The Central Effects of Botulinum Toxin in Dystonia and Spasticity
Abstract
:1. Introduction
2. Cortical Sensorimotor Plasticity Due to Reduction in Sensory Input
3. Selective Muscle Denervation: Botulinum Neurotoxin (BoNT-A)
3.1. Electrophysiological Evidence for the Central Effects of BoNT-A
3.1.1. Healthy Subjects
3.1.2. Dystonia
3.1.3. Spasticity
3.2. Neuroimaging Evidence for Central Effects of BoNT-A
3.2.1. Dystonia
BoNT-A Effect on Somatosensory Task-Related Activation
BoNT-A Effect on Motor Task-Related Activation
BoNT-A Effect on Resting-State Connectivity
3.2.2. Spasticity
3.2.3. Summary of the Central Effects of BoNT-A
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Schiavo, G.; Matteoli, M.; Montecucco, C. Neurotoxins Affecting Neuroexocytosis. Physiol. Rev. 2000, 80, 717–766. [Google Scholar] [CrossRef]
- Caleo, M.; Restani, L. Exploiting Botulinum Neurotoxins for the Study of Brain Physiology and Pathology. Toxins 2018, 10, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weise, D.; Weise, C.M.; Naumann, M. Central Effects of Botulinum Neurotoxin-Evidence from Human Studies. Toxins 2019, 11, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dressler, D.; Bhidayasiri, R.; Bohlega, S.; Chahidi, A.; Chung, T.M.; Ebke, M.; Jacinto, L.J.; Kaji, R.; Koçer, S.; Kanovsky, P.; et al. Botulinum Toxin Therapy for Treatment of Spasticity in Multiple Sclerosis: Review and Recommendations of the IAB-Interdisciplinary Working Group for Movement Disorders Task Force. J. Neurol. 2017, 264, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Rosales, R.L.; Kanovsky, P.; Fernandez, H.H. What’s the “Catch” in Upper-Limb Post-Stroke Spasticity: Expanding the Role of Botulinum Toxin Applications. Parkinsonism Relat. Disord. 2011, 17 (Suppl. 1), S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.M.; Hallett, M.; Ashman, E.J.; Comella, C.L.; Green, M.W.; Gronseth, G.S.; Armstrong, M.J.; Gloss, D.; Potrebic, S.; Jankovic, J.; et al. Practice Guideline Update Summary: Botulinum Neurotoxin for the Treatment of Blepharospasm, Cervical Dystonia, Adult Spasticity, and Headache: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2016, 86, 1818–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dressler, D.; Saberi, F.A.; Rosales, R.L. Botulinum Toxin Therapy of Dystonia. J. Neural Transm. Vienna Austria 1996 2020. [Google Scholar] [CrossRef]
- Antonucci, F.; Rossi, C.; Gianfranceschi, L.; Rossetto, O.; Caleo, M. Long-Distance Retrograde Effects of Botulinum Neurotoxin A. J. Neurosci. 2008, 28, 3689–3696. [Google Scholar] [CrossRef] [PubMed]
- Currà, A.; Berardelli, A. Do the Unintended Actions of Botulinum Toxin at Distant Sites Have Clinical Implications? Neurology 2009, 72, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Rosales, R.L.; Dressler, D. On Muscle Spindles, Dystonia and Botulinum Toxin. Eur. J. Neurol. Off. J. Eur. Fed. Neurol. Soc. 2010, 17 (Suppl. 1), 71–80. [Google Scholar] [CrossRef] [PubMed]
- Currà, A.; Trompetto, C.; Abbruzzese, G.; Berardelli, A. Central Effects of Botulinum Toxin Type A: Evidence and Supposition. Mov. Disord. 2004, 19 (Suppl. 8), S60–S64. [Google Scholar] [CrossRef]
- Giladi, N. The Mechanism of Action of Botulinum Toxin Type A in Focal Dystonia Is Most Probably through Its Dual Effect on Efferent (Motor) and Afferent Pathways at the Injected Site. J. Neurol. Sci. 1997, 152, 132–135. [Google Scholar] [CrossRef]
- Albanese, A.; Bhatia, K.; Bressman, S.B.; Delong, M.R.; Fahn, S.; Fung, V.S.C.; Hallett, M.; Jankovic, J.; Jinnah, H.A.; Klein, C.; et al. Phenomenology and Classification of Dystonia: A Consensus Update. Mov. Disord. Off. J. Mov. Disord. Soc. 2013, 28, 863–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandyan, A.D.; Gregoric, M.; Barnes, M.P.; Wood, D.; Van Wijck, F.; Burridge, J.; Hermens, H.; Johnson, G.R. Spasticity: Clinical Perceptions, Neurological Realities and Meaningful Measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, G.; Pellegrino, G.; Assenza, G.; Capone, F.; Ferreri, F.; Formica, D.; Ranieri, F.; Tombini, M.; Ziemann, U.; Rothwell, J.C.; et al. Modulation of Brain Plasticity in Stroke: A Novel Model for Neurorehabilitation. Nat. Rev. Neurol. 2014, 10, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Matthews, P.M. An introduction to functional magnetic resonance imaging of the brain. In Functional MRI: An Introduction to Methods; Jezzard, P., Matthews, P.M., Smith, S.M., Eds.; Oxford University Press: Oxford, UK; New York, NY, USA, 2001; pp. 3–34. [Google Scholar]
- Liepert, J.; Schwenkreis, P.; Tegenthoff, M.; Malin, J.P. The Glutamate Antagonist Riluzole Suppresses Intracortical Facilitation. J. Neural Transm. Vienna Austria 1996 1997, 104, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Kaňovský, P.; Streitová, H.; Dufek, J.; Rektor, I. Lateralization of the P22/N30 Component of Somatosensory Evoked Potentials of the Median Nerve in Patients with Cervical Dystonia. Mov. Disord. 1997, 12, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, U.; Lönnecker, S.; Steinhoff, B.J.; Paulus, W. Effects of Antiepileptic Drugs on Motor Cortex Excitability in Humans: A Transcranial Magnetic Stimulation Study. Ann. Neurol. 1996, 40, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Corwell, B.; Yaseen, Z.; Hallett, M.; Cohen, L.G. Mechanisms of Cortical Reorganization in Lower-Limb Amputees. J. Neurosci. 1998, 18, 3443–3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, L.G.; Bandinelli, S.; Findley, T.W.; Hallett, M. Motor Reorganization after Upper Limb Amputation in Man. A Study with Focal Magnetic Stimulation. Brain 1991, 114 Pt 1B, 615–627. [Google Scholar] [CrossRef]
- Fuhr, P.; Cohen, L.G.; Dang, N.; Findley, T.W.; Haghighi, S.; Oro, J.; Hallett, M. Physiological Analysis of Motor Reorganization Following Lower Limb Amputation. Electroencephalogr. Clin. Neurophysiol. 1992, 85, 53–60. [Google Scholar] [CrossRef]
- Ridding, M.C.; Rothwell, J.C. Stimulus/Response Curves as a Method of Measuring Motor Cortical Excitability in Man. Electroencephalogr. Clin. Neurophysiol. 1997, 105, 340–344. [Google Scholar] [CrossRef]
- Rosenkranz, K.; Rothwell, J.C. Differences between the Effects of Three Plasticity Inducing Protocols on the Organization of the Human Motor Cortex. Eur. J. Neurosci. 2006, 23, 822–829. [Google Scholar] [CrossRef]
- Brasil-Neto, J.P.; Valls-Solé, J.; Pascual-Leone, A.; Cammarota, A.; Amassian, V.E.; Cracco, R.; Maccabee, P.; Cracco, J.; Hallett, M.; Cohen, L.G. Rapid Modulation of Human Cortical Motor Outputs Following Ischaemic Nerve Block. Brain J. Neurol. 1993, 116 Pt 3, 511–525. [Google Scholar] [CrossRef]
- Ziemann, U.; Hallett, M.; Cohen, L.G. Mechanisms of Deafferentation-Induced Plasticity in Human Motor Cortex. J. Neurosci. 1998, 18, 7000–7007. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, U.; Corwell, B.; Cohen, L.G. Modulation of Plasticity in Human Motor Cortex after Forearm Ischemic Nerve Block. J. Neurosci. 1998, 18, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Brasil-Neto, J.P.; Cohen, L.G.; Pascual-Leone, A.; Jabir, F.K.; Wall, R.T.; Hallett, M. Rapid Reversible Modulation of Human Motor Outputs after Transient Deafferentation of the Forearm: A Study with Transcranial Magnetic Stimulation. Neurology 1992, 42, 1302–1306. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, U.; Muellbacher, W.; Hallett, M.; Cohen, L.G. Modulation of Practice-Dependent Plasticity in Human Motor Cortex. Brain 2001, 124, 1171–1181. [Google Scholar] [CrossRef]
- Muellbacher, W.; Richards, C.; Ziemann, U.; Wittenberg, G.; Weltz, D.; Boroojerdi, B.; Cohen, L.; Hallett, M. Improving Hand Function in Chronic Stroke. Arch. Neurol. 2002, 59, 1278–1282. [Google Scholar] [CrossRef]
- Werhahn, K.J.; Mortensen, J.; Kaelin-Lang, A.; Boroojerdi, B.; Cohen, L.G. Cortical Excitability Changes Induced by Deafferentation of the Contralateral Hemisphere. Brain 2002, 125, 1402–1413. [Google Scholar] [CrossRef] [Green Version]
- Floel, A.; Nagorsen, U.; Werhahn, K.J.; Ravindran, S.; Birbaumer, N.; Knecht, S.; Cohen, L.G. Influence of Somatosensory Input on Motor Function in Patients with Chronic Stroke. Ann. Neurol. 2004, 56, 206–212. [Google Scholar] [CrossRef]
- Rossini, P.M.; Rossi, S.; Tecchio, F.; Pasqualetti, P.; Finazzi-Agrò, A.; Sabato, A. Focal Brain Stimulation in Healthy Humans: Motor Maps Changes Following Partial Hand Sensory Deprivation. Neurosci. Lett. 1996, 214, 191–195. [Google Scholar] [CrossRef]
- Liepert, J.; Tegenthoff, M.; Malin, J.P. Changes of Cortical Motor Area Size during Immobilization. Electroencephalogr. Clin. Neurophysiol. 1995, 97, 382–386. [Google Scholar] [CrossRef]
- Palomar, F.J.; Mir, P. Neurophysiological Changes after Intramuscular Injection of Botulinum Toxin. Clin. Neurophysiol. 2012, 123, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-Y.; Oh, B.-M.; Paik, N.-J. Central Effect of Botulinum Toxin Type A in Humans. Int. J. Neurosci. 2006, 116, 667–680. [Google Scholar] [CrossRef]
- Grünewald, R.A.; Yoneda, Y.; Shipman, J.M.; Sagar, H.J. Idiopathic Focal Dystonia: A Disorder of Muscle Spindle Afferent Processing? Brain 1997, 120 Pt 12, 2179–2185. [Google Scholar] [CrossRef]
- Rome, S.; Grünewald, R.A. Abnormal Perception of Vibration-Induced Illusion of Movement in Dystonia. Neurology 1999, 53, 1794–1800. [Google Scholar] [CrossRef]
- Kaňovský, P.; Streitová, H.; Dufek, J.; Znojil, V.; Daniel, P.; Rektor, I. Change in Lateralization of the P22/N30 Cortical Component of Median Nerve Somatosensory Evoked Potentials in Patients with Cervical Dystonia after Successful Treatment with Botulinum Toxin A. Mov. Disord. 1998, 13, 108–117. [Google Scholar] [CrossRef]
- Contarino, M.F.; Kruisdijk, J.J.M.; Koster, L.; de Visser, B.W.O.; Speelman, J.D.; Koelman, J.H.T.M. Sensory Integration in Writer’s Cramp: Comparison with Controls and Evaluation of Botulinum Toxin Effect. Clin. Neurophysiol. 2007, 118, 2195–2206. [Google Scholar] [CrossRef] [PubMed]
- Kaňovský, P.; Bareš, M.; Streitová, H.; Klajblová, H.; Daniel, P.; Rektor, I. Abnormalities of Cortical Excitability and Cortical Inhibition in Cervical Dystonia Evidence from Somatosensory Evoked Potentials and Paired Transcranial Magnetic Stimulation Recordings. J. Neurol. 2003, 250, 42–50. [Google Scholar] [CrossRef]
- Kaňovský, P.; Bareš, M.; Streitová, H.; Klajblová, H.; Daniel, P.; Rektor, I. The Disorder of Cortical Excitability and Cortical Inhibition in Focal Dystonia Is Normalised Following Successful Botulinum Toxin Treatment: An Evidence from Somatosensory Evoked Potentials and Transcranial Magnetic Stimulation Recordings. Mov. Disord. 2004, 19, S78–S79. [Google Scholar]
- Ridding, M.C.; Sheean, G.; Rothwell, J.C.; Inzelberg, R.; Kujirai, T. Changes in the Balance between Motor Cortical Excitation and Inhibition in Focal, Task Specific Dystonia. J. Neurol. Neurosurg. Psychiatry 1995, 59, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Gilio, F.; Currà, A.; Lorenzano, C.; Modugno, N.; Manfredi, M.; Berardelli, A. Effects of Botulinum Toxin Type A on Intracortical Inhibition in Patients with Dystonia. Ann. Neurol. 2000, 48, 20–26. [Google Scholar] [CrossRef]
- Boroojerdi, B.; Cohen, L.G.; Hallett, M. Effects of Botulinum Toxin on Motor System Excitability in Patients with Writer’s Cramp. Neurology 2003, 61, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Allam, N.; de Oliva Fonte-Boa, P.M.; Tomaz, C.A.B.; Brasil-Neto, J.P. Lack of Effect of Botulinum Toxin on Cortical Excitability in Patients with Cranial Dystonia. Clin. Neuropharmacol. 2005, 28, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Suppa, A.; Marsili, L.; Giovannelli, F.; Stasio, F.D.; Rocchi, L.; Upadhyay, N.; Ruoppolo, G.; Cincotta, M.; Berardelli, A. Abnormal Motor Cortex Excitability during Linguistic Tasks in Adductor-Type Spasmodic Dysphonia. Eur. J. Neurosci. 2015, 42, 2051–2060. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, M.L.; Mastaglia, F.L.; Walters, S.E.; Archer, S.-A.R.; Thickbroom, G.W. Primary Writing Tremor: Motor Cortex Reorganisation and Disinhibition. J. Clin. Neurosci. 2005, 12, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, M.L.; Thickbroom, G.W.; Wilson, S.A.; Sacco, P.; Shipman, J.M.; Stell, R.; Mastaglia, F.L. The Corticomotor Representation of Upper Limb Muscles in Writer’s Cramp and Changes Following Botulinum Toxin Injection. Brain 1998, 121 Pt 5, 977–988. [Google Scholar] [CrossRef]
- Thickbroom, G.W.; Byrnes, M.L.; Stell, R.; Mastaglia, F.L. Reversible Reorganisation of the Motor Cortical Representation of the Hand in Cervical Dystonia. Mov. Disord. 2003, 18, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Trompetto, C.; Currà, A.; Buccolieri, A.; Suppa, A.; Abbruzzese, G.; Berardelli, A. Botulinum Toxin Changes Intrafusal Feedback in Dystonia: A Study with the Tonic Vibration Reflex. Mov. Disord. 2006, 21, 777–782. [Google Scholar] [CrossRef]
- Romaiguère, P.; Vedel, J.P.; Azulay, J.P.; Pagni, S. Differential Activation of Motor Units in the Wrist Extensor Muscles during the Tonic Vibration Reflex in Man. J. Physiol. 1991, 444, 645–667. [Google Scholar] [CrossRef] [Green Version]
- Urban, P.P.; Rolke, R. Effects of Botulinum Toxin Type A on Vibration Induced Facilitation of Motor Evoked Potentials in Spasmodic Torticollis. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1541–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kossev, A.; Siggelkow, S.; Schubert, M.; Wohlfarth, K.; Dengler, R. Muscle Vibration: Different Effects on Transcranial Magnetic and Electrical Stimulation. Muscle Nerve 1999, 22, 946–948. [Google Scholar] [CrossRef]
- Rosenkranz, K.; Rothwell, J.C. Differential Effect of Muscle Vibration on Intracortical Inhibitory Circuits in Humans. J. Physiol. 2003, 551, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Weise, D.; Schramm, A.; Beck, M.; Reiners, K.; Classen, J. Loss of Topographic Specificity of LTD-like Plasticity Is a Trait Marker in Focal Dystonia. Neurobiol. Dis. 2011, 42, 171–176. [Google Scholar] [CrossRef]
- Weise, D.; Schramm, A.; Stefan, K.; Wolters, A.; Reiners, K.; Naumann, M.; Classen, J. The Two Sides of Associative Plasticity in Writer’s Cramp. Brain 2006, 129, 2709–2721. [Google Scholar] [CrossRef]
- Kojovic, M.; Caronni, A.; Bologna, M.; Rothwell, J.C.; Bhatia, K.P.; Edwards, M.J. Botulinum Toxin Injections Reduce Associative Plasticity in Patients with Primary Dystonia. Mov. Disord. 2011, 26, 1282–1289. [Google Scholar] [CrossRef]
- Hu, W.; Rundle-Gonzalez, V.; Kulkarni, S.J.; Martinez-Ramirez, D.; Almeida, L.; Okun, M.S.; Wagle Shukla, A. A Randomized Study of Botulinum Toxin versus Botulinum Toxin plus Physical Therapy for Treatment of Cervical Dystonia. Parkinsonism Relat. Disord. 2019, 63, 195–198. [Google Scholar] [CrossRef]
- Frascarelli, F.; Di Rosa, G.; Bisozzi, E.; Castelli, E.; Santilli, V. Neurophysiological Changes Induced by the Botulinum Toxin Type A Injection in Children with Cerebral Palsy. Eur. J. Paediatr. Neurol. 2011, 15, 59–64. [Google Scholar] [CrossRef]
- Park, E.S.; Park, C.I.; Kim, D.Y.; Kim, Y.R. The Effect of Spasticity on Cortical Somatosensory-Evoked Potentials: Changes of Cortical Somatosensory-Evoked Potentials after Botulinum Toxin Type A Injection. Arch. Phys. Med. Rehabil. 2002, 83, 1592–1596. [Google Scholar] [CrossRef] [PubMed]
- Basaran, A.; Emre, U.; Karadavut, K.I.; Bulmus, N. Somatosensory Evoked Potentials of Hand Muscles in Stroke and Their Modification by Botulinum Toxin: A Preliminary Study. J. Rehabil. Med. 2012, 44, 541–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hluštík, P.; Veverka, T.; Hok, P.; Otruba, P.; Krobot, A.; Zapletalová, J.; Kaňovský, P. P06-Cortical Somatosensory Processing after Botulinum Toxin Therapy in Post-Stroke Spasticity. Clin. Neurophysiol. 2018, 129, e15. [Google Scholar] [CrossRef]
- Trompetto, C.; Bove, M.; Avanzino, L.; Francavilla, G.; Berardelli, A.; Abbruzzese, G. Intrafusal Effects of Botulinum Toxin in Post-Stroke Upper Limb Spasticity. Eur. J. Neurol. 2008, 15, 367–370. [Google Scholar] [CrossRef]
- Pauri, F.; Boffa, L.; Cassetta, E.; Pasqualetti, P.; Rossini, P.M. Botulinum Toxin Type-A Treatment in Spastic Paraparesis: A Neurophysiological Study. J. Neurol. Sci. 2000, 181, 89–97. [Google Scholar] [CrossRef]
- Redman, T.A.; Gibson, N.; Finn, J.C.; Bremner, A.P.; Valentine, J.; Thickbroom, G.W. Upper Limb Corticomotor Projections and Physiological Changes That Occur with Botulinum Toxin-A Therapy in Children with Hemiplegic Cerebral Palsy. Eur. J. Neurol. 2008, 15, 787–791. [Google Scholar] [CrossRef]
- Phadke, C.P.; Ismail, F.; Boulias, C. Assessing the Neurophysiological Effects of Botulinum Toxin Treatment for Adults with Focal Limb Spasticity: A Systematic Review. Disabil. Rehabil. 2012, 34, 91–100. [Google Scholar] [CrossRef]
- Burciu, R.G.; Hess, C.W.; Coombes, S.A.; Ofori, E.; Shukla, P.; Chung, J.W.; McFarland, N.R.; Wagle Shukla, A.; Okun, M.S.; Vaillancourt, D.E. Functional Activity of the Sensorimotor Cortex and Cerebellum Relates to Cervical Dystonia Symptoms. Hum. Brain Mapp. 2017, 38, 4563–4573. [Google Scholar] [CrossRef] [Green Version]
- de Vries, P.M.; Johnson, K.A.; de Jong, B.M.; Gieteling, E.W.; Bohning, D.E.; George, M.S.; Leenders, K.L. Changed Patterns of Cerebral Activation Related to Clinically Normal Hand Movement in Cervical Dystonia. Clin. Neurol. Neurosurg. 2008, 110, 120–128. [Google Scholar] [CrossRef]
- Obermann, M.; Vollrath, C.; de Greiff, A.; Gizewski, E.R.; Diener, H.-C.; Hallett, M.; Maschke, M. Sensory Disinhibition on Passive Movement in Cervical Dystonia. Mov. Disord. 2010, 25, 2627–2633. [Google Scholar] [CrossRef]
- Obermann, M.; Yaldizli, O.; de Greiff, A.; Konczak, J.; Lachenmayer, M.L.; Tumczak, F.; Buhl, A.R.; Putzki, N.; Vollmer-Haase, J.; Gizewski, E.R.; et al. Increased Basal-Ganglia Activation Performing a Non-Dystonia-Related Task in Focal Dystonia. Eur. J. Neurol. 2008, 15, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Feiwell, R.J.; Black, K.J.; McGee-Minnich, L.A.; Snyder, A.Z.; MacLeod, A.M.; Perlmutter, J.S. Diminished Regional Cerebral Blood Flow Response to Vibration in Patients with Blepharospasm. Neurology 1999, 52, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Castrop, F.; Dresel, C.; Hennenlotter, A.; Zimmer, C.; Haslinger, B. Basal Ganglia-Premotor Dysfunction during Movement Imagination in Writer’s Cramp. Mov. Disord. 2012, 27, 1432–1439. [Google Scholar] [CrossRef]
- Dresel, C.; Bayer, F.; Castrop, F.; Rimpau, C.; Zimmer, C.; Haslinger, B. Botulinum Toxin Modulates Basal Ganglia but Not Deficient Somatosensory Activation in Orofacial Dystonia. Mov. Disord. 2011, 26, 1496–1502. [Google Scholar] [CrossRef]
- Opavský, R.; Hluštík, P.; Otruba, P.; Kaňovský, P. Somatosensory Cortical Activation in Cervical Dystonia and Its Modulation With Botulinum Toxin: An FMRI Study. Int. J. Neurosci. 2012, 122, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Mantel, T.; Dresel, C.; Welte, M.; Meindl, T.; Jochim, A.; Zimmer, C.; Haslinger, B. Altered Sensory System Activity and Connectivity Patterns in Adductor Spasmodic Dysphonia. Sci. Rep. 2020, 10, 10179. [Google Scholar] [CrossRef]
- Ceballos-Baumann, A.O.; Sheean, G.; Passingham, R.E.; Marsden, C.D.; Brooks, D.J. Botulinum Toxin Does Not Reverse the Cortical Dysfunction Associated with Writer’s Cramp. A PET Study. Brain 1997, 120 Pt 4, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Haslinger, B.; Erhard, P.; Dresel, C.; Castrop, F.; Roettinger, M.; Ceballos-Baumann, A.O. “Silent Event-Related” FMRI Reveals Reduced Sensorimotor Activation in Laryngeal Dystonia. Neurology 2005, 65, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.O.; Thomassen, M.; Schulz, G.M.; Hosey, L.A.; Varga, M.; Ludlow, C.L.; Braun, A.R. Alterations in CNS Activity Induced by Botulinum Toxin Treatment in Spasmodic Dysphonia: An H215O PET Study. J. Speech Lang. Hear. Res. 2006, 49, 1127–1146. [Google Scholar] [CrossRef]
- Dresel, C.; Haslinger, B.; Castrop, F.; Wohlschlaeger, A.M.; Ceballos-Baumann, A.O. Silent Event-Related FMRI Reveals Deficient Motor and Enhanced Somatosensory Activation in Orofacial Dystonia. Brain 2006, 129, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Opavský, R.; Hluštík, P.; Otruba, P.; Kaňovský, P. Sensorimotor Network in Cervical Dystonia and the Effect of Botulinum Toxin Treatment: A Functional MRI Study. J. Neurol. Sci. 2011, 306, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Nevrlý, M.; Hluštík, P.; Hok, P.; Otruba, P.; Tüdös, Z.; Kaňovský, P. Changes in Sensorimotor Network Activation after Botulinum Toxin Type A Injections in Patients with Cervical Dystonia: A Functional MRI Study. Exp. Brain Res. 2018, 236, 2627–2637. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Mizoguchi, S.; Kiyosawa, M.; Mochizuki, M.; Ishiwata, K.; Wakakura, M.; Ishii, K. Glucose Hypermetabolism in the Thalamus of Patients with Essential Blepharospasm. J. Neurol. 2007, 254, 890–896. [Google Scholar] [CrossRef]
- Mohammadi, B.; Kollewe, K.; Samii, A.; Beckmann, C.F.; Dengler, R.; Münte, T.F. Changes in Resting-State Brain Networks in Writer’s Cramp. Hum. Brain Mapp. 2012, 33, 840–848. [Google Scholar] [CrossRef]
- Delnooz, C.C.S.; Pasman, J.W.; Beckmann, C.F.; van de Warrenburg, B.P.C. Task-Free Functional MRI in Cervical Dystonia Reveals Multi-Network Changes That Partially Normalize with Botulinum Toxin. PLoS ONE 2013, 8, e62877. [Google Scholar] [CrossRef] [Green Version]
- Delnooz, C.C.S.; Pasman, J.W.; Beckmann, C.F.; van de Warrenburg, B.P.C. Altered Striatal and Pallidal Connectivity in Cervical Dystonia. Brain Struct. Funct. 2015, 220, 513–523. [Google Scholar] [CrossRef]
- Jochim, A.; Li, Y.; Gora-Stahlberg, G.; Mantel, T.; Berndt, M.; Castrop, F.; Dresel, C.; Haslinger, B. Altered Functional Connectivity in Blepharospasm/Orofacial Dystonia. Brain Behav. 2018, 8, e00894. [Google Scholar] [CrossRef] [Green Version]
- Brodoehl, S.; Wagner, F.; Prell, T.; Klingner, C.; Witte, O.W.; Günther, A. Cause or Effect: Altered Brain and Network Activity in Cervical Dystonia Is Partially Normalized by Botulinum Toxin Treatment. NeuroImage Clin. 2019, 22, 101792. [Google Scholar] [CrossRef]
- Hok, P.; Hvizdošová, L.; Otruba, P.; Kaiserová, M.; Trnečková, M.; Tüdös, Z.; Hluštík, P.; Kaňovský, P.; Nevrlý, M. Botulinum Toxin Injection Changes Resting State Cerebellar Connectivity in Cervical Dystonia. under review.
- Rosenkranz, K.; Williamon, A.; Butler, K.; Cordivari, C.; Lees, A.J.; Rothwell, J.C. Pathophysiological Differences between Musician’s Dystonia and Writer’s Cramp. Brain 2005, 128, 918–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterworth, S.; Francis, S.; Kelly, E.; McGlone, F.; Bowtell, R.; Sawle, G.V. Abnormal Cortical Sensory Activation in Dystonia: An FMRI Study. Mov. Disord. Off. J. Mov. Disord. Soc. 2003, 18, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Tempel, L.W.; Perlmutter, J.S. Abnormal Vibration-Induced Cerebral Blood Flow Responses in Idiopathic Dystonia. Brain 1990, 113, 691–707. [Google Scholar] [CrossRef] [PubMed]
- Ceballos-Baumann, A.O.; Passingham, R.E.; Marsden, C.D.; Brooks, D.J. Motor Reorganization in Acquired Hemidystonia. Ann. Neurol. 1995, 37, 746–757. [Google Scholar] [CrossRef]
- Ceballos-Baumann, A.O.; Passingham, R.E.; Warner, T.; Playford, E.D.; Marsden, C.D.; Brooks, D.J. Overactive Prefrontal and Underactive Motor Cortical Areas in Idiopathic Dystonia. Ann. Neurol. 1995, 37, 363–372. [Google Scholar] [CrossRef]
- Dresel, C.; Li, Y.; Wilzeck, V.; Castrop, F.; Zimmer, C.; Haslinger, B. Multiple Changes of Functional Connectivity between Sensorimotor Areas in Focal Hand Dystonia. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1245–1252. [Google Scholar] [CrossRef]
- Haslinger, B.; Noé, J.; Altenmüller, E.; Riedl, V.; Zimmer, C.; Mantel, T.; Dresel, C. Changes in Resting-State Connectivity in Musicians with Embouchure Dystonia. Mov. Disord. 2017, 32, 450–458. [Google Scholar] [CrossRef]
- Norris, S.A.; Morris, A.E.; Campbell, M.C.; Karimi, M.; Adeyemo, B.; Paniello, R.C.; Snyder, A.Z.; Petersen, S.E.; Mink, J.W.; Perlmutter, J.S. Regional, Not Global, Functional Connectivity Contributes to Isolated Focal Dystonia. Neurology 2020, 95, e2246–e2258. [Google Scholar] [CrossRef]
- Shimizu, M.; Suzuki, Y.; Kiyosawa, M.; Wakakura, M.; Ishii, K.; Ishiwata, K.; Mochizuki, M. Glucose Hypermetabolism in the Thalamus of Patients with Hemifacial Spasm. Mov. Disord. 2012, 27, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Corp, D.T.; Joutsa, J.; Darby, R.R.; Delnooz, C.C.S.; van de Warrenburg, B.P.C.; Cooke, D.; Prudente, C.N.; Ren, J.; Reich, M.M.; Batla, A.; et al. Network Localization of Cervical Dystonia Based on Causal Brain Lesions. Brain 2019, 142, 1660–1674. [Google Scholar] [CrossRef] [Green Version]
- Filip, P.; Lungu, O.V.; Bareš, M. Dystonia and the Cerebellum: A New Field of Interest in Movement Disorders? Clin. Neurophysiol. 2013, 124, 1269–1276. [Google Scholar] [CrossRef]
- Shakkottai, V.G.; Batla, A.; Bhatia, K.; Dauer, W.T.; Dresel, C.; Niethammer, M.; Eidelberg, D.; Raike, R.S.; Smith, Y.; Jinnah, H.A.; et al. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. Cerebellum 2017, 16, 577–594. [Google Scholar] [CrossRef] [Green Version]
- Filip, P.; Gallea, C.; Lehéricy, S.; Bertasi, E.; Popa, T.; Mareček, R.; Lungu, O.V.; Kašpárek, T.; Vaníček, J.; Bareš, M. Disruption in Cerebellar and Basal Ganglia Networks during a Visuospatial Task in Cervical Dystonia. Mov. Disord. 2017. [Google Scholar] [CrossRef]
- Gracien, R.-M.; Petrov, F.; Hok, P.; van Wijnen, A.; Maiworm, M.; Seiler, A.; Deichmann, R.; Baudrexel, S. Multimodal Quantitative MRI Reveals No Evidence for Tissue Pathology in Idiopathic Cervical Dystonia. Front. Neurol. 2019, 10, 914. [Google Scholar] [CrossRef] [PubMed]
- Lehéricy, S.; Tijssen, M.A.J.; Vidailhet, M.; Kaji, R.; Meunier, S. The Anatomical Basis of Dystonia: Current View Using Neuroimaging. Mov. Disord. 2013, 28, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Dorňák, T.; Justanová, M.; Konvalinková, R.; Říha, M.; Mužík, J.; Hoskovcová, M.; Srp, M.; Navrátilová, D.; Otruba, P.; Gál, O.; et al. Prevalence and Evolution of Spasticity in Patients Suffering from First-Ever Stroke with Carotid Origin: A Prospective, Longitudinal Study. Eur. J. Neurol. 2019, 26, 880–886. [Google Scholar] [CrossRef]
- Thibaut, A.; Chatelle, C.; Ziegler, E.; Bruno, M.-A.; Laureys, S.; Gosseries, O. Spasticity after Stroke: Physiology, Assessment and Treatment. Brain Inj. 2013, 27, 1093–1105. [Google Scholar] [CrossRef]
- Bergfeldt, U.; Jonsson, T.; Bergfeldt, L.; Julin, P. Cortical Activation Changes and Improved Motor Function in Stroke Patients after Focal Spasticity Therapy--an Interventional Study Applying Repeated FMRI. BMC Neurol. 2015, 15, 52. [Google Scholar] [CrossRef] [Green Version]
- Šenkárová, Z.; Hluštík, P.; Otruba, P.; Herzig, R.; Kaňovský, P. Modulation of Cortical Activity in Patients Suffering from Upper Arm Spasticity Following Stroke and Treated with Botulinum Toxin A: An FMRI Study. J. Neuroimaging 2010, 20, 9–15. [Google Scholar] [CrossRef]
- Tomášová, Z.; Hluštík, P.; Král, M.; Otruba, P.; Herzig, R.; Krobot, A.; Kaňovský, P. Cortical Activation Changes in Patients Suffering from Post-Stroke Arm Spasticity and Treated with Botulinum Toxin A. J. Neuroimaging 2013, 23, 337–344. [Google Scholar] [CrossRef]
- Veverka, T.; Hluštík, P.; Tomášová, Z.; Hok, P.; Otruba, P.; Král, M.; Tüdös, Z.; Zapletalová, J.; Herzig, R.; Krobot, A.; et al. BoNT-A Related Changes of Cortical Activity in Patients Suffering from Severe Hand Paralysis with Arm Spasticity Following Ischemic Stroke. J. Neurol. Sci. 2012, 319, 89–95. [Google Scholar] [CrossRef]
- Veverka, T.; Hluštík, P.; Hok, P.; Otruba, P.; Tüdös, Z.; Zapletalová, J.; Krobot, A.; Kaňovský, P. Cortical Activity Modulation by Botulinum Toxin Type A in Patients with Post-Stroke Arm Spasticity: Real and Imagined Hand Movement. J. Neurol. Sci. 2014, 346, 276–283. [Google Scholar] [CrossRef]
- Veverka, T.; Hluštík, P.; Hok, P.; Otruba, P.; Zapletalová, J.; Tüdös, Z.; Krobot, A.; Kaňovský, P. Sensorimotor Modulation by Botulinum Toxin A in Post-Stroke Arm Spasticity: Passive Hand Movement. J. Neurol. Sci. 2016, 362, 14–20. [Google Scholar] [CrossRef]
- Veverka, T.; Hok, P.; Otruba, P.; Zapletalová, J.; Kukolová, B.; Tüdös, Z.; Krobot, A.; Kaňovský, P.; Hluštík, P. Botulinum Toxin Modulates Posterior Parietal Cortex Activation in Post-Stroke Spasticity of the Upper Limb. Front. Neurol. 2019, 10, 495. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-L.; Weber, D.J.; Munin, M.C. Changes in Cerebellar Activation after Onabotulinumtoxin A Injections for Spasticity After Chronic Stroke: A Pilot Functional Magnetic Resonance Imaging Study. Arch. Phys. Med. Rehabil. 2015, 96, 2007–2016. [Google Scholar] [CrossRef] [Green Version]
- Manganotti, P.; Acler, M.; Formaggio, E.; Avesani, M.; Milanese, F.; Baraldo, A.; Storti, S.F.; Gasparini, A.; Cerini, R.; Mucelli, R.P.; et al. Changes in Cerebral Activity after Decreased Upper-Limb Hypertonus: An EMG-FMRI Study. Magn. Reson. Imaging 2010, 28, 646–652. [Google Scholar] [CrossRef]
- Hok, P.; Hluštík, P.; Tüdös, Z.; Frantis, P.; Klosová, J.; Sládková, V.; Mareš, J.; Otruba, P.; Kaňovský, P. Changes in Motor Cortex Activation after Botulinum Toxin Treatment in MS Patients with Leg Spasticity. Aktual. Neurol. 2011, 11, 251–256. [Google Scholar]
- Veverka, T.; Hluštík, P.; Hok, P.; Tomášová, Z.; Otruba, P.; Král, M.; Tüdös, Z.; Krobot, A.; Herzig, R.; Kaňovský, P. Differences in the Modulation of Cortical Activity in Patients Suffering from Upper Arm Spasticity Following Stroke and Treated with Botulinum Toxin A. Čes. Slov. Neurol. Neurochir. 2013, 76, 175–182. [Google Scholar]
- Roland, P.E.; Larsen, B.; Lassen, N.A.; Skinhøj, E. Supplementary Motor Area and Other Cortical Areas in Organization of Voluntary Movements in Man. J. Neurophysiol. 1980, 43, 118–136. [Google Scholar] [CrossRef]
- Diserens, K.; Ruegg, D.; Kleiser, R.; Hyde, S.; Perret, N.; Vuadens, P.; Fornari, E.; Vingerhoets, F.; Seitz, R.J. Effect of Repetitive Arm Cycling Following Botulinum Toxin Injection for Poststroke Spasticity: Evidence from FMRI. Neurorehabil. Neural Repair 2010, 24, 753–762. [Google Scholar] [CrossRef] [PubMed]
Electrophysiological Methods to Evaluate Plasticity [15] | ||||
Abbreviation | Full Term | Technique | Anatomical/Physiological Substrate | Effect |
CSP | cortical silent period | suprathreshold TMS pulse delivered during tonic contralateral muscle contraction | intracortical inhibitory circuitry | inhibitory |
ICF | intracortical facilitation | subthreshold conditioning TMS pulse followed by suprathreshold pulse (ISI 8–30 ms) | intracortical excitatory circuitry (possibly NMDA glutamatergic [17]) | facilitatory |
IHI | interhemispheric inhibition | ipsilateral subthreshold conditioning TMS pulse followed by contralateral suprathreshold pulse (ISI 10–40 ms) | transcallosal inhibitory connections | inhibitory |
MEP | motor evoked potential or M-wave | see TMS | ||
P22/N30 | complex of short-latency positive and negative waves | cortical responses to stimulation of the contralateral median nerve recorded precentrally | possibly activation of SMA and dorsolateral frontal cortex [18] | N/A |
SEP | somatosensory evoked potentials | electrical stimulation of a peripheral nerve (usually median or tibial) | dorsal column–medial lemniscus pathway | spinal and cortical responses |
SICI | short-interval intracortical inhibition | subthreshold conditioning TMS pulse followed by suprathreshold pulse (ISI 1–5 ms) | intracortical inhibitory circuitry (GABA-ergic [19]) | inhibitory |
TMS | transcranial magnetic stimulation | strong magnetic pulse delivered via round or figure-of-eight coil | transsynaptic activation of the corticospinal neurons in M1 | suprathreshold stimulus triggers MEP (usually the test stimulus), subthreshold stimuli have conditioning effects |
Neuroimaging methods to evaluate plasticity [16] | ||||
Abbreviation | Full term | Technique | Anatomical/physiological substrate | Modalities |
BOLD | blood oxygenation level-dependent | fMRI technique utilizing T2* sequences sensitive to local field inhomogeneities associated with the blood oxygenation level | neuronal activation, signal convolved with hemodynamic response function due to neurovascular coupling delay | task-related, resting-state |
fMRI | functional magnetic resonance imaging | usually BOLD fMRI, infrequently arterial spin labelling | see BOLD | |
PET | positron emission tomography | H215O PET, fluoro-deoxy-glucose PET or similar | based on the radiotracer, usually reflecting regional cerebral blood flow or neuronal metabolism | task-related, resting-state |
Methods to experimentally induce plasticity [15] | ||||
Abbreviation | Full term | Technique | Anatomical/physiological substrate | Effect |
PAS | paired associative stimulation | peripheral electric stimulus time-locked to a TMS pulse at the M1 | intracortical and thalamocortical circuits | based on ISI |
rTMS | repetitive TMS | suprathreshold repetitive TMS pulses | LTP-like or LTD-like corticospinal plasticity | excitatory (high frequency) or inhibitory (low frequency) |
Authors | Disease | Cohort | Imaging Technique | Task/Analysis | Effect of BoNT-A |
---|---|---|---|---|---|
Somatosensory Task-Related Activation | |||||
Dresel et al. [74] | blepharospasm and Meige’s syndrome | 16 pre-treated (10 with Meige’s syndrome) | fMRI | tactile stimulation of the forehead, lips, and hand | reduced activation in the left SMA, bilateral thalami and contralateral putamen |
Opavský et al. [75] | cervical dystonia | 7 pre-treated | fMRI | electrical median nerve stimulation | restored hypoactivation in the contralateral S2 back to normal |
Mantel et al. [76] | adductor-type spasmodic dysphonia | 12 pre-treated | fMRI | tactile stimulation of the forehead, lips, and hand [74] | no changes after BoNT-A |
Motor task-related activation | |||||
Ceballos-Baumann et al. [77] | writer’s cramp | 6 (5 pre-treated and off BoNT-A for 4-12 M, 1 naïve) | H215O PET | writing | increased activation in the already overactivated contralateral S1, enhanced and normalised activation in the SMA, and reduced activation in the anterior cingulate and cerebellum |
Haslinger et al. [78] | spasmodic dysphonia | 12 pre-treated patients | fMRI | vocalisation and whispering | no changes after BoNT-A |
Ali et al. [79] | spasmodic dysphonia | 9 (7 pre-treated and off BoNT-A for >6 M, 2 naïve) | H215O PET | speech production | increased activation in the left temporoparietal cortex and brainstem (originally attenuated); decreased activation in the cerebellum, right M1/PMC, insula, left auditory cortex and anterior cingulate (originally hyperactivated); additionally enhanced activation in the left ventral M1/PMC, frontal operculum and insula; and lowered activation in the right thalamus and putamen, left caudate, and pre-SMA, some changes correlated with clinical improvement |
Dresel et al. [80] | blepharospasm and Meige’s syndrome | 13 with blepharospasm (2 naïve), 13 pre-treated with Meige’s syndrome | fMRI | whistling | decreased activation in the left SMA, right S1 and IPL in Meige’s syndrome group, no change in blepharospasm group |
Obermann et al. [70] | cervical dystonia | 17 pre-treated | fMRI | passive forearm flexion | positive correlation with the applied dose of BoNT-A and a negative correlation with TWSTRS in the SMA |
Opavský et al. [81] | cervical dystonia | 7 pre-treated | fMRI | sequential finger opposition | decreased activation in the SMA and dorsal PMC |
Nevrlý et al. [82] | cervical dystonia | 12 naïve | fMRI | sequential finger opposition [81] | increased activation in the bilateral dorsal PMC, SMA, anterior cingulate cortex, S1, S2, insulae, posterior parietal cortices, contralateral M1, mostly ipsilateral thalamus, putamen, midbrain and ipsilateral cerebellar hemisphere and vermis |
Resting-state connectivity | |||||
Suzuki et al. [83] | blepharospasm | 25 with unknown treatment status | FDG PET | resting state metabolism | no significant difference between full responders and partial responders |
Mohammadi et al. [84] | writer’s cramp | 16 pre-treated | fMRI | independent component analysis | no changes after BoNT-A |
Delnooz et al. [85] | cervical dystonia | 23 pre-treated | fMRI | FC using dual regression with pre-defined RSN maps | increased FC of the primary visual network with the M1 and secondary visual cortex, and increased FC of the sensorimotor network with the ventral PMC |
Delnooz et al. [86] | cervical dystonia | 23 pre-treated | fMRI | voxel-wise FC of the basal ganglia with pre-defined RSN | increased FC of the executive control network with the right ventral striatum and external pallidum |
Jochim et al. [87] | blepharospasm and Meige’s syndrome | 13 pre-treated (4 with Meige’s syndrome) | fMRI | seed-based FC of 45 atlas-based cortical, subcortical and cerebellar ROIs | increased FC of the cerebellum with visual cortices (originally decreased), decreased FC of the pallidum with the cerebellum, caudate nucleus, and putamen; decreased FC of the cerebellum with the posterior cingulate cortex, prefrontal, parietal, temporal, visual, premotor cortices, and SMA, and decreased FC of the thalamus with the SMA/cingulate cortex |
Brodoehl et al. [88] | cervical dystonia | 17 naïve | fMRI | seed-based FC of 18 atlas-based cortical and subcortical ROIs; Granger causality and Granger autonomy; ReHo | increased FC between S1 and S2, decreased FC within the basal ganglia and between the basal ganglia and thalamus or cortex, i.e., partial normalisation of FC; reduced information flow from the putamen and thalamus into the S2, increased influence of the M1 in the caudate nucleus; decreased ReHo in the putamen and S1; no correlation with TWSTRS |
Mantel et al. [76] | adductor-type spasmodic dysphonia | 12 pre-treated | fMRI | FC using independent component analysis, ReHo | no changes after BoNT-A |
Hok et al. [89] | cervical dystonia | 17 naïve | fMRI | seed-based FC from 26 atlas-based ROIs in the cerebellum | reduced FC of the vermis lobule VIIIa with the left dorsal mesial frontal cortex, correlation between the TWSTRS change and reduction in intracerebellar FC of the right VI and right lobule IX, and FC of the vermis lobule VIIIb and right crus II with the bilateral prefrontal cortices and right temporoparietal junction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hok, P.; Veverka, T.; Hluštík, P.; Nevrlý, M.; Kaňovský, P. The Central Effects of Botulinum Toxin in Dystonia and Spasticity. Toxins 2021, 13, 155. https://doi.org/10.3390/toxins13020155
Hok P, Veverka T, Hluštík P, Nevrlý M, Kaňovský P. The Central Effects of Botulinum Toxin in Dystonia and Spasticity. Toxins. 2021; 13(2):155. https://doi.org/10.3390/toxins13020155
Chicago/Turabian StyleHok, Pavel, Tomáš Veverka, Petr Hluštík, Martin Nevrlý, and Petr Kaňovský. 2021. "The Central Effects of Botulinum Toxin in Dystonia and Spasticity" Toxins 13, no. 2: 155. https://doi.org/10.3390/toxins13020155
APA StyleHok, P., Veverka, T., Hluštík, P., Nevrlý, M., & Kaňovský, P. (2021). The Central Effects of Botulinum Toxin in Dystonia and Spasticity. Toxins, 13(2), 155. https://doi.org/10.3390/toxins13020155