Development and Validation of an LC-MS/MS Based Method for the Determination of Deoxynivalenol and Its Modified Forms in Maize
Abstract
:1. Introduction
2. Results
2.1. MS Method Optimization
2.2. LC Method Optimization
2.3. Method Validation
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Samples
4.3. LC-MS/MS Optimization
4.4. Method Validation
4.5. Data Evaluation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [Green Version]
- McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From Simple to Complex Mycotoxins. Toxins 2011, 3, 802–814. [Google Scholar] [CrossRef]
- Ma, L.-J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. FusariumPathogenomics. Annu. Rev. Microbiol. 2013, 67, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Khaneghah, A.M.; Fakhri, Y.; Raeisi, S.; Armoon, B.; Sant’Ana, A.S. Prevalence and concentration of ochratoxin A, zearalenone, deoxynivalenol and total aflatoxin in cereal-based products: A systematic review and meta-analysis. Food Chem. Toxicol. 2018, 118, 830–848. [Google Scholar] [CrossRef]
- Pestka, J.J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010, 84, 663–679. [Google Scholar] [CrossRef]
- Berthiller, F.; Dall’Asta, C.; Corradini, R.; Marchelli, R.; Sulyok, M.; Krska, R.; Adam, G.; Schuhmacher, R. Occurrence of deoxynivalenol and its 3-β-D-glucoside in wheat and maize. Food Addit. Contam. Part A 2009, 26, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Varga, E.; Malachova, A.; Schwartz, H.; Krska, R.; Berthiller, F. Survey of deoxynivalenol and its conjugates deoxynivalenol-3-glucoside and 3-acetyl-deoxynivalenol in 374 beer samples. Food Addit. Contam. Part A 2013, 30, 137–146. [Google Scholar] [CrossRef]
- Payros, D.; Alassane-Kpembi, I.; Pierron, A.; Loiseau, N.; Pinton, P.; Oswald, I.P. Toxicology of deoxynivalenol and its acetylated and modified forms. Arch. Toxicol. 2016, 90, 2931–2957. [Google Scholar] [CrossRef]
- Rychlik, M.; Humpf, H.-U.; Marko, D.; Dänicke, S.; Mally, A.; Berthiller, F.; Klaffke, H.; Lorenz, N. Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotoxin Res. 2014, 30, 197–205. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Contaminants in the Food Chain. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, e04718. [Google Scholar] [CrossRef]
- Tittlemier, S.; Cramer, B.; Dall’Asta, C.; Iha, M.; Lattanzio, V.; Maragos, C.; Solfrizzo, M.; Stranska, M.; Stroka, J.; Sumarah, M. Developments in mycotoxin analysis: An update for 2018–2019. World Mycotoxin J. 2020, 13, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Tittlemier, S.; Brunkhorst, J.; Cramer, B.; DeRosa, M.; Lattanzio, V.; Malone, R.; Maragos, C.; Stranska, M.; Sumarah, M. Developments in mycotoxin analysis: An update for 2019–2020. World Mycotoxin J. 2021, 14, 3–26. [Google Scholar] [CrossRef]
- Malachová, A.; Stránská, M.; Václavíková, M.; Elliott, C.T.; Black, C.; Meneely, J.; Hajslova, J.; Ezekiel, C.N.; Schuhmacher, R.; Krska, R. Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Anal. Bioanal. Chem. 2018, 410, 801–825. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhang, Z.; Hu, X.; Zhang, Q. Advanced hyphenated chromatographic-mass spectrometry in mycotoxin determination: Current status and prospects. Mass Spectrom. Rev. 2013, 32, 420–452. [Google Scholar] [CrossRef]
- Häubl, G.; Berthiller, F.; Krska, R.; Schuhmacher, R. Suitability of a fully 13C isotope labeled internal standard for the determination of the mycotoxin deoxynivalenol by LC-MS/MS without clean up. Anal. Bioanal. Chem. 2006, 384, 692–696. [Google Scholar] [CrossRef]
- Varga, E.; Glauner, T.; Köppen, R.; Mayer, K.; Sulyok, M.; Schuhmacher, R.; Krska, R.; Berthiller, F. Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS. Anal. Bioanal. Chem. 2012, 402, 2675–2686. [Google Scholar] [CrossRef] [Green Version]
- Habler, K.; Rychlik, M. Multi-mycotoxin stable isotope dilution LC-MS/MS method for Fusarium toxins in cereals. Anal. Bioanal. Chem. 2015, 408, 307–317. [Google Scholar] [CrossRef]
- Habler, K.; Frank, O.; Rychlik, M. Chemical Synthesis of Deoxynivalenol-3-β-D-[13C6]-glucoside and Application in Stable Isotope Dilution Assays. Molecules 2016, 21, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malachová, A.; Sulyok, M.; Beltran, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Michlmayr, H.; Malachová, A.; Varga, E.; Kleinová, J.; Lemmens, M.; Newmister, S.; Rayment, I.; Berthiller, F.; Adam, G. Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-d-glucoside. Toxins 2015, 7, 2685–2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josephs, R.; Krska, R.; Grasserbauer, M.; Broekaert, J. Determination of trichothecene mycotoxins in wheat by use of supercritical fluid extraction and high-performance liquid chromatography with diode array detection or gas chromatography with electron capture detection. J. Chromatogr. A 1998, 795, 297–304. [Google Scholar] [CrossRef]
- Buttinger, G.; Krska, R. Determination of B-trichothecenes in wheat by post column derivatisation liquid chromatography with fluorescence detection (PCD-HPLC-FLD). Mycotoxin Res. 2003, 19, 139–143. [Google Scholar] [CrossRef]
- Polak-Śliwińska, M.; Paszczyk, B. Trichothecenes in Food and Feed, Relevance to Human and Animal Health and Methods of Detection: A Systematic Review. Molecules 2021, 26, 454. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006. Setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Horwitz, W. Evaluation of Analytical Methods Used for Regulation of Foods and Drugs. Anal. Chem. 1982, 54, 67A–76A. [Google Scholar] [CrossRef]
Analyte ID | Q1 Mass (Da) | Q3 Mass (Da) | DP (V) | CE (eV) | CXP (V) |
---|---|---|---|---|---|
D3G 1 | 517.1 | 457.1 | −80 | −22 | −7 |
D3G IS 1 | 538.1 | 478.1 | −80 | −22 | −7 |
D3G 2 | 517.1 | 59.0 | −80 | −74 | −9 |
D3G IS 2 | 538.1 | 59.0 | −80 | −74 | −9 |
D3G 3 | 517.1 | 427.0 | −80 | −32 | −5 |
D3G IS 3 | 538.1 | 447.0 | −80 | −32 | −5 |
DON 1 | 355.0 | 59.0 | −70 | −36 | −9 |
DON IS 1 | 370.0 | 59.0 | −70 | −36 | −9 |
DON 2 | 355.0 | 295.0 | −70 | −16 | −13 |
DON IS 2 | 370.0 | 310.0 | −70 | −16 | −13 |
DON 3 | 355.0 | 265.0 | −70 | −24 | −13 |
DON IS 3 | 370.0 | 279.0 | −70 | −24 | −13 |
ADONs 1 | 397.1 | 59.0 | −70 | −34 | −9 |
ADON IS 1 | 414.1 | 49.0 | −70 | −34 | −9 |
ADONs 2 | 397.1 | 337.1 | −70 | −12 | −7 |
ADON IS 2 | 414.1 | 354.1 | −70 | −12 | −7 |
3ADON | 397.1 | 307.0 | −70 | −22 | −5 |
3ADON IS | 414.1 | 323.0 | −70 | −22 | −5 |
Column | tR (DON) (min) | tR (D3G) (min) | tR (3ADON) (min) | tR (15ADON) (min) | FWHM (min) | RS (DON/D3G) | RS (3/15ADON) |
---|---|---|---|---|---|---|---|
Agilent Zorbax Eclipse Plus | 2.63 | 2.68 | 4.16 | 4.17 | 0.045 | −1.11 | −0.22 |
Agilent Zorbax Extend-C18 | 2.15 | 2.26 | 3.85 | 3.86 | 0.077 | −1.43 | −0.13 |
Agilent Poroshell EC-C18 | 5.30 | 5.14 | 7.30 | 7.16 | 0.057 | 2.82 | 2.47 |
Agilent Zorbax SB C18 | 5.87 | 5.87 | 9.00 | 9.02 | 0.085 | 0.00 | −0.24 |
Agilent Zorbax XDB-C18 | 4.75 | 4.52 | 6.58 | 6.46 | 0.060 | 3.83 | 2.00 |
Daicel Chiralcel | 3.59 | 3.45 | 11.00 | 9.00 | 3.000 | 0.05 | 0.67 |
Daicel Chiralpak | 2.29 | 2.06 | 9.29 | 9.08 | 0.143 | 1.60 | 1.47 |
Phenomenex Kinetex C18 | 4.07 | 4.03 | 5.81 | 5.82 | 0.075 | 0.53 | −0.13 |
Phenomenex Kinetex F5 | 4.26 | 4.15 | 6.33 | 6.23 | 0.067 | 1.65 | 1.50 |
Sigma Discovery HS F5 | 6.14 | 5.95 | 9.88 | 9.68 | 0.122 | 1.56 | 1.64 |
Thermo Hypersil Gold | 1.84 | 2.13 | 3.68 | 3.69 | 0.112 | −2.60 | −0.09 |
Waters Acquity BEH C18 | 2.98 | 3.21 | 4.37 | 4.40 | 0.040 | −5.75 | −0.75 |
Waters Acquity HSS T3 C18 | 5.20 | 4.93 | 7.17 | 7.02 | 0.052 | 5.23 | 2.90 |
Analyte | LOQ Solution (μg/L) | LOQ Maize (μg/kg) | RE (%) | SSE (%) | RA (%) | RSDr (%) |
---|---|---|---|---|---|---|
D3G (ext.) | <10 | <40 | 94.7 | 75.9 | 92.3 | 3.1 |
D3G (int.) | 97.5 | 8.3 | ||||
DON (ext.) | <10 | <40 | 101 | 86.4 | 104 | 5.9 |
DON (int.) | 103 | 5.3 | ||||
15ADON (ext.) | <30 | <120 | 105 | 67.8 | 105 | 9.4 |
15ADON (int.) | 100 | 7.8 | ||||
3ADON (ext.) | <10 | <40 | 94.4 | 63.2 | 90.8 | 7.0 |
3ADON (int.) | 96.2 | 5.7 |
Supplier | Brand Name | Dimensions (mm) | Particle Size (µm) |
---|---|---|---|
Agilent | ZORBAX RRHD Eclipse Plus C18 | 2.1 × 50 | 1.8 |
Agilent | ZORBAX RRHT Extend-C18 | 2.1 × 50 | 1.8 |
Thermo | Hypersil GOLD C18 | 2.1 × 50 | 1.9 |
Waters | ACQUITY UPLC BEH C18 | 2.1 × 50 | 1.7 |
Agilent | ZORBAX RRHD StableBond C18 | 2.1 × 100 | 1.8 |
Agilent | ZORBAX RRHD Eclipse XDB-C18 | 2.1 × 100 | 1.8 |
Phenomenex | Kinetex C18 | 2.1 × 100 | 2.6 |
Waters | ACQUITY UPLC HSS T3 (C18) | 2.1 × 100 | 1.8 |
Agilent | InfinityLab Poroshell 120 EC-C18 | 2.1 × 150 | 2.7 |
Phenomenex | Kinetex F5 | 2.1 × 100 | 2.6 |
Sigma-Aldrich | Discovery HS F5 | 2.1 × 100 | 5.0 |
Daicel | CHIRALPAK AD-3R | 2.1 × 150 | 3.0 |
Daicel | CHIRALCEL OJ-3R | 2.1 × 150 | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiby, I.; Sopel, M.M.; Michlmayr, H.; Adam, G.; Berthiller, F. Development and Validation of an LC-MS/MS Based Method for the Determination of Deoxynivalenol and Its Modified Forms in Maize. Toxins 2021, 13, 600. https://doi.org/10.3390/toxins13090600
Fiby I, Sopel MM, Michlmayr H, Adam G, Berthiller F. Development and Validation of an LC-MS/MS Based Method for the Determination of Deoxynivalenol and Its Modified Forms in Maize. Toxins. 2021; 13(9):600. https://doi.org/10.3390/toxins13090600
Chicago/Turabian StyleFiby, Iris, Marta Magdalena Sopel, Herbert Michlmayr, Gerhard Adam, and Franz Berthiller. 2021. "Development and Validation of an LC-MS/MS Based Method for the Determination of Deoxynivalenol and Its Modified Forms in Maize" Toxins 13, no. 9: 600. https://doi.org/10.3390/toxins13090600
APA StyleFiby, I., Sopel, M. M., Michlmayr, H., Adam, G., & Berthiller, F. (2021). Development and Validation of an LC-MS/MS Based Method for the Determination of Deoxynivalenol and Its Modified Forms in Maize. Toxins, 13(9), 600. https://doi.org/10.3390/toxins13090600