Predictors of Clinically Important Improvements in Motor Function and Daily Use of Affected Arm after a Botulinum Toxin A Injection in Patients with Chronic Stroke
Abstract
:1. Introduction
2. Results
3. Discussion
Study Limitations
4. Conclusions
5. Materials and Methods
5.1. Patients and Experimental Setup
5.2. Procedure
5.3. Outcome Measures
5.3.1. FMA-UE
5.3.2. MAL
5.4. Potential Predictors
5.4.1. MAS
5.4.2. MRC
5.4.3. Joint Proprioception Sensation
5.4.4. WMFT
5.4.5. Time since Stroke Onset to BoNT-A Injection
5.5. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urban, P.P.; Wolf, T.; Uebele, M.; Marx, J.r.J.; Vogt, T.; Stoeter, P.; Bauermann, T.; Weibrich, C.; Vucurevic, G.D.; Schneider, A. Occurence and clinical predictors of spasticity after ischemic stroke. Stroke 2010, 41, 2016–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, C.; Leathley, M.; Gregson, J.; Moore, A.; Smith, T.; Sharma, A. Prevalence of spasticity post stroke. Clin. Rehabil. 2002, 16, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Sommerfeld, D.K.; Eek, E.U.-B.; Svensson, A.-K.; Holmqvist, L.W.; Von Arbin, M.H. Spasticity after stroke: Its occurrence and association with motor impairments and activity limitations. Stroke 2004, 35, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Kelly, K.M.; Borstad, A.L.; Kline, D.; Gauthier, L.V. Improved quality of life following constraint-induced movement therapy is associated with gains in arm use, but not motor improvement. Top. Stroke Rehabil. 2018, 25, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, A.; Novak, I.; Sheean, G.; Singer, B.; Ward, A. International consensus statement for the use of botulinum toxin treatment in adults and children with neurological impairments–introduction. Eur. J. Neurol. 2010, 17, 1–8. [Google Scholar] [CrossRef]
- Cardoso, E.; Rodrigues, B.; Lucena, R.; Oliveira, I.R.; Pedreira, G.; Melo, A. Botulinum toxin type A for the treatment of the upper limb spasticity after stroke: A meta-analysis. Arq. Neuro-Psiquiatr. 2005, 63, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Levy, J.; Molteni, F.; Cannaviello, G.; Lansaman, T.; Roche, N.; Bensmail, D. Does botulinum toxin treatment improve upper limb active function? Ann. Phys. Rehabil. Med. 2019, 62, 234–240. [Google Scholar] [CrossRef]
- Bethoux, F. Spasticity Management After Stroke. Phys. Med. Rehabil. Clin. N. Am. 2015, 26, 625–639. [Google Scholar] [CrossRef]
- Sheean, G.; Lannin, N.; Turner-Stokes, L.; Rawicki, B.; Snow, B. Botulinum toxin assessment, intervention and after-care for upper limb hypertonicity in adults: International consensus statement. Eur. J. Neurol. 2010, 17, 74–93. [Google Scholar] [CrossRef]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L. Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar]
- Van der Lee, J.; Beckerman, H.; Knol, D.; De Vet, H.; Bouter, L. Clinimetric properties of the motor activity log for the assessment of arm use in hemiparetic patients. Stroke 2004, 35, 1410–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doucet, B.M.; Gutman, S.A. Quantifying function: The rest of the measurement story. Am. J. Occup. Ther. 2013, 67, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Sedaghat, A.R. Understanding the minimal clinically important difference (MCID) of patient-reported outcome measures. Otolaryngol.–Head Neck Surg. 2019, 161, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, R.; Singer, J.; Guyatt, G.H. Measurement of health status: Ascertaining the minimal clinically important difference. Control. Clin. Trials 1989, 10, 407–415. [Google Scholar] [CrossRef]
- Lim, Y.-H.; Choi, E.-H.; Lim, J.Y. Comparison of effects of botulinum toxin injection between subacute and chronic stroke patients: A pilot study. Medicine 2016, 95, e2851. [Google Scholar] [CrossRef]
- Wagner, J.M.; Lang, C.E.; Sahrmann, S.A.; Edwards, D.F.; Dromerick, A.W. Sensorimotor impairments and reaching performance in subjects with poststroke hemiparesis during the first few months of recovery. Phys. Ther. 2007, 87, 751–765. [Google Scholar] [CrossRef]
- Lin, K.C.; Chuang, L.L.; Wu, C.Y.; Hsieh, Y.W.; Chang, W.Y. Responsiveness and validity of three dexterous function measures in stroke rehabilitation. J. Rehabil. Res. Dev. 2010, 47, 563–571. [Google Scholar] [CrossRef]
- Yancosek, K.E.; Howell, D. A narrative review of dexterity assessments. J. Hand Ther. 2009, 22, 258–269. [Google Scholar] [CrossRef]
- Huang, P.-C.; Hsieh, Y.-W.; Wang, C.-M.; Wu, C.-Y.; Huang, S.-C.; Lin, K.-C. Predictors of motor, daily function, and quality-of-life improvements after upper-extremity robot-assisted rehabilitation in stroke. Am. J. Occup. Ther. 2014, 68, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leem, M.J.; Kim, G.S.; Kim, K.H.; Im Yi, T.; Im Moon, H. Predictors of functional and motor outcomes following upper limb robot-assisted therapy after stroke. Int. J. Rehabil. Res. 2019, 42, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Baldan, F.; Turolla, A.; Rimini, D.; Pregnolato, G.; Maistrello, L.; Agostini, M.; Jakob, I. Robot-assisted rehabilitation of hand function after stroke: Development of prediction models for reference to therapy. J. Electromyogr. Kinesiol. 2021, 57, 102534. [Google Scholar] [CrossRef]
- Francisco, G.E.; Jost, W.H.; Bavikatte, G.; Bandari, D.S.; Tang, S.F.T.; Munin, M.C.; Largent, J.; Adams, A.M.; Zuzek, A.; Esquenazi, A. Individualized OnabotulinumtoxinA Treatment for Upper Limb Spasticity Resulted in High Clinician- and Patient-Reported Satisfaction: Long-Term Observational Results from the ASPIRE Study. PM R 2020, 12, 1120–1133. [Google Scholar]
- Gracies, J.M.; O’Dell, M.; Vecchio, M.; Hedera, P.; Kocer, S.; Rudzinska-Bar, M.; Rubin, B.; Timerbaeva, S.L.; Lusakowska, A.; Boyer, F.C. Effects of repeated abobotulinumtoxinA injections in upper limb spasticity. Muscle Nerve 2018, 57, 245–254. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Jacinto, J.; Fheodoroff, K.; Brashear, A.; Maisonobe, P.; Lysandropoulos, A.; Ashford, S. Longitudinal goal attainment with integrated upper limb spasticity management including repeat injections of botulinum yoxin A: Findings from the prospective, observational Upper Limb International Spasticity (ULIS-III) cohort study. J. Rehabil. Med. 2021, 53, jrm00157. [Google Scholar] [CrossRef] [PubMed]
- Ro, T.; Ota, T.; Saito, T.; Oikawa, O. Spasticity and Range of Motion Over Time in Stroke Patients Who Received Multiple-Dose Botulinum Toxin Therapy. J. Stroke Cereb. Dis. 2020, 29, 104481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, P.B.; Finlayson, H.; Sudol, M.; O’Connor, R. Systematic review of adjunct therapies to improve outcomes following botulinum toxin injection for treatment of limb spasticity. Clin. Rehabil. 2016, 30, 537–548. [Google Scholar] [CrossRef]
- Hung, J.-W.; Chen, Y.-W.; Chen, Y.-J.; Pong, Y.-P.; Wu, W.-C.; Chang, K.-C.; Wu, C.-Y. The Effects of Distributed vs. Condensed Schedule for Robot-Assisted Training with Botulinum Toxin A Injection for Spastic Upper Limbs in Chronic Post-Stroke Subjects. Toxins 2021, 13, 539. [Google Scholar] [CrossRef]
- Abo, M.; Shigematsu, T.; Hara, H.; Matsuda, Y.; Nimura, A.; Yamashita, Y.; Takahashi, K. Efficacy and Safety of OnabotulinumtoxinA 400 Units in Patients with Post-Stroke Upper Limb Spasticity: Final Report of a Randomized, Double-Blind, Placebo-Controlled Trial with an Open-Label Extension Phase. Toxins 2020, 12, 127. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhang, J.; Bai, Z.; Chen, S.; Cai, S. Predictive factors of upper limb motor recovery for stroke survivors admitted to a rehabilitation programme. Eur. J. Phys. Rehabil. Med. 2020, 56, 706–712. [Google Scholar]
- Hsieh, Y.-W.; Wu, C.-Y.; Lin, K.-C.; Chang, Y.-F.; Chen, C.-L.; Liu, J.-S. Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke 2009, 40, 1386–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platz, T.; Pinkowski, C.; van Wijck, F.; Kim, I.-H.; Di Bella, P.; Johnson, G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: A multicentre study. Clin. Rehabil. 2005, 19, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Page, S.J.; Fulk, G.D.; Boyne, P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 2012, 92, 791–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, A.C.; Guarino, P.D.; Richards, L.G.; Haselkorn, J.K.; Wittenberg, G.F.; Federman, D.G.; Ringer, R.J.; Wagner, T.H.; Krebs, H.I.; Volpe, B.T. Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 2010, 362, 1772–1783. [Google Scholar] [CrossRef] [Green Version]
- Uswatte, G.; Taub, E.; Morris, D.; Light, K.; Thompson, P. The Motor Activity Log-28: Assessing daily use of the hemiparetic arm after stroke. Neurology 2006, 67, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Taub, E.; Miller, N.E.; Novack, T.A.; Cook, E.W.; Fleming, W.C.; Nepomuceno, C.S.; Connell, J.S.; Crago, J. Technique to improve chronic motor deficit after stroke. Arch. Phys. Med. Rehabil. 1993, 74, 347–354. [Google Scholar]
- Lang, C.E.; Edwards, D.F.; Birkenmeier, R.L.; Dromerick, A.W. Estimating minimal clinically important differences of upper-extremity measures early after stroke. Arch. Phys. Med. Rehabil. 2008, 89, 1693–1700. [Google Scholar] [CrossRef] [Green Version]
- Van der Lee, J.H.; Wagenaar, R.C.; Lankhorst, G.J.; Vogelaar, T.W.; Devillé, W.L.; Bouter, L.M. Forced use of the upper extremity in chronic stroke patients: Results from a single-blind randomized clinical trial. Stroke 1999, 30, 2369–2375. [Google Scholar] [CrossRef]
- Coupar, F.; Pollock, A.; Rowe, P.; Weir, C.; Langhorne, P. Predictors of upper limb recovery after stroke: A systematic review and meta-analysis. Clin. Rehabil. 2012, 26, 291–313. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Smith, M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Pandyan, A.D.; Johnson, G.R.; Price, C.I.; Curless, R.H.; Barnes, M.P.; Rodgers, H. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clin. Rehabil. 1999, 13, 373–383. [Google Scholar] [CrossRef]
- Gregson, J.M.; Leathley, M.J.; Moore, A.P.; Smith, T.L.; Sharma, A.K.; Watkins, C.L. Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing 2000, 29, 223–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paternostro-Sluga, T.; Grim-Stieger, M.; Posch, M.; Schuhfried, O.; Vacariu, G.; Mittermaier, C.; Bittner, C.; Fialka-Moser, V. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J. Rehabil. Med. 2008, 40, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Lincoln, N.; Jackson, J.; Adams, S. Reliability and revision of the Nottingham Sensory Assessment for stroke patients. Physiotherapy 1998, 84, 358–365. [Google Scholar] [CrossRef]
- Uswatte, G.; Taub, E. Constraint-induced movement therapy: New approaches to outcome measurement in rehabilitation. Cogn. Neurorehabilit. 1999, 215–229. [Google Scholar]
- Morris, D.M.; Uswatte, G.; Crago, J.E.; Cook, E.W., III; Taub, E. The reliability of the wolf motor function test for assessing upper extremity function after stroke. Arch. Phys. Med. Rehabil. 2001, 82, 750–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.-L.; Lin, K.-C.; Liing, R.-J.; Wu, C.-Y.; Chen, C.-L. Kinematic measures of Arm-trunk movements during unilateral and bilateral reaching predict clinically important change in perceived arm use in daily activities after intensive stroke rehabilitation. J. Neuroeng. Rehabil. 2015, 12, 84. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Value |
---|---|
Age (years) | 49.32 ± 10.95 |
Sex (Male/Female) | 62 (70.5)/26 (29.5) |
Education years | 12.09 ± 3.51 |
Side of Hemiplegia (Rt/Lt) | 37 (42.0)/51 (58.0) |
Nature (Hemorrhage/Infarction) | 35 (39.8)/53 (60.2) |
Lesion (Cortical/Subcortical/Brainstem) | 29 (33.0)/58 (65.9)/1 (/1.1) |
Naïve to BoNT-A (Yes/No) | 48 (54.55)/40 (45.45) |
Total injection dose (U) | 326.70 ± 95.66 |
Outcome | Mean ± SD | p |
---|---|---|
FMA_UE | ||
Baseline | 30.11 ± 8.25 | <0.01 |
Post-treatment | 33.20 ± 8.30 | |
MAL AOU | ||
Baseline | 1.27 ± 0.72 | <0.01 |
Post-treatment | 1.82 ± 0.84 | |
MAL QOM | ||
Baseline | 0.90 ± 0.70 | <0.01 |
Post-treatment | 1.37 ± 0.81 |
Candidate Predictor | FMA-UE | MAL AOU | MAL QOM | ||||||
---|---|---|---|---|---|---|---|---|---|
Change ≥ 5 | Change < 5 | p | Change ≥ 0.5 | Change < 0.5 | p | Change ≥ 0.5 | Change < 0.5 | p | |
n = 25 | n = 63 | n = 45 | n = 43 | n = 37 | n = 51 | ||||
General Information | |||||||||
Age (years) | 46.19 ± 13.67 | 50.56 ± 9.37 | 0.159 | 48.59 ± 11.47 | 50.09 ± 10.31 | 0.527 | 47.70 ± 11.36 | 50.50 ± 10.48 | 0.249 |
Sex (male/female) | 17/8 | 45/18 | 0.751 | 29/16 | 33/10 | 0.206 | 25/12 | 37/14 | 0.613 |
Education years | 11.52 ± 3.90 | 12.32 ± 3.31 | 0.381 | 12.82 ± 3.41 | 11.33 ± 3.44 | 0.046 † | 13.43 ± 2.95 | 11.12 ± 3.55 | 0.001 † |
Time since stroke (<36 months/≧36 months) | 21/4 | 34/29 | 0.014 † | 31/14 | 24/19 | 0.205 | 29/8 | 26/25 | 0.009 † |
Lesion Side (left/right) | 11/14 | 26/37 | 0.815 | 21/24 | 16/27 | 0.369 | 20/17 | 17/34 | 0.052 |
Nature (hemorrhage/infarction) | 8/17 | 27/36 | 0.348 | 18/27 | 17/26 | 0.964 | 16/21 | 19/32 | 0.571 |
Naïve to BoNT-A (Yes/No) | 14/11 | 34/29 | 0.863 | 30/15 | 18/25 | 0.019 † | 28/9 | 20/31 | 0.001 † |
Post-injection days | 75.88 ± 16.97 | 76.30 ± 17.12 | 0.918 | 81.87 ± 17.67 | 70.41 ± 13.53 | 0.001 † | 82.24 ± 19.07 | 71.78 ± 13.91 | 0.007 † |
Injection dose (U) | 298.00 ± 88.14 | 338.10 ± 96.15 | 0.071 | 310.11 ± 84.82 | 344.07 ± 103.01 | 0.100 | 313.38 ± 82.69 | 336.37 ± 102.99 | 0.255 |
Clinical Assessment at Baseline | |||||||||
MMSE | 27.52 ± 2.35 | 26.92 ± 2.50 | 0.303 | 26.98 ± 2.60 | 27.21 ± 2.33 | 0.665 | 27.41 ± 2.64 | 26.86 ± 2.33 | 0.326 |
FMA-UE | |||||||||
Proximal | 26.76 ± 6.10 | 26.10 ± 6.42 | 0.657 | 27.49 ± 6.19 | 25.02 ± 6.25 | 0.070 | 28.43 ± 5.59 | 24.73 ± 6.40 | 0.005 † |
Distal | 4.04 ± 2.54 | 3.84 ± 3.13 | 0.762 | 4.20 ± 2.93 | 3.58 ± 3.00 | 0.336 | 3.95 ± 2.58 | 3.86 ± 3.24 | 0.895 |
Proprioception score | 8.36 ± 3.87 | 7.62 ± 3.38 | 0.415 | 8.82 ± 3.26 | 6.79 ± 3.53 | 0.007 † | 8.97 ± 3.14 | 7.00 ± 3.59 | 0.008† |
MAS | |||||||||
Proximal UE | 7.66 ± 4.30 | 8.91 ± 3.31 | 0.206 | 8.51 ± 4.05 | 8.60 ± 3.22 | 0.906 | 8.84 ± 3.60 | 8.35 ± 3.70 | 0.544 |
Distal UE | 3.18 ± 1.83 | 3.87 ± 1.74 | 0.115 | 3.63 ± 1.81 | 3.71 ± 1.77 | 0.843 | 3.89 ± 1.80 | 3.51 ± 1.76 | 0.323 |
MRC | |||||||||
Proximal UE | 13.72 ± 3.41 | 12.90 ± 3.17 | 0.317 | 13.89 ± 3.33 | 12.35 ± 2.99 | 0.026 † | 13.86 ± 3.14 | 12.61 ± 3.25 | 0.075 |
Distal UE | 9.32 ± 3.40 | 7.38 ± 2.92 | 0.018 † | 8.09 ± 2.98 | 7.77 ± 3.38 | 0.642 | 7.68 ± 2.66 | 8.12 ± 3.51 | 0.508 |
WMFT | |||||||||
Time (mean) | 8.77 ± 4.19 | 10.87 ± 8.72 | 0.136 | 9.52 ± 4.94 | 11.06 ± 9.84 | 0.366 | 9.54 ± 4.40 | 10.80 ± 9.46 | 0.409 |
Quality (mean) | 2.51 ± 0.40 | 2.25 ± 0.47 | 0.016 † | 2.39 ± 0.46 | 2.25 ± 0.47 | 0.161 | 2.42 ± 0.47 | 2.26 ± 0.46 | 0.118 |
MAL | |||||||||
AOU (mean) | 1.29 ± 0.62 | 1.26 ± 0.75 | 0.846 | 1.28 ± 0.65 | 1.27 ± 0.78 | 0.935 | 1.26 ± 0.61 | 1.28 ± 0.79 | 0.859 |
QOM (mean) | 0.88 ± 0.63 | 0.91 ± 0.73 | 0.838 | 0.88 ± 0.57 | 0.92 ± 0.82 | 0.780 | 0.85 ± 0.51 | 0.93 ± 0.81 | 0.576 |
Predictor | FMA-UE | MAL AOU | MAL QOM | ||||||
---|---|---|---|---|---|---|---|---|---|
β | p | OR (95% CI) | β | p | OR (95% CI) | β | p | OR (95% CI) | |
Constant | −4.594 | 0.002 | −7.225 | <0.001 | −9.921 | <0.001 | |||
Time since stroke less than 36 months | 1.409 | 0.023 † | 4.092 (1.219–13.732) | 1.612 | 0.0012† | 5.013 (1.420–17.699) | |||
Education year | 0.099 | 0.199 | 1.104 (0.949–1.284) | 0.248 | 0.015† | 1.282 (1.050–1.565) | |||
Naïve to BoNT-A | 0.605 | 0.229 | 1.831 (0.683–4.910) | 1.201 | 0.035† | 3.322 (1.091–10.118) | |||
Post-injection duration | 0.039 | 0.021† | 1.039 (1.006–1.074) | 0.026 | 0.131 | 1.026 (0.992–1.061) | |||
MRC proximal UE | 0.657 | 0.049† | 1.930 (1.004–3.710) | ||||||
MRC distal UE | 0.567 | 0.135 | 1.762 (0.839–3.704) | ||||||
WMFT quality | 0.633 | 0.333 | 1.883 (0.523–6.786) | ||||||
FMA-UE proximal | 0.091 | 0.054 | 1.096 (0.999–1.202) | ||||||
Proprioception | 0.087 | 0.228 | 1.091 (0.947–1.257) | 0.078 | 0.368 | 1.081 (0.913–1.280) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, J.-W.; Wu, W.-C.; Chen, Y.-J.; Pong, Y.-P.; Chang, K.-C. Predictors of Clinically Important Improvements in Motor Function and Daily Use of Affected Arm after a Botulinum Toxin A Injection in Patients with Chronic Stroke. Toxins 2022, 14, 13. https://doi.org/10.3390/toxins14010013
Hung J-W, Wu W-C, Chen Y-J, Pong Y-P, Chang K-C. Predictors of Clinically Important Improvements in Motor Function and Daily Use of Affected Arm after a Botulinum Toxin A Injection in Patients with Chronic Stroke. Toxins. 2022; 14(1):13. https://doi.org/10.3390/toxins14010013
Chicago/Turabian StyleHung, Jen-Wen, Wen-Chi Wu, Yi-Ju Chen, Ya-Ping Pong, and Ku-Chou Chang. 2022. "Predictors of Clinically Important Improvements in Motor Function and Daily Use of Affected Arm after a Botulinum Toxin A Injection in Patients with Chronic Stroke" Toxins 14, no. 1: 13. https://doi.org/10.3390/toxins14010013
APA StyleHung, J. -W., Wu, W. -C., Chen, Y. -J., Pong, Y. -P., & Chang, K. -C. (2022). Predictors of Clinically Important Improvements in Motor Function and Daily Use of Affected Arm after a Botulinum Toxin A Injection in Patients with Chronic Stroke. Toxins, 14(1), 13. https://doi.org/10.3390/toxins14010013