Mitigation Effects of Bentonite and Yeast Cell Wall Binders on AFB1, DON, and OTA Induced Changes in Laying Hen Performance, Egg Quality, and Health
Abstract
:1. Introduction
2. Results
2.1. Laying Performance and Egg Quality
2.2. Organs Index and Serum Biochemistry
2.3. Small Intestinal Morphology
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Birds, Treatment, Performance, and Sample Collection
5.2. Organ Index, Serum Biochemical, Mycotoxins, and Histological Analysis
5.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steyn, P.S. Mycotoxins, general view, chemistry and structure. Toxicol. Lett. 1995, 82–83, 843–851. [Google Scholar] [CrossRef]
- Kanora, A.; Maes, D. The role of mycotoxins in pig reproduction: A review. Vet. Med. 2009, 54, 565–576. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Zhang, L.; Liu, M.; Su, Y.T.; Xie, W.M.; Zhang, N.Y.; Dai, J.F.; Wang, Y.; Rajput, S.A.; Qi, D.S.; et al. Individual and combined occurrence of mycotoxins in feed ingredients and complete feeds in China. Toxins 2018, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarc’h, A.; Lebrihi, A. Review of mycotoxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 1590–1609. [Google Scholar] [CrossRef] [PubMed]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current situation of mycotoxin contamination and co-occurrence in animal feedefocus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [Green Version]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of multi-mycotoxin exposure in Southern Italy by urinary multi-biomarker determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ma, R.; Zhu, M.X.; Zhang, N.Y.; Liu, X.L.; Wang, Y.W.; Qin, T.; Zheng, L.Y.; Liu, Q.; Zhang, W.P.; et al. Effect of deoxynivalenol on the porcine acquired immune response and potential remediation by a novel modified HSCAS adsorbent. Food Chem. Toxicol. 2020, 138, 111187. [Google Scholar] [CrossRef]
- Sun, L.H.; Zhang, N.Y.; Zhu, M.K.; Zhao, L.; Zhou, J.C.; Qi, D.S. Prevention of aflatoxin B1 hepatoxicity by dietary selenium is associated with inhibition of cytochrome P450 isozymes and up-regulation of 6 selenoprotein genes in chick liver. J. Nutr. 2016, 146, 655–661. [Google Scholar] [CrossRef]
- Liu, J.; Song, W.J.; Zhang, N.Y.; Tan, J.; Krumm, C.S.; Sun, L.H.; Qi, D.S. Biodetoxification of aflatoxin B1 in cottonseed meal by fermentation of Cellulosimicrobium funkei in duckling diet. Poult. Sci. 2017, 96, 923–930. [Google Scholar] [CrossRef]
- Zhao, L.; Feng, Y.; Deng, J.; Zhang, N.Y.; Zhang, W.P.; Liu, X.L.; Rajput, S.A.; Qi, D.S.; Sun, L.H. Selenium deficiency aggravates aflatoxin B1-induced immunotoxicity in chick spleen by regulating 6 selenoprotein genes and redox/inflammation/apoptotic signaling. J. Nutr. 2019, 149, 894–901. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Chu, X.H.; Ma, R.; Wang, Y.W.; Liu, Q.; Zhang, N.Y.; Karrow, N.A.; Sun, L.H. Effects of deoxynivalenol on the porcine growth performance and intestinal microbiota and potential remediation by a modified HSCAS binder. Food Chem. Toxicol. 2020, 141, 111373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qin, X.; Guo, Y.; Zhang, Q.; Ma, Q.; Ji, C.; Zhao, L. Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101. Food Chem. Toxicol. 2020, 140, 111276. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhai, S.; Xia, Y.; Wang, H.; Ruan, D.; Zhou, T.; Zhu, Y.; Zhang, H.; Zhang, M.; Ye, H.; et al. Ochratoxin A induces liver inflammation: Involvement of intestinal microbiota. Microbiome 2019, 7, 151. [Google Scholar] [CrossRef]
- Sun, L.H.; Lei, M.Y.; Zhang, N.Y.; Zhao, L.; Krumm, C.S.; Qi, D.S. Hepatotoxic effects of mycotoxin combinations in mice. Food Chem. Toxicol. 2014, 74, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.H.; Lei, M.Y.; Zhang, N.Y.; Gao, X.; Li, C.; Krumm, C.S.; Qi, D.S. Individual and combined cytotoxic effects of aflatoxin B1, zearalenone, deoxynivalenol and fumonisin B1 on BRL 3A rat liver cells. Toxicon 2015, 95, 6–12. [Google Scholar] [CrossRef]
- Morales-López, R.; Auclair, E.; García, F.; Esteve-Garcia, E.; Brufau, J. Use of yeast cell walls; beta-1, 3/1, 6-glucans; and mannoproteins in broiler chicken diets. Poult. Sci. 2009, 88, 601–607. [Google Scholar] [CrossRef]
- Shannon, T.A.; Ledoux, D.R.; Rottinghaus, G.E.; Shaw, D.P.; Dakovic, A.; Markovic, M. The efficacy of raw and concentrated bentonite clay in reducing the toxic effects of aflatoxin in broiler chicks. Poult. Sci. 2017, 96, 1651–1658. [Google Scholar] [CrossRef]
- Kim, S.W.; Holanda, D.M.; Gao, X.; Park, I.; Yiannikouris, A. Efficacy of a Yeast Cell Wall Extract to Mitigate the Effect of Naturally Co-Occurring Mycotoxins Contaminating Feed Ingredients Fed to Young Pigs: Impact on Gut Health, Microbiome, and Growth. Toxins 2019, 11, 633. [Google Scholar] [CrossRef] [Green Version]
- Pascual, A.; Pauletto, M.; Giantin, M.; Radaelli, G.; Ballarin, C.; Birolo, M.; Zomeño, C.; Dacasto, M.; Bortoletti, M.; Vascellari, M.; et al. Effect of dietary supplementation with yeast cell wall extracts on performance and gut response in broiler chickens. J. Anim. Sci. Biotechnol. 2020, 11, 40. [Google Scholar] [CrossRef]
- Kubena, L.F.; Harvey, R.B.; Phillips, T.D.; Holman, G.M.; Creger, C.R. Effects of feeding mature White Leghorn hens diets that contain deoxynivalenol (vomitoxin). Poult. Sci. 1987, 66, 55–58. [Google Scholar] [CrossRef]
- Ul-Hassan, Z.; Khan, M.Z.; Khan, A.; Javed, I. Immunological status of the progeny of breeder hens kept on ochratoxin A (OTA)- and aflatoxin B(1) (AFB(1))-contaminated feeds. J. Immunotoxicol. 2012, 9, 381–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickramasuriya, S.S.; Macelline, S.P.; Kim, E.; Cho, H.M.; Shin, T.K.; Yi, Y.J.; Jayasena, D.D.; Lee, S.D.; Jung, H.J.; Heo, J.M. Physiological impact on layer chickens fed corn distiller’s dried grains with solubles naturally contaminated with deoxynivalenol. Asian-Australas J. Anim. Sci. 2020, 33, 313–322. [Google Scholar] [CrossRef]
- Sypecka, Z.; Kelly, M.; Brereton, P. Deoxynivalenol and zearalenone residues in eggs of laying hens fed with a naturally contaminated diet: Effects on egg production and estimation of transmission rates from feed to eggs. J. Agric. Food Chem. 2004, 52, 5463–5471. [Google Scholar] [CrossRef]
- Devegowda, G.; Ravikiran, D. Mycotoxins and eggshell quality: Cracking the problem. World Mycotoxin J. 2008, 1, 203–208. [Google Scholar] [CrossRef]
- Jia, R.; Ma, Q.; Fan, Y.; Ji, C.; Zhang, J.; Liu, T.; Zhao, L. The toxic effects of combined aflatoxins and zearalenone in naturally contaminated diets on laying performance, egg quality and mycotoxins residues in eggs of layers and the protective effect of Bacillus subtilis biodegradation product. Food Chem. Toxicol. 2016, 90, 142–150. [Google Scholar] [CrossRef]
- Zaghini, A.; Martelli, G.; Roncada, P.; Simioli, M.; Rizzi, L. Mannanoligosaccharides and aflatoxin B1 in feed for laying hens: Effects on egg quality, aflatoxins B1 and M1 residues in eggs, and aflatoxin B1 levels in liver. Poult. Sci. 2005, 84, 825–832. [Google Scholar] [CrossRef]
- Denli, M.; Blandon, J.C.; Guynot, M.E.; Salado, S.; Perez, J.F. Efficacy of a new ochratoxin-binding agent (OcraTox) to counteract the deleterious effects of ochratoxin A in laying hens. Poult. Sci. 2008, 87, 2266–2272. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Z.B.; Yang, W.R.; Wang, S.J.; Jiang, S.Z.; Wu, Y.B. Effects of feed-borne Fusarium mycotoxins with or without yeast cell wall adsorbent on organ weight, serum biochemistry, and immunological parameters of broiler chickens. Poult. Sci. 2012, 91, 2487–2495. [Google Scholar] [CrossRef]
- Pappas, A.C.; Tsiplakou, E.; Tsitsigiannis, D.I.; Georgiadou, M.; Iliadi, M.K.; Sotirakoglou, K.; Zervas, G. The role of bentonite binders in single or concomitant mycotoxin contamination of chicken diets. Br. Poult. Sci. 2016, 57, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Bzducha-Wróbel, A.; Bryła, M.; Gientka, I.; Błażejak, S.; Janowicz, M. Candida utilis ATCC 9950 Cell Walls and β(1,3)/(1,6)-Glucan Preparations Produced Using Agro-Waste as a Mycotoxins Trap. Toxins 2019, 11, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Liu, G.; Zhu, X.; Luo, Y.; Shang, Y.; Gu, X.L. The anti-inflammatory and antioxidant effects of leonurine hydrochloride after lipopolysaccharide challenge in broiler chicks. Poult. Sci. 2019, 98, 1648–1657. [Google Scholar] [CrossRef] [PubMed]
- Bertero, A.; Moretti, A.; Spicer, L.J.; Caloni, F. Fusarium Molds and Mycotoxins: Potential Species-Specific Effects. Toxins 2018, 10, 244. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.J.; Zhang, Y.; Sun, H.; Wei, J.T.; Khalil, M.M.; Wang, Y.W.; Dai, J.F.; Zhang, N.Y.; Qi, D.S.; Sun, L.H. The response of glandular gastric transcriptome to T-2 toxin in chicks. Food Chem. Toxicol. 2019, 132, 110658. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, W.; Wang, X.H.; Han, M.Y.; Muhammad, I.; Zhang, X.Y.; Sun, X.Q.; Cui, X.X. Water-soluble substances of wheat: A potential preventer of aflatoxin B1-induced liver damage in broilers. Poult. Sci. 2019, 98, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Selmi, S.; Rtibi, K.; Grami, D.; Sebai, H.; Marzouki, L. Malathion, an organophosphate insecticide, provokes metabolic, histopathologic and molecular disorders in liver and kidney in prepubertal male mice. Toxicol. Rep. 2018, 5, 189–195. [Google Scholar] [CrossRef]
- Okada, E.; Fujiishi, Y.; Narumi, K.; Kado, S.; Ohyama, W. Evaluation of a 28-day repeated-dose micronucleus test in rat glandular stomach, colon, and liver using gastrointestinal tract-targeted genotoxic-carcinogens and non-carcinogens. Mutat. Res. Toxicol. Environ. 2019, 844, 62–68. [Google Scholar] [CrossRef]
- Vermeulen, B.; Backer, P.D.; Remon, J.P. Drug administration to poultry. Adv. Drug Deliv. Rev. 2002, 54, 795–803. [Google Scholar] [CrossRef]
- Ren, Z.; Guo, C.; Yu, S.; Zhu, L.; Wang, Y.; Hu, H.; Deng, J. Progress in Mycotoxins Affecting Intestinal Mucosal Barrier Function. Int. J. Mol. Sci. 2019, 20, 2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poloni, V.; Magnoli, A.; Fochesato, A.; Cristofolini, A.; Caverzan, M.; Merkis, C.; Montenegro, M.; Cavaglieri, L. A Saccharomyces cerevisiae RC016-based feed additive reduces liver toxicity, residual aflatoxin B1 levels and positively influences intestinal morphology in broiler chickens fed chronic aflatoxin B1-contaminated diets. Anim. Nutr. 2020, 6, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.S.; Ruan, D.; Zhu, Y.W.; Li, M.C.; Ye, H.; Wang, W.C.; Yang, L. Protective effect of curcumin on ochratoxin A-induced liver oxidative injury in duck is mediated by modulating lipid metabolism and the intestinal microbiota. Poult. Sci. 2020, 99, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Micco, C.; Miraglia, M.; Onori, R.; Brera, C.; Mantovani, A.; Ioppolo, A.; Stasolla, D. Long-term administration of low doses of mycotoxins to poultry. 1. Residues of aflatoxin B1 and its metabolites in broilers and laying hens. Food Addit. Contam. 1988, 5, 303–308. [Google Scholar] [CrossRef]
- Applegate, T.J.; Schatzmayr, G.; Prickel, K.; Troche, C.; Jiang, Z. Effect of aflatoxin culture on intestinal function and nutrient loss in laying hens. Poult. Sci. 2009, 88, 1235–1241. [Google Scholar] [CrossRef]
- Battacone, G.; Nudda, A.; Pulina, G. Effects of ochratoxin a on livestock production. Toxins 2010, 2, 1796–1824. [Google Scholar] [CrossRef] [Green Version]
- Farnworth, E.R.; Hamilton, R.M.; Thompson, B.K.; Trenholm, H.L. Liver Lipid Levels in White Leghorn Hens Fed Diets That Contained Wheat Contaminated by Deoxynivalenol (Vomitoxin). Poult. Sci. 1983, 62, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, R.M.G.; Hompson, B.K.; Trenholm, H.L. The Effects of Deoxynivalenol (Vomitoxin) on Dietary Preference of White Leghorn Hens. Poult. Sci. 1986, 65, 288–293. [Google Scholar] [CrossRef]
- Liu, J.; Sun, L.; Zhang, N.; Zhang, J.; Guo, J.; Li, C.; Rajput, S.A.; Qi, D. Effects of Nutrients in Substrates of Different Grains on Aflatoxin B1 Production by Aspergillus flavus. BioMed Res. Int. 2016, 7232858. [Google Scholar]
- Wang, S.; Yang, J.; Zhang, B.; Wu, K.; Yang, A.; Li, C.; Zhang, J.; Zhang, C.; Rajput, S.A.; Zhang, N.; et al. Deoxynivalenol Impairs Porcine Intestinal Host Defense Peptide Expression in Weaned Piglets and IPEC-J2 Cells. Toxins 2018, 10, 541. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.C.; Chen, P.; Zhang, C.; Khalil, M.M.; Zhang, N.Y.; Qi, D.S.; Wang, Y.W.; Sun, L.H. Yeast culture promotes the production of aged laying hens by improving intestinal digestive enzyme activities and the intestinal health status. Poult. Sci. 2020, 99, 2026–2032. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Lei, J.; Zhang, B. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil. Poult. Sci. 2020, 99, 4892–4903. [Google Scholar] [CrossRef] [PubMed]
Index | Control | Toxins | Toxins + HP | Toxins + XL |
---|---|---|---|---|
Weeks 1–4 | ||||
Total feed intake, kg/hen | 3.19 ± 0.05 | 3.16 ± 0.04 | 3.20 ± 0.03 | 3.21 ± 0.02 |
Total egg weight, kg/hen | 1.44 ± 0.03 | 1.36 ± 0.04 | 1.41 ± 0.03 | 1.43 ± 0.04 |
Feed/egg ratio, kg/kg | 2.23 ± 0.04 | 2.34 ± 0.06 | 2.28 ± 0.05 | 2.25 ± 0.05 |
Egg-laying rate, % | 90.3 ± 1.5 a | 85.6 ± 2.0 b | 88.3 ± 2.0 ab | 89.2 ± 1.9 ab |
Mortality, % | 0.00 ± 0.00 b | 3.33 ± 1.70 a | 0.00 ± 0.00 b | 2.22 ± 1.49 ab |
Weeks 5–8 | ||||
Total feed intake, kg/hen | 3.21 ± 0.03 b | 3.26 ± 0.03 ab | 3.27 ± 0.01 a | 3.18 ± 0.04 b |
Total egg weight, kg/hen | 1.50 ± 0.03 | 1.44 ± 0.02 | 1.46 ± 0.03 | 1.48 ± 0.02 |
Feed/egg ratio, kg/kg | 2.14 ± 0.04 b | 2.27 ± 0.03 a | 2.24 ± 0.04 ab | 2.15 ± 0.03 b |
Egg-laying rate, % | 91.8 ± 1.4 a | 86.7 ± 1.2 b | 89.2 ± 1.7 ab | 89.4 ± 1.0 a |
Mortality, % | 1.23 ± 1.17 | 3.33 ± 1.70 | 3.33 ± 1.70 | 4.44 ± 2.46 |
Weeks 9–12 | ||||
Total feed intake, kg/hen | 3.23 ± 0.02 a | 3.15 ± 0.02 b | 3.20 ± 0.03 ab | 3.16 ± 0.02 b |
Total egg weight, kg/hen | 1.50 ± 0.04 | 1.43 ± 0.02 | 1.47 ± 0.03 | 1.48 ± 0.03 |
Feed/egg ratio, kg/kg | 2.17 ± 0.05 | 2.21 ± 0.04 | 2.19 ± 0.04 | 2.15 ± 0.05 |
Egg-laying rate, % | 89.9 ± 2.0 a | 85.2 ± 1.3 b | 86.9 ± 1.7 ab | 87.7 ± 1.5 ab |
Mortality, % | 0.00 ± 0.00 | 1.11 ± 1.11 | 1.11 ± 1.11 | 0.00 ± 0.00 |
Weeks 1–12 | ||||
Total feed intake, kg/hen | 9.64 ± 0.09 | 9.58 ± 0.09 | 9.67 ± 0.04 | 9.55 ± 0.09 |
Total egg weight, kg/hen | 4.44 ± 0.09 a | 4.23 ± 0.05 b | 4.34 ± 0.07 ab | 4.39 ± 0.08 a |
Feed/egg ratio, kg/kg | 2.18 ± 0.04 a | 2.26 ± 0.03 b | 2.23 ± 0.03 ab | 2.18 ± 0.04 a |
Egg-laying rate, % | 90.6 ± 1.5 a | 85.8 ± 0.9 b | 88.1 ± 1.6 ab | 88.8 ± 1.1 a |
Mortality, % | 1.23 ± 1.17 b | 7.78 ± 1.89 a | 4.44 ± 1.81 ab | 6.67 ± 2.96 ab |
Index | Control | Toxins | Toxins + HP | Toxins + XL |
---|---|---|---|---|
Week 4 | ||||
Egg weight, g | 56.8 ± 0.6 | 56.8 ± 0.5 | 57.2 ± 0.5 | 57.2 ± 0.4 |
Albumen height, mm | 8.00 ± 0.19 | 8.15 ± 0.14 | 8.19 ± 0.13 | 8.04 ± 0.12 |
Egg yolk color | 8.26 ± 0.15 | 8.23 ± 0.07 | 8.25 ± 0.06 | 8.18 ± 0.06 |
Haugh unit | 89.8 ± 1.1 | 90.8 ± 0.7 | 90.8 ± 0.6 | 90.1 ± 0.7 |
Week 8 | ||||
Egg weight, g | 58.5 ± 0.6 | 59.4 ± 0.3 | 58.6 ± 0.4 | 59.3 ± 0.5 |
Albumen height, mm | 7.13 ± 0.15 | 7.02 ± 0.14 | 7.21 ± 0.19 | 7.16 ± 0.13 |
Egg yolk color | 8.38 ± 0.10 | 8.29 ± 0.08 | 8.48 ± 0.10 | 8.40 ± 0.10 |
Haugh unit | 83.3 ± 0.9 | 83.0 ± 0.9 | 84.8 ± 1.1 | 84.9 ± 0.9 |
Week 12 | ||||
Egg weight, g | 59.5 ± 0.6 | 60.0 ± 0.3 | 60.3 ± 0.5 | 60.2 ± 0.4 |
Albumen height, mm | 7.52 ± 0.13 | 7.38 ± 0.09 | 7.35 ± 0.14 | 7.35 ± 0.14 |
Egg yolk color | 6.89 ± 0.10 ab | 6.73 ± 0.11 b | 6.96 ± 0.08 ab | 7.09 ± 0.08 a |
Haugh unit | 86.4 ± 0.9 | 85.6 ± 0.5 | 86.9 ± 0.7 | 85.4 ± 0.9 |
Eggshell strength, N | 39.8 ± 0.8 a | 34.9 ± 1.5 b | 37.9 ± 1.0 ab | 35.3 ± 1.1 b |
DON residue in egg, μg/kg | – c,2 | 249 ± 58 a | 228 ± 75 ab | 81 ± 36 b |
Index | Control | Toxins | Toxins + HP | Toxins + XL |
---|---|---|---|---|
Liver index, g/kg | 19.5 ± 0.6 b | 21.8 ± 0.8 a | 19.6 ± 0.7 b | 18.9 ± 0.5 b |
Spleen index, g/kg | 1.07 ± 0.05 a | 0.83 ± 0.05 b | 0.96 ± 0.06 a | 0.97 ± 0.05 a |
Kidney index, g/kg | 3.07 ± 0.09 b | 3.23 ± 0.15 b | 3.45 ± 0.22 b | 4.68 ± 0.33 a |
Proventriculus index, g/kg | 3.35 ± 0.15 b | 2.96 ± 0.09 c | 3.10 ± 0.09 bc | 4.96 ± 0.28 a |
Gizzard index, g/kg | 11.2 ± 0.2 | 10.8 ± 0.6 | 10.9 ± 0.2 | 11.5 ± 0.5 |
Index | Control | Toxins | Toxins + HP | Toxins + XL |
---|---|---|---|---|
ALT, U/L | 2.1 ± 0.2 b | 2.9 ± 0.2 a | 2.3 ± 0.2 b | 1.8 ± 0.2 b |
AST, U/L | 192.1 ± 6.2 | 203.6 ± 9.9 | 207.6 ± 7.1 | 207.2 ± 7.4 |
ALB, g/L | 25.6 ± 0.5 b | 26.7 ± 0.5 ab | 25.9 ± 0.6 ab | 27.5 ± 0.6 a |
TP, g/L | 52.3 ± 2.9 | 49.5 ± 3.7 | 49.2 ± 1.9 | 52.1 ± 4.4 |
IgA, μg/mL | 343 ± 18 a | 278 ± 5 b | 352 ± 23 a | 279 ± 9 b |
IgM, μg/mL | 764 ± 14 a | 694 ± 20 b | 769 ± 45 ab | 687 ± 13 b |
IgG, μg/mL | 2831 ± 116 a | 2464 ± 63 b | 2810 ± 160 ab | 2244 ± 46 c |
Ingredients | Proportion, % | Nutrients Level 3 | Content |
---|---|---|---|
Corn | 53.5 | CP, % | 15.2 |
Soybean meal 46% | 23.5 | ME, MJ·kg−1 | 14.59 |
Wheat bran | 6.5 | Ca, % | 3.42 |
Soybean oil | 5.0 | TP, % | 0.62 |
Salt | 0.3 | AP(P), % | 0.39 |
Limestone | 8.5 | Lysine | 0.91 |
DL-methionine | 0.11 | Methionine | 0.42 |
Dicalcium phosphate | 1.59 | ||
Premix 2 | 1.0 | ||
Total | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Feng, Y.; Wei, J.-T.; Zhu, M.-X.; Zhang, L.; Zhang, J.-C.; Karrow, N.A.; Han, Y.-M.; Wu, Y.-Y.; Guo, Y.-M.; et al. Mitigation Effects of Bentonite and Yeast Cell Wall Binders on AFB1, DON, and OTA Induced Changes in Laying Hen Performance, Egg Quality, and Health. Toxins 2021, 13, 156. https://doi.org/10.3390/toxins13020156
Zhao L, Feng Y, Wei J-T, Zhu M-X, Zhang L, Zhang J-C, Karrow NA, Han Y-M, Wu Y-Y, Guo Y-M, et al. Mitigation Effects of Bentonite and Yeast Cell Wall Binders on AFB1, DON, and OTA Induced Changes in Laying Hen Performance, Egg Quality, and Health. Toxins. 2021; 13(2):156. https://doi.org/10.3390/toxins13020156
Chicago/Turabian StyleZhao, Ling, Yue Feng, Jing-Tao Wei, Meng-Xiang Zhu, Lei Zhang, Jia-Cai Zhang, Niel Alexander Karrow, Yan-Ming Han, Yuan-Yuan Wu, Yu-Ming Guo, and et al. 2021. "Mitigation Effects of Bentonite and Yeast Cell Wall Binders on AFB1, DON, and OTA Induced Changes in Laying Hen Performance, Egg Quality, and Health" Toxins 13, no. 2: 156. https://doi.org/10.3390/toxins13020156
APA StyleZhao, L., Feng, Y., Wei, J. -T., Zhu, M. -X., Zhang, L., Zhang, J. -C., Karrow, N. A., Han, Y. -M., Wu, Y. -Y., Guo, Y. -M., & Sun, L. -H. (2021). Mitigation Effects of Bentonite and Yeast Cell Wall Binders on AFB1, DON, and OTA Induced Changes in Laying Hen Performance, Egg Quality, and Health. Toxins, 13(2), 156. https://doi.org/10.3390/toxins13020156