Influence of Prolonged Serotonin and Ergovaline Pre-Exposure on Vasoconstriction Ex Vivo †
Abstract
:1. Introduction
2. Results
2.1. Pre-Exposure to Serotonin
2.2. Pre-Exposure to Ergovaline
2.3. Pre-Exposure to Combined Serotonin and Ergovaline
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Tissue Collection
5.2. Previous Exposure of Vascular 5-HT Receptors
5.3. IC50 Determination
5.4. Associated 5-HT and ERV Pre-Exposure
5.5. Vascular Dimensions
5.6. Contractile Response
5.7. Data Analysis
5.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poole, D.H.; Mayberry, K.J.; Newsome, M.; Poole, R.K.; Galliou, J.M.; Khanal, P.; Poore, M.H.; Serão, N.V.L. Evaluation of Resistance to Fescue Toxicosis in Purebred Angus Cattle Utilizing Animal Performance and Cytokine Response. Toxins 2020, 12, 796. [Google Scholar] [CrossRef]
- Klotz, J.L. Activities and effects of ergot alkaloids on livestock physiology and production. Toxins 2015, 7, 2801–2821. [Google Scholar] [CrossRef]
- Klotz, J.L.; Aiken, G.E.; Johnson, J.M.; Brown, K.R.; Bush, L.P.; Strickland, J.R. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue. J. Anim. Sci. 2013, 91, 4492–4500. [Google Scholar] [CrossRef] [Green Version]
- Egert, A.M.; Kim, D.H.; Schrick, F.N.; Harmon, D.L.; Klotz, J.L. Dietary exposure to ergot alkaloids decreases contractility of bovine mesenteric vasculature. J. Anim. Sci. 2014, 92, 1768–1779. [Google Scholar] [CrossRef] [Green Version]
- Trotta, R.J.; Harmon, D.L.; Klotz, J.L. Interaction of ergovaline with serotonin receptor 5-HT2A in bovine ruminal and mesenteric vasculature. J. Anim. Sci. 2018, 96, 4912–4922. [Google Scholar] [CrossRef]
- Unett, D.J.; Gatlin, J.; Anthony, T.L.; Buzard, D.J.; Chang, S.; Chen, C.; Chen, X.; Dang, H.T.M.; Frazer, J.; Le, M.K.; et al. Kinetics of 5-HT 2B Receptor Signaling: Profound Agonist-Dependent Effects on Signaling Onset and Duration. J. Pharmacol. Exp. Ther. 2013, 347, 645–659. [Google Scholar] [CrossRef] [Green Version]
- Millan, M.; Marin, P.; Bockaert, J.; Mannourylacour, C. Signaling at G-protein-coupled serotonin receptors: Recent advances and future research directions. Trends Pharmacol. Sci. 2008, 29, 454–464. [Google Scholar] [CrossRef]
- Aiken, G.E.; Kirch, B.H.; Strickland, J.R.; Bush, L.P.; Looper, M.L.; Schrick, F.N. Hemodynamic responses of the caudal artery to toxic tall fescue in beef heifers. J. Anim. Sci. 2007, 85, 2337–2345. [Google Scholar] [CrossRef] [Green Version]
- Aiken, G.E.; Strickland, J.R.; Looper, M.L.; Bush, L.P.; Schrick, F.N. Hemodynamics are altered in the caudal artery of beef heifers fed different ergot alkaloid concentrations. J. Anim. Sci. 2009, 87, 2142–2150. [Google Scholar] [CrossRef]
- Strickland, J.R.; Aiken, G.E.; Spiers, D.E.; Fletcher, L.R.; Oliver, J.W. Physiological Basis of Fescue Toxicosis. In Tall Fescue for the Twenty-first Century. Agronomy Monograph 53; Fribourg, H.A., Hannaway, D.B., West, C.P., Eds.; American Society Agron: Madison, WI, USA, 2015; pp. 203–227. [Google Scholar]
- Eisemann, J.H.; Huntington, G.B.; Williamson, M.; Hanna, M.; Poore, M. Physiological responses to known intake of ergot alkaloids by steers at environmental temperatures within or greater than their thermoneutral zone. Front. Chem. 2014, 2, 96. [Google Scholar] [CrossRef] [Green Version]
- Jordan, C.J.; Cao, J.; Newman, A.H.; Xi, Z.-X. Progress in agonist therapy for substance use disorders: Lessons learned from methadone and buprenorphine. Neuropharmacology 2019, 158, 107609. [Google Scholar] [CrossRef]
- Rothman, R.B.; Baumann, M.H. Balance between Dopamine and Serotonin Release Modulates Behavioral Effects of Amphetamine-Type Drugs. Ann. N. Y. Acad. Sci. 2006, 1074, 245–260. [Google Scholar] [CrossRef]
- Valente, E.E.L.; Klotz, J.L.; Ahn, G.; McLeod, K.R.; Herzing, H.M.; King, M.; Harmon, D.L. Ergot alkaloids reduce circulating serotonin in the bovine. J. Anim. Sci. 2020, 98, skaa362. [Google Scholar] [CrossRef]
- Pesqueira, A.; Harmon, D.L.; Branco, A.F.; Klotz, J.L. Bovine lateral saphenous veins exposed to ergopeptine alkaloids do not relax. J. Anim. Sci. 2014, 92, 1213–1218. [Google Scholar] [CrossRef]
- Klotz, J.L.; Kirch, B.H.; Aiken, G.E.; Bush, L.P.; Strickland, J.R. Contractile response of fescue-naïve bovine lateral saphenous veins to increasing concentrations of tall fescue alkaloids. J. Anim. Sci. 2010, 88, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Valente, E.E.L.; Klotz, J.L.; Harmon, D.L. 5-Hydroxytryptophan strongly stimulates serotonin synthesis in Holstein steers. Domest. Anim. Endocrinol. 2021, 74, 106560. [Google Scholar] [CrossRef]
- Valente, E.E.L.; Damasceno, M.L.; Klotz, J.L.; Harmon, D.L. Residual effects of abomasal 5-hydroxytryptophan administration on serotonin metabolism in cattle. Domest. Anim. Endocrinol. 2021, 76, 106627. [Google Scholar] [CrossRef]
- Mercado, C.P.; Kilic, F. Molecular Mechanisms of SERT in Platelets: Regulation of Plasma Serotonin Levels. Mol. Interv. 2010, 10, 231–241. [Google Scholar] [CrossRef]
- Bertrand, P.P.; Bertrand, R.L. Serotonin release and uptake in the gastrointestinal tract. Auton. Neurosci. 2010, 153, 47–57. [Google Scholar] [CrossRef] [Green Version]
- McLean, P.G.; Coupar, I.M.; Molenaar, P. Changes in sensitivity of 5-HT receptor mediated functional responses in the rat oesophagus, fundus and jejunum following chronic infusion with 5-hydroxytryptamine. Naunyn- Schmiedebergs. Arch. Pharmacol. 1996, 354, 513–519. [Google Scholar] [CrossRef]
- Foote, A.P.; Harmon, D.L.; Strickland, J.R.; Bush, L.P.; Klotz, J.L. Effect of ergot alkaloids on contractility of bovine right ruminal artery and vein. J. Anim. Sci. 2011, 89, 2944–2949. [Google Scholar] [CrossRef] [Green Version]
- Cherewyk, J.E.; Parker, S.E.; Blakley, B.R.; Al-Dissi, A.N. Assessment of the vasoactive effects of the (S)-epimers of ergot alkaloids in vitro. J. Anim. Sci. 2020, 98, skaa203. [Google Scholar] [CrossRef]
- Jaussaud, P.; Durix, A.; Videmann, B.; Vigié, A.; Bony, S. Rapid analysis of ergovaline in ovine plasma using high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. A 1998, 815, 147–153. [Google Scholar] [CrossRef]
- Klotz, J.L.; Aiken, G.E.; Egert-McLean, A.M.; Schrick, F.N.; Chattopadhyay, N.; Harmon, D.L. Effects of grazing different ergovaline concentrations on vasoactivity of bovine lateral saphenous vein. J. Anim. Sci. 2018, 96, 3022–3030. [Google Scholar] [CrossRef] [Green Version]
- Povlsen, G.K.; Waldsee, R.; Ahnstedt, H.; Kristiansen, K.A.; Johansen, F.F.; Edvinsson, L. In vivo experimental stroke and in vitro organ culture induce similar changes in vasoconstrictor receptors and intracellular calcium handling in rat cerebral arteries. Exp. Brain Res. 2012, 219, 507–520. [Google Scholar] [CrossRef]
- Klotz, J.L.; Kim, D.; Foote, A.P.; Harmon, D.L. Effects of ergot alkaloid exposure on serotonin receptor mRNA in the smooth muscle of the bovine gastrointestinal tract. In Proceedings of the Joint Meeting of the ADSA, AMSA, ASAS and PSA, Kansas City, MO, USA, 20–24 July 2014; p. 890p. [Google Scholar]
- Ratz, P.H.; Berg, K.M.; Urban, N.H.; Miner, A.S. Regulation of smooth muscle calcium sensitivity: KCl as a calcium-sensitizing stimulus. Am. J. Physiol. -Cell Physiol. 2005, 288, C769–C783. [Google Scholar] [CrossRef] [Green Version]
- Cowan, V.; Grusie, T.; McKinnon, J.; Blakley, B.; Singh, J. Arterial Responses in Periparturient Beef Cows Following a 9-Week Exposure to Ergot (Claviceps purpurea) in Feed. Front. Vet. Sci. 2019, 6, 262. [Google Scholar] [CrossRef] [Green Version]
- Rush, C.R.; Stoops, W.W. Agonist replacement therapy for cocaine dependence: A translational review. Future Med. Chem. 2012, 4, 245–265. [Google Scholar] [CrossRef] [Green Version]
- Rice, D.; Corace, K.; Wolfe, D.; Esmaeilisaraji, L.; Michaud, A.; Grima, A.; Austin, B.; Douma, R.; Barbeau, P.; Butler, C.; et al. Evaluating comparative effectiveness of psychosocial interventions adjunctive to opioid agonist therapy for opioid use disorder: A systematic review with network meta-analyses. PLoS ONE 2020, 15, e0244401. [Google Scholar] [CrossRef]
- Cahill, K.; Lindson-Hawley, N.; Thomas, K.H.; Fanshawe, T.R.; Lancaster, T. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef] [Green Version]
- Schöning, C.; Flieger, M.; Pertz, H.H. Complex interaction of ergovaline with 5-HT2A, 5-HT1B/1D, and alpha1 receptors in isolated arteries of rat and guinea pig. J. Anim. Sci. 2001, 79, 2202–2209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigal, M.E.; Tepper, S.J. Ergotamine and dihydroergotamine: A review. Curr. Pain Headache Rep. 2003, 7, 55–62. [Google Scholar] [CrossRef]
- Silberstein, S.D.; McCrory, D.C. Ergotamine and Dihydroergotamine: History, Pharmacology, and Efficacy. Headache J. Head Face Pain 2003, 43, 144–166. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Pons, R.; McRae, K.; Thompson, J.M.; Watts, S.W. 5-HT7 Receptor Restrains 5-HT–induced 5-HT2A Mediated Contraction in the Isolated Abdominal Vena Cava. J. Cardiovasc. Pharmacol. 2021, 78, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.P.; Pattison, J.; Thompson, J.M.; Tiniakov, R.; Scrogin, K.E.; Watts, S.W. 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: Direct arterial mesenteric relaxation is not involved. BMC Pharmacol. 2012, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Klotz, J.L.; Bush, L.P.; Smith, D.L.; Shafer, W.D.; Smith, L.L.; Vevoda, A.C.; Craig, A.M.; Arrington, B.C.; Strickland, J.R. Assessment of vasoconstrictive potential of D-lysergic acid using an isolated bovine lateral saphenous vein bioassay. J. Anim. Sci. 2006, 84, 3167–3175. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Fannin, F.; Klotz, J.; Bush, L. Tall fescue seed extraction and partial purification of ergot alkaloids. Front. Chem. 2014, 2, 110. [Google Scholar] [CrossRef] [Green Version]
- Foote, A.P.; Harmon, D.L.; Brown, K.R.; Strickland, J.R.; McLeod, K.R.; Bush, L.P.; Klotz, J.L. Constriction of bovine vasculature caused by endophyte-infected tall fescue seed extract is similar to pure ergovaline. J. Anim. Sci. 2012, 90, 1603–1609. [Google Scholar] [CrossRef]
- Egert-McLean, A.M.; Sama, M.P.; Klotz, J.L.; McLeod, K.R.; Kristensen, N.B.; Harmon, D.L. Automated system for characterizing short-term feeding behavior and real-time forestomach motility in cattle. Comput. Electron. Agric. 2019, 167, 105037. [Google Scholar] [CrossRef]
5-HT, log [M] | SE | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | −8 | −7 | −6 | −5 | −4 | |||
Length, mm | 2.14 | 2.17 | 2.27 | 2.36 * | 2.22 | 2.21 | 0.06 | 0.001 |
ID, mm 1 | 1.41 | 1.32 | 0.89 * | 0.87 * | 0.89 * | 0.86 * | 0.19 | <0.001 |
OD, mm 2 | 2.97 | 2.78 | 2.55 * | 2.33 * | 2.47 * | 2.47 * | 0.41 | <0.001 |
Wall, mm 3 | 0.78 | 0.73 | 0.83 | 0.73 | 0.79 | 0.8 | 0.13 | 0.026 |
Ergovaline 1, log [M] | SE | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | −11 | −10 | −9 | −8 | −7 | |||
Length, mm | 2.32 | 2.34 | 2.27 | 2.3 | 2.52 | 2.21 | 0.07 | 0.019 |
ID, mm 2 | 1.06 | 0.99 | 0.91 | 0.84 * | 0.65 * | 0.75 * | 0.13 | <0.001 |
OD, mm 3 | 2.76 | 2.57 | 2.51 * | 2.40 * | 2.29 * | 2.43 * | 0.36 | <0.001 |
Wall, mm 4 | 0.85 | 0.79 | 0.80 | 0.78 | 0.82 | 0.84 | 0.12 | 0.463 |
Treatments 1 | p-Value 2 | |||||||
---|---|---|---|---|---|---|---|---|
CTRL | 5-HT | ERV | 5-HT + ERV | SE | 5-HT | ERV | 5-HT × ERV | |
Length, mm | 2.50 | 2.59 | 2.43 | 2.64 | 0.06 | 0.006 | 0.081 | 0.267 |
ID, mm 5 | 1.21 | 0.90 | 1.19 | 0.79 | 0.14 | <0.001 | 0.44 | 0.571 |
OD, mm 6 | 3.16 | 2.84 | 3.12 | 2.76 | 0.17 | <0.001 | 0.498 | 0.838 |
Wall, mm 7 | 0.976 | 0.969 | 0.964 | 0.986 | 0.05 | 0.785 | 0.924 | 0.565 |
AUC 3 | 98.4 | 37.9 | 72.7 | 40.7 | 9 | <0.001 | 0.096 | 0.039 |
NE Response 4 | 98.9 | 49.8 | 92.3 | 51.7 | 6.8 | <0.001 | 0.57 | 0.313 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valente, E.E.L.; Harmon, D.L.; Klotz, J.L. Influence of Prolonged Serotonin and Ergovaline Pre-Exposure on Vasoconstriction Ex Vivo. Toxins 2022, 14, 9. https://doi.org/10.3390/toxins14010009
Valente EEL, Harmon DL, Klotz JL. Influence of Prolonged Serotonin and Ergovaline Pre-Exposure on Vasoconstriction Ex Vivo. Toxins. 2022; 14(1):9. https://doi.org/10.3390/toxins14010009
Chicago/Turabian StyleValente, Eriton E. L., David L. Harmon, and James L. Klotz. 2022. "Influence of Prolonged Serotonin and Ergovaline Pre-Exposure on Vasoconstriction Ex Vivo" Toxins 14, no. 1: 9. https://doi.org/10.3390/toxins14010009
APA StyleValente, E. E. L., Harmon, D. L., & Klotz, J. L. (2022). Influence of Prolonged Serotonin and Ergovaline Pre-Exposure on Vasoconstriction Ex Vivo. Toxins, 14(1), 9. https://doi.org/10.3390/toxins14010009