A Fumonisin Prevention Tool for Targeting and Ranking Agroclimatic Conditions Favoring Exposure in French Maize-Growing Areas
Abstract
:1. Introduction
2. Results
2.1. Agronomic and Climatic Factors Influencing FUMO Concentrations
2.2. Association of Risk Factors for FUMO Contamination
2.3. The Presence of a Water Deficit Accentuates the Effect of Agronomic and Climatic Conditions on the Risk of FUMO Contamination in Maize
2.4. Combinations of Categories for the Agronomic and Climatic Factors Can Create Definitions Determining Whether the Regulatory Limits for FUMO in Maize in the EU Are Respected
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Multiyear Field Surveys at the French National Scale
5.2. Sample Collection
5.3. Sample Preparation for Analysis
5.4. Fumonisin Quantification
5.5. Agronomic Factors
5.6. Climatic Factors
5.7. Water Deficit
5.8. Statistical Analyses
5.8.1. Selection of Climatic and Agronomic Risk Factors
5.8.2. Convert Climatic Quantitative Factors into Categorical Variables
5.8.3. Univariate and Multivariate Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- La Filière Maïs, Maïserie et Maïs Doux en Chiffres. Available online: https://www.passioncereales.fr/dossier-thematique/la-fili%C3%A8re-mais-maiserie-et-mais-doux-en-chiffres (accessed on 25 January 2021).
- Logrieco, A.; Bottalico, A.; Mulé, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. In Epidemiology of Mycotoxin Producing Fungi; Xu, X., Bailey, J.A., Cooke, B.M., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 645–667. [Google Scholar]
- Marasas, W.F.O.; Kriek, N.P.J.; Wiggins, V.M.; Steyn, P.S.; Towers, D.K.; Hastie, T.J. Incidence, geographic distribution, and toxigenicity of Fusarium species in South African corn. Phytopathology 1979, 69, 1181–1185. [Google Scholar] [CrossRef] [Green Version]
- Munkvold, G.P.; Arias, S.; Taschl, I.; Gruber-Dorninger, C. Chapter 9—Mycotoxins in corn: Occurrence, impacts, and management. In Corn, 3rd ed.; Serna-Saldivar, S.O., Ed.; AACC International Press: Oxford, UK, 2019; pp. 235–287. [Google Scholar]
- Picot, A.; Barreau, C.; Pinson-Gadais, L.; Caron, D.; Lannou, C.; Richard-Forget, F. Factors of the Fusarium verticillioides—maize environment modulating fumonisin production. Crit. Rev. Microbiol. 2010, 36, 221–231. [Google Scholar] [CrossRef]
- Santiago, R.; Cao, A.; Butrón, A. Genetic factors involved in fumonisin accumulation in maize kernels and their implications in maize agronomic management and breeding. Toxins 2015, 7, 3267–3296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuntz, M. The GMO case in France: Politics, lawlessness and postmodernism. GM Crops Food 2014, 5, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinha, K.K.; Bhatnagar, D. Mycotoxins in Agriculture and Food Safety; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Avantaggiato, G.; Quaranta, F.; Desiderio, E.; Visconti, A. Fumonisin contamination of maize hybrids visibly damaged by sesamia. J. Sci. Food Agric. 2003, 83, 13–18. [Google Scholar] [CrossRef]
- Miller, J.D. Factors that affect the occurrence of fumonisin. Environ. Health Perspect. 2001, 109, 321–324. [Google Scholar] [PubMed]
- Alma, A.; Lessio, F.; Reyneri, A.; Blandino, M. Relationships between Ostrinia nubilalis (lepidoptera: Crambidae) feeding activity, crop technique and mycotoxin contamination of corn kernel in northwestern Italy. Int. J. Pest Manag. 2005, 51, 165–173. [Google Scholar] [CrossRef]
- Munkvold, G.P. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. In Epidemiology of Mycotoxin Producing Fungi; Xu, X., Bailey, J.A., Cooke, B.M., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 705–713. [Google Scholar]
- Wu, F.; Bhatnagar, D.; Bui-Klimke, T.; Carbone, I.; Hellmich, R.; Munkvold, G.; Paul, P.; Payne, G.; Takle, E. Climate change impacts on mycotoxin risks in US maize. World Mycotoxin J. 2011, 4, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Maiorano, A.; Reyneri, A.; Magni, A.; Ramponi, C. A decision tool for evaluating the agronomic risk of exposure to fumonisins of different maize crop management systems in Italy. Agric. Syst. 2009, 102, 17–23. [Google Scholar] [CrossRef]
- Rossi, V.; Scandolara, A.; Battilani, P. Effect of environmental conditions on spore production by Fusarium verticillioides, the causal agent of maize ear rot. Eur. J. Plant Pathol. 2009, 123, 159–169. [Google Scholar] [CrossRef]
- Marín, S.; Magan, N.; Serra, J.; Ramos, A.J.; Canela, R.; Sanchis, V. Fumonisin B1 production and growth of Fusarium moniliforme and Fusarium proliferatum on maize, wheat, and barley grain. J. Food Sci. 1999, 64, 921–924. [Google Scholar] [CrossRef]
- Samapundo, S.; Devliehgere, F.; De Meulenaer, B.; Debevere, J. Effect of water activity and temperature on growth and the relationship between fumonisin production and the radial growth of Fusarium verticillioides and Fusarium proliferatum on corn. J. Food Prot. 2005, 68, 1054–1059. [Google Scholar] [CrossRef]
- Munkvold, G.P.; Desjardins, A.E. Fumonisins in maize: Can we reduce their occurrence? Plant Dis. 1997, 81, 556–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warfield, C.Y.; Gilchrist, D.G. Influence of kernel age on fumonisin B1 production in maize by Fusarium moniliforme. Appl. Environ. Microbiol. 1999, 65, 2853–2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Skjelvåg, A.O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rötter, R.; Iglesias, A.; Orlandini, S.; et al. Agroclimatic conditions in Europe under climate change. Glob. Chang. Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef] [Green Version]
- Arino, A.A.; Bullerman, L.B. Fungal colonization of corn grown in Nebraska in relation to year, genotype and growing conditions. J. Food Prot. 1994, 57, 1084–1087. [Google Scholar] [CrossRef]
- Abbas, H.K.; Williams, W.P.; Windham, G.L.; Pringle, H.C.; Xie, W.; Shier, W.T. Aflatoxin and fumonisin contamination of commercial corn (Zea mays) hybrids in Mississippi. J. Agric. Food Chem. 2002, 50, 5246–5254. [Google Scholar] [CrossRef] [PubMed]
- Pascale, M.; Visconti, A.; Chelkowski, J. Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with Fusarium species under field conditions. In Mycotoxins in Plant Disease: Under the Aegis of COST Action 835 ‘Agriculturally Important Toxigenic Fungi 1998–2003, EU Project (QLK 1-CT-1998-01380), and ISPP ‘Fusarium Committee’; Logrieco, A., Bailey, J.A., Corazza, L., Cooke, B.M., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 645–651. [Google Scholar]
- Schmidt-Heydt, M.; Magan, N.; Geisen, R. Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol. Lett. 2008, 284, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Parsons, M.W.; Munkvold, G.P. Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize. Food Addit. Contam. Part A 2010, 27, 591–607. [Google Scholar] [CrossRef] [PubMed]
- Chulze, S.N. Strategies to reduce mycotoxin levels in maize during storage: A review. Food Addit. Contam. Part A 2010, 27, 651–657. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Devi, S.; Lee, K.E.; Kang, S.G.; Kumar, P. Fumonisins: Impact on agriculture, food, and human health and their management strategies. Toxins 2019, 11, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourdain, E. La prévention au champ avant tout. Perspect. Agric. 2008, 346, 36. [Google Scholar]
- Marín, P.; Magan, N.; Vázquez, C.; González-Jaén, M.T. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene FUM1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum: Ecophysiology of F. verticillioides and F. proliferatum. FEMS Microbiol. Ecol. 2010, 73, 303–311. [Google Scholar] [PubMed] [Green Version]
- Cleveland, T.E.; Dowd, P.F.; Desjardins, A.E.; Bhatnagar, D.; Cotty, P.J. United States Department of Agriculture—Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US Crops. Pest. Manag. Sci. 2003, 59, 629–642. [Google Scholar] [CrossRef]
- Blandino, M.; Reyneri, A. Effect of maize hybrid maturity and grain hardness on fumonisin and zearalenone contamination. Ital. J. Agron. 2008, 3, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Blandino, M.; Reyneri, A.; Vanara, F.; Tamietti, G.; Pietri, A. Influence of agricultural practices on Fusarium infection, fumonisin and deoxynivalenol contamination of maize kernels. World Mycotoxin J. 2009, 2, 409–418. [Google Scholar] [CrossRef]
- Adegoke, G.O.; Letuma, P. Strategies for the prevention and reduction of mycotoxins in developing countries. In Mycotoxin and Food Safety in Developing Countries; Makun, H., Ed.; IntechOpen: London, UK, 2013; pp. 123–136. [Google Scholar]
- Ndemera, M.; Landschoot, S.; De Boevre, M.; Nyanga, L.K.; De Saeger, S. Effect of agronomic practices and weather conditions on mycotoxins in maize: A case study of subsistence farming households in Zimbabwe. World Mycotoxin J. 2018, 11, 421–436. [Google Scholar] [CrossRef]
- Shelby, R.A.; White, D.G.; Bauske, E.M. Differential fumonisin production in maize hybrids. Plant Dis. 1994, 78, 582–584. [Google Scholar] [CrossRef]
- Cao, A.; Santiago, R.; Ramos, A.J.; Souto, X.C.; Aguín, O.; Malvar, R.A.; Butrón, A. Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain. Int. J. Food Microbiol. 2014, 177, 63–71. [Google Scholar] [CrossRef] [Green Version]
- de la Campa, R.; Hooker, D.C.; Miller, J.D.; Schaafsma, A.W.; Hammond, B.G. Modeling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines. Mycopathologia 2005, 159, 539–552. [Google Scholar] [CrossRef]
- Fandohan, P.; Hell, K.; Marasas, W.F.O.; Wingfield, M.J. Infection of maize by Fusarium species and contamination with fumonisin in Africa. Afr. J. Biotechnol. 2003, 2, 570–579. [Google Scholar]
- Pascale, M.; Visconti, A.; Prończuk, M.; Wiśniewska, H.; Chelkowski, J. Accumulation of fumonisins in maize hybrids inoculated under field conditions with Fusarium moniliforme Sheldon. J. Sci. Food Agric. 1997, 74, 1–6. [Google Scholar] [CrossRef]
- Tardieu, F. Drought perception by plants Do cells of droughted plants experience water stress? Plant Growth Regul. 1996, 20, 93–104. [Google Scholar] [CrossRef]
- Jones, C.; Weckler, P.R.; Maness, N.O.; Stone, M.L.; Jayasekara, R. Estimating water stress in plants using hyperspectral sensing. In Proceedings of the 2004 ASABE Annual Meeting, Ottawa, ON, Canada, 1–4 August 2004. [Google Scholar]
- Ben-Haj-Salah, H.; Tardieu, F. Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length (analysis of the coordination between cell division and cell expansion). Plant Physiol. 1995, 109, 861–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battilani, P.; Pietri, A.; Barbano, C.; Scandolara, A.; Bertuzzi, T.; Marocco, A. Logistic regression modeling of cropping systems to predict fumonisin contamination in maize. J. Agric. Food Chem. 2008, 56, 10433–10438. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Galarreta, J.I.; Butrón, A.; Ortiz-Barredo, A.; Malvar, R.A.; Ordás, A.; Landa, A.; Revilla, P. Mycotoxins in maize grains grown in organic and conventional agriculture. Food Control 2015, 52, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Chavez, A.C.; Cheng, X.; Stasiewicz, M.J. A review of the methodology of analysing aflatoxin and fumonisin in single corn kernels and the potential impacts of these methods on food security. Foods 2020, 9, 297. [Google Scholar] [CrossRef] [Green Version]
- Robertson-Hoyt, L.A.; Betrán, J.; Payne, G.A.; White, D.G.; Isakeit, T.; Maragos, C.M.; Molnár, T.L.; Holland, J.B. Relationships among resistances to fusarium and aspergillus ear rots and contamination by fumonisin and aflatoxin in maize. Phytopathology 2007, 97, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Deudon, O. Interest and implementation of a spatialization method of meteorological data used in agricultural decision support tools. In Proceedings of the 2017 EFITA WCCA Congress, Montpellier, France, 2–6 July 2017. [Google Scholar]
- Arvalis—Institut du Végétal; (Boigneville, France). Personal Communication, 2008.
- El Anbari, M. Regularization and Variable Selection Using Penalized Likelihood. Ph.D. General Mathematics, Université Paris-Sud—Paris XI, Paris, France, Université Cadi Ayyad, Marrakech, Maroc, 2011. [Google Scholar]
- Hastie, T.; Taylor, J.; Tibshirani, R.; Walther, G. Forward stagewise regression and the monotone lasso. Electron. J. Stat. 2007, 1, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Genuer, R.; Poggi, J.M.; Tuleau-Malor, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.; Weisberg, S. Multivariate Linear Models in R. In An R Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models; Version 1.4-15; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Lenth, R.V. Using Lsmeans; The University of Iowa: Iowa City, IA, USA, 2017. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
Climatic Factors | Mean of Mean Temperatures | Modalities | FUMO Adjusted Means (µg/kg) | Average Comparison |
---|---|---|---|---|
July, mean monthly temperature | <23 °C | Cool-to-normal | 1002 | a 1 |
>23 °C | Hot | 2397 | b 1 | |
October, mean monthly temperature | <15.7 °C | Cool-to-normal | 803 | a 2 |
>15.7 °C | Hot | 2352 | b 2 |
Year | Samples | p-Values | R2 |
---|---|---|---|
2003 | 6 | >0.05 | 0.19 |
2004 | 68 | <0.01 | 0.12 |
2005 | 55 | <0.001 | 0.28 |
2006 | 73 | <0.01 | 0.16 |
2007 | 62 | <0.01 | 0.12 |
2008 | 22 | >0.05 | 0.08 |
2009 | 17 | >0.05 | −0.18 |
2010 | 27 | >0.05 | 0.05 |
2011 | 11 | NA | NA |
2012 | 54 | >0.05 | −0.04 |
2013 | 36 | >0.05 | −0.01 |
2014 | 21 | >0.05 | 0.09 |
2015 | 36 | <0.001 | 0.54 |
2016 | 38 | >0.05 | −0.04 |
2017 | 57 | <0.05 | 0.12 |
2018 | 52 | <0.05 | 0.14 |
2019 | 103 | <0.05 | 0.04 |
2003–2019 | 738 | <0.001 | 0.1 |
Years | Samples |
---|---|
2003 | 6 |
2004 | 68 |
2005 | 55 |
2006 | 73 |
2007 | 62 |
2008 | 22 |
2009 | 17 |
2010 | 27 |
2011 | 11 |
2012 | 54 |
2013 | 36 |
2014 | 21 |
2015 | 36 |
2016 | 38 |
2017 | 57 |
2018 | 52 |
2019 | 103 |
Water Deficit | FTSW |
---|---|
Absence | >0.4 |
Presence | <0.4 |
Linear Mixed Models | Objectives |
---|---|
[FUMO] = Agroi 1/Climj 2 + (1|Year) | Individual effect |
[FUMO] = ∑(Agroi1/Climj1 ∗ Agroi2/Climj2) + (1|Year) | Combination of climatic or agronomic effects |
[FUMO] = ∑(Agroi ∗ Climj) + (1|Year) | Combination of agroclimatic effects |
[FUMO] = Risk classes + (1|Year) | Individual effect of the FUMO risk class |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roucou, A.; Bergez, C.; Méléard, B.; Orlando, B. A Fumonisin Prevention Tool for Targeting and Ranking Agroclimatic Conditions Favoring Exposure in French Maize-Growing Areas. Toxins 2021, 13, 214. https://doi.org/10.3390/toxins13030214
Roucou A, Bergez C, Méléard B, Orlando B. A Fumonisin Prevention Tool for Targeting and Ranking Agroclimatic Conditions Favoring Exposure in French Maize-Growing Areas. Toxins. 2021; 13(3):214. https://doi.org/10.3390/toxins13030214
Chicago/Turabian StyleRoucou, Agathe, Christophe Bergez, Benoît Méléard, and Béatrice Orlando. 2021. "A Fumonisin Prevention Tool for Targeting and Ranking Agroclimatic Conditions Favoring Exposure in French Maize-Growing Areas" Toxins 13, no. 3: 214. https://doi.org/10.3390/toxins13030214
APA StyleRoucou, A., Bergez, C., Méléard, B., & Orlando, B. (2021). A Fumonisin Prevention Tool for Targeting and Ranking Agroclimatic Conditions Favoring Exposure in French Maize-Growing Areas. Toxins, 13(3), 214. https://doi.org/10.3390/toxins13030214