside |
References
- Tripathy, V.; Basak, B.; Varghese, T.S.; Saha, A. Residues and contaminants in medicinal herbs—A review. Phytochem. Lett. 2015, 14, 67–78. [Google Scholar] [CrossRef]
- WHO. Promotion and Development of Training and Research in Traditional Medicine; World Health Organization: Geneva, Switzerland, 1977; pp. 30–49. [Google Scholar]
- Calixto, J.B. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz. J. Med Biol. Res. 2000, 33, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, I.; Vedoya, G.; Maurutto, S.; Haidukowski, M.; Varsavsky, E. Assessment of toxigenic fungi on Argentinean medicinal herbs. Microbiol. Res. 2004, 159, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Ałtyn, I.; Twarużek, M. Mycotoxin Contamination Concerns of Herbs and Medicinal Plants. Toxins 2020, 12, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Dou, X.-W.; Zhang, C.; Logrieco, A.F.; Yang, M. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borzekowski, A.; Drewitz, T.; Keller, J.; Pfeifer, D.; Kunte, H.J.; Koch, M.; Rohn, S.; Maul, R. Biosynthesis and Characterization of Zearalenone-14-Sulfate, Zearalenone-14-Glucoside and Zearalenone-16-Glucoside Using Common Fungal Strains. Toxins 2018, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Engelhardt, G.; Ruhland, M.; Wallnofer, P.R. Metabolism of mycotoxins in plants. Adv. Food Sci. 1999, 21, 71–78. [Google Scholar]
- Karlovsky, P. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Nat. Toxins 1999, 7, 1–23. [Google Scholar] [CrossRef]
- Engelhardt, G.; Zill, G.; Wohner, B.; Wallnfer, P.R. Transformation of the Fusarium mycotoxin zearalenone in maize cell suspension cultures. Naturwissenschaften 1988, 75, 309–310. [Google Scholar] [CrossRef]
- Berthiller, F.; Werner, U.; Sulyok, M.; Krska, R.; Hauser, M.-T.; Schuhmacher, R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit. Contam. 2006, 23, 1194–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sewald, N.; Von Gleissenthall, J.L.; Schuster, M.; Müller, G.; Aplin, R.T. Structure elucidation of a plant metabolite of 4-desoxynivalenol. Tetrahedron Asymmetry 1992, 3, 953–960. [Google Scholar] [CrossRef]
- Berthiller, F.; Dall’Asta, C.; Schuhmacher, R.; Lemmens, M.; Adam, G.; Krska, R. Masked mycotoxins: Determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2005, 53, 3421–3425. [Google Scholar] [CrossRef]
- Plasencia, J.; Mirocha, C.J. Isolation and characterization of zearalenone sulfate produced by Fusarium spp. Appl. Environ. Microbiol. 1991, 57, 146–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böswald, C.; Engelhardt, G.; Vogel, H.; Wallnöfer, P.R. Metabolism of the Fusarium mycotoxins zearalenone and deoxynivalenol by yeast strains of technological relevance. Nat. Toxins 1995, 3, 138–144. [Google Scholar] [CrossRef]
- Gareis, M.; Bauer, J.; Thiem, J.; Plank, G.; Grabley, S.; Gedek, B. Cleavage of Zearalenone-Glycoside, a “Masked” Mycotoxin, during Digestion in Swine. J. Vet. Med. Ser. B 1990, 37, 236–240. [Google Scholar] [CrossRef]
- Berthiller, F.; Hametner, C.; Krenn, P.; Schweiger, W.; Ludwig, R.; Adam, G.; Krska, R.; Schuhmacher, R. Preparation and characterization of the conjugated Fusarium mycotoxins zearalenone-4-O-β-D-glucopyranoside, α-zearalenol-4-O-β-D-glucopyranoside and β-zearalenol-4-O-β-D-glucopyranoside by MS/MS and two-dimensional NMR. Food Addit. Contam. 2009, 26, 207–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinhoff, B. Review: Quality of herbal medicinal products: State of the art of purity assessment. Phytomedicine 2019, 60, 153003. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Directive 2006/1881/EC of 19 December 2006, setting maximum levels for certain contaminants in food stuffs. Off. J. Eur. Union 2006, L364, 5–24. [Google Scholar]
- European Pharmacopoeia. Determination of Aflatoxin B1 in Herbal drugs. In European Pharmacopoeia 9th Edition 2.8.18; Council of Europe: Strasbourg, France, 2016; Volume 1, p. 289. [Google Scholar]
- European Pharmacopoeia. Council of Europe European Directorate for the Quality of Medicines (EDQM), 7th ed.; European Pharmacopoeia: Strasbourg, France, 2011. [Google Scholar]
- Zinedine, A.; Brera, C.; Elakhdari, S.; Catano, C.; Debegnach, F.; Angelini, S.; De Santis, B.; Faid, M.; Benlemlih, M.; Minardi, V.; et al. Natural occurrence of mycotoxins in cereals and spices commercialized in Morocco. Food Control 2006, 17, 868–874. [Google Scholar] [CrossRef]
- Zinedine, A.; Mañes, J. Occurrence and legislation of mycotoxins in food and feed from Morocco. Food Control 2009, 20, 334–344. [Google Scholar] [CrossRef]
- Zinedine, A. Ochratoxin A in Moroccan Foods: Occurrence and Legislation. Toxins 2010, 2, 1121–1133. [Google Scholar] [CrossRef]
- Monbaliu, S.; Wu, A.; Zhang, D.; Van Peteghem, C.; De Saeger, S. Multimycotoxin UPLC−MS/MS for Tea, Herbal Infusions and the Derived Drinkable Products. J. Agric. Food Chem. 2010, 58, 12664–12671. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.-J.; Shen, H.-H.; Zhang, X.-F.; Yang, X.-L.; Qiu, F.; Ou-Yang, Z.; Yang, M.-H. Analysis of zearalenone and α -zearalenol in 100 foods and medicinal plants determined by HPLC-FLD and positive confirmation by LC-MS-MS. J. Sci. Food Agric. 2013, 93, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Manzanares, N.; García-Campaña, A.M.; Gámiz-Gracia, L. Multiclass mycotoxin analysis in Silybum marianum by ultra high performance liquid chromatography–tandem mass spectrometry using a procedure based on QuEChERS and dispersive liquid–liquid microextraction. J. Chromatogr. A 2013, 1282, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Sumbali, G.; Sharma, V. Mycobial contamination and mycotoxinogenesis of Tinospora cordifolia: An important medicinal plant of India. Int. J. Agric. Res. Innov. Technol. 2014, 3, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Reinholds, I.; Bogdanova, E.; Pugajeva, I.; Bartkevics, V. Mycotoxins in herbal teas marketed in Latvia and dietary exposure assessment. Food Addit. Contam. Part B 2019, 12, 199–208. [Google Scholar] [CrossRef]
- Pallarés, N.; Tolosa, J.; Mañes, J.; Ferrer, E. Occurrence of Mycotoxins in Botanical Dietary Supplement Infusion Beverages. J. Nat. Prod. 2019, 82, 403–406. [Google Scholar] [CrossRef]
- Mannani, N.; Tabarani, A.; Abdennebi, E.H.; Zinedine, A. Assessment of aflatoxin levels in herbal green tea available on the Moroccan market. Food Control 2020, 108, 106882. [Google Scholar] [CrossRef]
- Bulletin Officiel 6514/2016. Arrêté Conjoint du Ministre de l’Agriculture et de la Pêche Maritime et du Ministre de la Santé n°1643-16 du 30 Mai 2016 Fixant les Limites Maximales de Contaminants Autorisées dans ou sur les Produits Primaires et les Produits Alimentaires; Ministre de l’Agriculture et de la Pêche Maritime: Paris, France, 2016; p. 1681.
- Duarte, S.; Salvador, N.; Machado, F.; Costa, E.; Almeida, A.; Silva, L.J.; Pereira, A.M.; Lino, C.; Pena, A. Mycotoxins in teas and medicinal plants destined to prepare infusions in Portugal. Food Control 2020, 115, 107290. [Google Scholar] [CrossRef]
- Fraeyman, S.; Croubels, S.; Devreese, M.; Antonissen, G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins 2017, 9, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoevers, E.J.; Santos, R.R.; Roelen, B.A.J. Alternariol disturbs oocyte maturation and preimplantation development. Mycotoxin Res. 2019, 36, 93–101. [Google Scholar] [CrossRef]
- Abbas, M. Co-Occurrence of Mycotoxins and Its Detoxification Strategies. In Mycotoxins—Impact and Management Strategies; Njobeh, P.B., Stepman, F., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.; Marín, S.; Sanchis, V.; Ramos, A.J. Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J. Sci. Food Agric. 2009, 89, 1802–1807. [Google Scholar] [CrossRef]
- Vendl, O.; Crews, C.; MacDonald, S.; Krska, R.; Berthiller, F. Occurrence of free and conjugated Fusarium mycotoxins in cereal-based food. Food Addit. Contam. 2010, 27, 1148–1152. [Google Scholar] [CrossRef] [Green Version]
- Alwakeel, S.S. The Effect of Mycotoxins found in some Herbal Plants on Biochemical Parameters in Blood of Female Albino Mice. Pak. J. Biol. Sci. 2009, 12, 637–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO; Committee on Commodity Problems; Intergovernmental Group on Tea. Twenty-Third Session; CCP:TE 18/CRS1; FAO: Hangzhou, China, 2018. [Google Scholar]
- IARC (International Agency for Research on Cancer). IARC Monograph on the Evaluation of Carcinogenic Risk to Humans. Some Naturally Occurring Substances: Food Items and Constituent Heterocyclic Aromatic Amines and Mycotoxins; IARC: Lyon, France, 1993. [Google Scholar]
- JECFA (Joint FAO/WHO Expert Committee on Food Additives). Safety Evaluation of Certain Mycotoxins in Food; Series N°47; JECFA: Geneva, Switzerland, 2011. [Google Scholar]
- Kovalsky Paris, M.P.; Schweiger, W.; Hametner, C.; Stückler, R.; Muehlbauer, G.J.; Varga, E.; Krska, R.; Berthiller, F.; Adam, G. Zearalenone-16-O-glucoside: A New Masked Mycotoxin. J. Agric. Food Chem. 2014, 62, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Dall’Erta, A.; Cirlini, M.; Dall’Asta, M.; Del Rio, D.; Galaverna, G.; Dall’Asta, C. Masked mycotoxins are efficiently hydrolyzed by human colonic microbiota releasing their aglycones. Chem. Res. Toxicol. 2013, 26, 305–312. [Google Scholar] [CrossRef]
- EFSA. Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016, 14, 4425. [Google Scholar]
- Tahraoui, A.; El-Hilaly, J.; Israili, Z.H.; Lyoussi, B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J. Ethnopharm. 2007, 110, 105–117. [Google Scholar] [CrossRef]
- Pallarés, N.; Font, G.; Mañes, J.; Ferrer, E. Multimycotoxin LC–MS/MS Analysis in Tea Beverages after Dispersive Liquid–Liquid Microextraction (DLLME). J. Agric. Food Chem. 2017, 65, 10282–10289. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.; Covarelli, L.; Beccari, G.; Colasante, V.; Mañes, J. Simultaneous analysis of twenty-six mycotoxins in durum wheat grain from Italy. Food Control 2016, 62, 322–329. [Google Scholar] [CrossRef]
- European Food Safety Authority. Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 2010, 8, 1557. [Google Scholar]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Wallace, H. European Food Safety Authority CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific opinion—Risk assessment of aflatoxins in food. EFSA J. 2020, 18, 112. [Google Scholar]
- Kuiper-Goodman, T. Uncertainties in the risk assessment of three mycotoxins: Aflatoxin, ochratoxin, and zearalenone. Can. J. Physiol. Pharmacol. 1990, 68, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- JECFA—Joint FAO/WHO Expert Committee on Food Additives. Safety Evaluation of Certain Mycotoxins in Food Prepared by the Fifty Sixth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (Vol. 47); WHO Food Additives Series; FAO Food and Nutrition Paper 74; World Health Organization: Geneva, Switzerland, 2001; ISBN1 (FAO) 92 5104664 6. ISBN2 (WH0) 92 4166047 3. Available online: www.fao.org/3/a-bc528e.pdf (accessed on 8 February 2021).
- SCF—Scientific Committee on Food. Part. 6: Group Evaluation of T-2 Toxin, HT2 Toxin, Nivalenol and Deoxynivalenol; Opinion of the Scientific Committee on Food on Fusarium Toxins; SCF: Brussels, Belgium, 2002; Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue_fusarium_out123_en.pdf (accessed on 27 February 2002).
Mycotoxin | Repeatability | Sensitivity | ||
---|---|---|---|---|
R ± SD (%) | ME ± SD a (%) | LOD (ng/g) | LOQ (ng/g) | |
AFB1 | 102 ± 1.4 | 9 ± 1.9 | 4.05 | 13.52 |
AFB2 | 112 ± 5.1 | 9.9 ± 3.8 | 3.30 | 11.00 |
AFG1 | 86 ± 0.5 | 13.5 ± 4.8 | 1.22 | 4.06 |
AFG2 | 97 ± 0.02 | 8.1 ± 2.4 | 2.07 | 6.90 |
OTA | 92 ± 13 | 4.5 ± 0.96 | 0.93 | 3.11 |
BEA | 85 ± 16 | 7.2 ± 0.3 | 0.37 | 1.22 |
ENA | 100 ± 0.1 | 4.5 ± 0.7 | 0.29 | 0.95 |
ENA1 | 125 ± 14 | 3.6 ± 0.5 | 0.29 | 0.95 |
ENB | 103 ± 4.5 | 4.5 ± 0.6 | 0.09 | 1.02 |
ENB1 | 112 ± 13 | 5.4 ± 1.2 | 0.52 | 1.74 |
ZEN | 100 ± 2.5 | 3.6 ± 0.9 | 12.90 | 43.00 |
AOH | 109 ± 0.8 | 4.5 ± 0.7 | 0.20 | 6.67 |
TENT | 87 ± 6 | 5.4 ± 0.8 | 0.28 | 0.92 |
T-2 | 99 ± 0.01 | 7.2 ± 1.2 | 4.75 | 15.84 |
HT-2 | 81 ± 4.3 | 10.3 ± 1.3 | 1.59 | 5.30 |
Analyte | Rt a (min) | Parent Ion Q1 (m/z) | Product Ions Q3 | DP c | CEP c | |||||
---|---|---|---|---|---|---|---|---|---|---|
Q (m/z) b | CE c | CXP c | q (m/z) b | CEc | CXP c | |||||
AFB1 | 7.8 | 313.1 [M+H]+ | 241 | 41 | 4 | 285 | 39 | 4 | 46 | 18 |
AFB2 | 7.7 | 315.1 [M+H]+ | 259 | 39 | 6 | 287 | 33 | 6 | 81 | 18 |
AFG1 | 7.6 | 329.1 [M+H]+ | 311 | 29 | 6 | 243 | 39 | 6 | 76 | 18 |
AFG2 | 7.5 | 331.1 [M+H]+ | 245 | 39 | 6 | 313 | 27 | 6 | 61 | 18 |
OTA | 8.7 | 404.1 [M+H]+ | 102 | 97 | 6 | 239 | 27 | 6 | 55 | 21 |
ENA | 10.3 | 699.4 [M+NH4]+ | 228 | 59 | 16 | 210 | 35 | 14 | 66 | 30 |
ENA1 | 10.1 | 685.4 [M+NH4]+ | 214 | 59 | 10 | 210 | 37 | 8 | 66 | 30 |
ENB | 9.7 | 657.3 [M+NH4]+ | 214 | 59 | 10 | 196 | 39 | 8 | 51 | 29 |
ENB1 | 9.9 | 671.2 [M+NH4]+ | 228 | 57 | 12 | 214 | 61 | 10 | 66 | 29 |
AOH | 8.5 | 259.0 [M+H]+ | 184 | 42 | 3 | 128 | 65 | 3 | 39 | 16 |
TENT | 7.8 | 415.0 [M+H]+ | 256 | 39 | 2 | 312 | 29 | 2 | 55 | 21 |
BEA | 10 | 801.2 [M+NH4]+ | 244 | 39 | 6 | 784 | 27 | 10 | 116 | 33 |
HT-2 | 8.2 | 442.1 [M+NH4]+ | 215 | 19 | 8 | 263 | 19 | 4 | 21 | 22 |
T-2 | 8.4 | 484.1 [M+NH4]+ | 215 | 29 | 4 | 185 | 22 | 4 | 21 | 23 |
ZEN | 8.9 | 319.1 [M+H]+ | 282 | 19 | 4 | 301 | 15 | 10 | 26 | 18 |
AMP | Detected Mycotoxins | Incidence (%) | Mp ± SD (ng/g) | Range (ng/g) |
---|---|---|---|---|
Origanum vulgare (n = 12) | AOH | 9 (75) | 174 ± 96 | 8.6–309 |
ZEN | 3 (25) | 72 ± 29 | 86.6–91 | |
Rosmarinus officinalis (n = 7) | AFG2 | 3(43) | 27.7 ± 2.1 | 26.2–41 |
ZEN | 6 (86) | 45 ± 21 | 33.7–88 | |
AOH | 6(86) | 38 ± 16 | 10.9–53 | |
Myrtus communis (n = 5) | AFG1 | 5 (100) | 6.4 ± 1.3 | 4.9–9 |
AOH | 4 (80) | 40.7 ± 16 | 34.5–72 | |
TENT | 5 (100) | 1.7 ± 2 | 0.7–4.5 | |
Verveine officinale (n = 4) | ENA1 | 1 (25) | 0.3 | LOD–0.3 |
ENB | 1 (25) | 0.1 | LOD–0.1 | |
HT-2 | 1 (25) | 2.9 | LOD-2.0 | |
AOH | 4 (100) | 199.3 ± 70 | 124.6–293 | |
Mentha spicata (n = 2) | ZEN | 2 (100) | 95.7 ± 27 | 76.7–115 |
AOH | 2 (100) | 138.9 ± 1.2 | 138.1–140 | |
Lavandula intermedia (n = 3) | AFG1 | 2 (67) | 7.1 ± 1.5 | 6–8 |
ENB | 3 (100) | 0.2 ± 0.1 | LOD–0.4 | |
AOH | 3 (100) | 53.3 ± 21 | 29.8–69 | |
TENT | 2 (67) | 1.6 ± 0.1 | 1.5–1.6 | |
Artemisia absinthium (n = 2) | AOH | 1 (50) | 2.3 | LOD–2.3 |
Matricaria chamomilla (n = 5) | AOH | 5 (100) | 204.6 ± 102 | 30.9–279 |
Mycotoxin | Incidence (%) | Range Levels (ng/g) | Mp ± SD a (ng/g) | Mt ± SD (ng/g) | PDI (ng/kg b.w./day) [%TDI] | TDI (ng/kg b.w./day) | ||
---|---|---|---|---|---|---|---|---|
LB b | UB c | LB | UB | |||||
AFG1 | 7 (17.5) | 4.9–8.6 | 4.6 ± 1.4 | 1.16 ± 4.7 | 3.97 ± 1.35 | - | - | - |
AFG2 | 3 (7.5) | 26.2–41.1 | 27.7 ± 2.1 | 2.42 ± 8.8 | 7.27 ± 8.8 | - | - | - |
AFs | - | - | - | - | - | - | - | - |
ENA1 | 1 (2.5) | 0.35 | 0.16 ± 0.3 | 0.019 ± 0.05 | 1.3 ± 0.32 | - | - | - |
ENB | 1 (10) | LOD (0.1) d | 0.05 ± 0.1 | 0.02 ± 0.063 | 1.01 ± 0.06 | - | - | - |
ENs | - | - | - | - | - | - | - | - |
ZEN | 11 (27.5) | 33.7–114.7 | 55.5 ± 26 | 18.2 ± 32.7 | 37.8 ± 32.7 | 0.67 [0.56] | 1.39 [0.82] | 250 |
AOH | 34 (85) | 2.3–309.5 | 126.2 ± 40.4 | 99.7 ± 97.8 | 116.2 ± 97 | - | - | - |
TENT | 7 (17.5) | 0.7–4.5 | 1.47 ± 0.8 | 0.29 ± 1.2 | 0.88 ± 0.3 | - | - | - |
HT-2 | 1 (2.5) | LOD–LOQ (2.9) e | 1.47 ± 2.6 | 0.072 ± 2.05 | 5.49 ± 0.5 | 0.003 | 0.203 | - |
T2+HT2 | - | - | - | - | - | 0.003 | 0.203 | 100 |
Samples Code | Mycotoxins Conjugate and Metabolites | Molecular Formula | Precursor Ion Mass (m/z) | Exact Molecular Mass (Da) | Mass Error (ppm) | Purity Score | Area | Retention Time (min) |
---|---|---|---|---|---|---|---|---|
PAM 2.d | β-ZEL | C18 H24 O5 | 365.1616 | 320.1633 | 1.2 | 82.27 | 273957 | 9.1 |
PAM 3.d | C18 H24 O5 | 379.1771 | 320.1623 | 2.3 | 82.95 | 317981 | 9.1 | |
PAM 4.d | C18 H24 O5 | 379.1773 | 320.1623 | 1.3 | 98.15 | 312003 | 9.3 | |
PAM 5.d | C18 H24 O5 | 319.1553 | 320.1615 | 1.62 | 84.71 | 387715 | 9.3 | |
PAM 6.d | C18 H24 O5 | 379.1769 | 320.1630 | 0.9 | 98.23 | 326655 | 9.3 | |
PAM 9.d | C18 H24 O5 | 379.1769 | 320.1630 | 1.5 | 83.70 | 439643 | 9.3 | |
PAM 27.d | C18 H24 O5 | 379.1763 | 320.1627 | 2.4 | 98.06 | 599853 | 9.3 | |
PAM 28.d | C18 H24 O5 | 365.1614 | 320.1631 | −1.3 | 94.51 | 274979 | 9.2 | |
PAM 32.d | C18 H24 O5 | 365.1614 | 320.1633 | 1.04 | 80.27 | 14188 | 9.1 | |
PAM 8.d | α-ZEL | C18 H24 O5 | 319.1553 | 320.1629 | 1.3 | 96.50 | 450446 | 10.4 |
PAM 27.d | C18 H24 O5 | 319.1560 | 320.1636 | 1.4 | 97.38 | 185920 | 10.2 | |
PAM 2.d | ZEN-14-Glc * | C24 H32 O10 | 525.2144 | 480.1992 | 2.5 | 71.67 | 24470 | 6.8 |
PAM 3.d | C24 H32 O10 | 539.2156 | 480.2017 | 2.6 | 69.62 | 20691 | 6.5 | |
PAM 6.d | C24 H32 O10 | 525.1971 | 480.2028 | −2.3 | 73.19 | 9149 | 6.6 | |
PAM 8.d | C24 H34 O10 | 537.2128 | 481.2165 | 2.4 | 69.49 | 29254 | 6.3 | |
PAM 8.d | β-ZEL-14-Glc * | C24 H34 O10 | 481.2058 | 482.2139 | 2.05 | 67.21 | 9817 | 15.9 |
PAM 8.d | ZEN-4-Sulf * | C18 H22 O8 S | 399.2550 | 400.2624 | 1.1 | 71.02 | 32229 | 11.1 |
PAM 27.d | C18 H22 O8 S | 399.2555 | 400.2625 | −1.03 | 75.04 | 10390 | 11.1 | |
PAM 28.d | C18 H22 O8 S | 399.2539 | 400.2608 | −2.2 | 92.11 | 11117 | 11.1 | |
PAM 32.d | C18 H20 O8 S | 397.0968 | 398.1031 | −1.29 | 93.36 | 22950 | 13.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Jai, A.; Zinedine, A.; Juan-García, A.; Mañes, J.; Etahiri, S.; Juan, C. Occurrence of Free and Conjugated Mycotoxins in Aromatic and Medicinal Plants and Dietary Exposure Assessment in the Moroccan Population. Toxins 2021, 13, 125. https://doi.org/10.3390/toxins13020125
El Jai A, Zinedine A, Juan-García A, Mañes J, Etahiri S, Juan C. Occurrence of Free and Conjugated Mycotoxins in Aromatic and Medicinal Plants and Dietary Exposure Assessment in the Moroccan Population. Toxins. 2021; 13(2):125. https://doi.org/10.3390/toxins13020125
Chicago/Turabian StyleEl Jai, Aicha, Abdellah Zinedine, Ana Juan-García, Jordi Mañes, Samira Etahiri, and Cristina Juan. 2021. "Occurrence of Free and Conjugated Mycotoxins in Aromatic and Medicinal Plants and Dietary Exposure Assessment in the Moroccan Population" Toxins 13, no. 2: 125. https://doi.org/10.3390/toxins13020125
APA StyleEl Jai, A., Zinedine, A., Juan-García, A., Mañes, J., Etahiri, S., & Juan, C. (2021). Occurrence of Free and Conjugated Mycotoxins in Aromatic and Medicinal Plants and Dietary Exposure Assessment in the Moroccan Population. Toxins, 13(2), 125. https://doi.org/10.3390/toxins13020125