Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia
Abstract
:1. Introduction
2. Overview of C. durissus
3. Epidemiology of C. durissus Envenomation
4. C. durissus Venom
4.1. PLA2—CTX
4.2. SVSP—Collineína-1, Gyroxin
4.3. SVCTL—Convulxin
4.4. SVMP
4.5. Crotamine
4.6. SVLAAO
4.7. BPP
4.8. Crotaline
4.9. Crotalicidin
4.10. NPCdc
4.11. Hyaluronidase
4.12. CdcPDE
4.13. Nucleotidases
4.14. SVVEGF
5. PLA2 Inhibitors (in Blood-Not in Venom)
6. Human Envenomation by C. durissus
7. Antivenoms Used in C. durissus Envenomation
7.1. Equine Antivenoms
7.2. Nanobodies
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Linné, C. Systema Naturae per Regna Tria Naturae: Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis; Emanuel. Beer; Impensis Georg: Leipzig, Germany, 1789; pp. 1080–1082. [Google Scholar] [CrossRef] [Green Version]
- Vosmaer, A. Description D’un Serpent À Sonnette De L’amerique; chez Pierre Meyer: Amsterdam, The Netherlands, 1767. [Google Scholar]
- Vanzolini, P.E.; Calleffo, M.E. A taxonomic bibliography of the South American snakes of the Crotalus durissus complex (Serpentes, Viperidae). An. Acad. Bras. Cienc. 2002, 74, 37–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, J.A.; Lamar, W. The Venomous Reptiles of the Western Hemisphere Coral snakes and sea snakes: Rattlesnake, Genus Crotalus Linnaeus, 1758; Cornell University Press: Ithaca, NY, USA, 2004; Volume 2, pp. 490–616. [Google Scholar]
- Hoyos, M.A.; Almeida-Santos, S.M. The South-American rattlesnake Crotalus durissus: Feeding ecology in the central region of Brazil. Biota Neotrop. 2016, 16, e20140027. [Google Scholar] [CrossRef] [Green Version]
- Wüster, W.; Ferguson, J.E.; Quijada-Mascareñas, J.A.; Pook, C.E.; Salomão, M.D.G.; Thorpe, R.S. Tracing an invasion: Landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol. Ecol. 2005, 14, 1095–1108. [Google Scholar] [CrossRef]
- Lynch, J.; Angarita-Sierra, T.; Ruiz-Gómez, F. Programa Nacional para la Conservación de las Serpientes Presentes en Colombia; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia; Universidad Nacional de Colombia, Instituto Nacional de Salud: Bogotá, Colombia, 2014; ISBN 978-958-8901-18-3. [Google Scholar]
- Rodríguez-Vargas, A.; Vega, N.; Reyes-Montaño, E.; Corzo, G.; Neri-Castro, E.; Clement, H.; Ruiz-Gómez, F. Intraspecific Differences in the Venom of Crotalus durissus cumanensis from Colombia. Toxins 2022, 14, 532. [Google Scholar] [CrossRef] [PubMed]
- Céspedes, N.; Castro, F.; Jiménez, E.; Montealegre, L.; Castellanos, A.; Cañas, C.; Arévalo-Herrera, M.; Herrera, S. Biochemical comparison of venoms from young Colombian Crotalus durissus cumanensis and their parents. J. Venom. Anim. Toxins Incl. Trop. Dis. 2010, 16, 268–284. [Google Scholar] [CrossRef]
- Baudou, F.G.; Rodriguez, J.P.; Fusco, L.; de Roodt, A.R.; De Marzi, M.C.; Leiva, L. South American snake venoms with abundant neurotoxic components. Composition and toxicological properties. A literature review. Acta Trop. 2021, 224, 106119. [Google Scholar] [CrossRef]
- Calvete, J.J.; Sanz, L.; Cid, P.; de la Torre, P.; Flores-Díaz, M.; Dos Santos, M.C.; Borges, A.; Bremo, A.; Angulo, Y.; Lomonte, B.; et al. Snake Venomics of the Central American Rattlesnake Crotalus simus and the South American Crotalus durissus Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along Crotalus Dispersal in South America. J. Proteome Res. 2010, 9, 528–544. [Google Scholar] [CrossRef]
- Boldrini-França, J.; Corrêa-Netto, C.; Silva, M.M.; Rodrigues, R.S.; De La Torre, P.; Pérez, A.; Soares, A.M.; Zingali, R.B.; Nogueira, R.A.; Rodrigues, V.M.; et al. Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: Assessment of geographic variation and its implication on snakebite management. J. Proteom. 2010, 73, 1758–1776. [Google Scholar] [CrossRef]
- Wiezel, G.A.; Shibao, P.Y.T.; Cologna, C.T.; Filho, R.M.; Ueira-Vieira, C.; De Pauw, E.; Quinton, L.; Arantes, E.C. In-Depth Venome of the Brazilian Rattlesnake Crotalus durissus terrificus: An Integrative Approach Combining Its Venom Gland Transcriptome and Venom Proteome. J. Proteome Res. 2018, 17, 3941–3958. [Google Scholar] [CrossRef]
- Melani, R.D.; Araujo, G.D.; Carvalho, P.C.; Goto, L.; Nogueira, F.C.; Junqueira, M.; Domont, G.B. Seeing beyond the tip of the iceberg: A deep analysis of the venome of the Brazilian Rattlesnake, Crotalus durissus terrificus. EuPA Open Proteom. 2015, 8, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Tasima, L.J.; Hatakeyama, D.M.; Serino-Silva, C.; Rodrigues, C.F.; de Lima, E.O.; Sant’Anna, S.S.; Grego, K.F.; de Morais-Zani, K.; Sanz, L.; Calvete, J.J.; et al. Comparative proteomic profiling and functional characterization of venom pooled from captive Crotalus durissus terrificus specimens and the Brazilian crotalic reference venom. Toxicon 2020, 185, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Peña, A.; Núñez, V.; Pereañez, J.A.; Rey-Suárez, P. Immunorecognition and Neutralization of Crotalus durissus cumanensis Venom by a Commercial Antivenom Produced in Colombia. Toxins 2022, 14, 235. [Google Scholar] [CrossRef] [PubMed]
- McCranie, J.R. Crotalus durissus. Catalogue of American Amphibians and Reptiles (CAAR). 1993. Available online: https://repositories.lib.utexas.edu/handle/2152/45436 (accessed on 5 December 2022).
- Ángel-Mejía, S.R. Serpientes: Mitos y Realidades; Universidad CES: Medellín, Colombia, 2017; pp. 106–107. [Google Scholar]
- Benício, R.A. Notes on habitat use of Crotalus durissus (South American Rattlesnake). Herpetol. Notes 2018, 11, 645–646. [Google Scholar]
- Tozetti, A.M.; Martins, M. Daily and seasonal activity patterns of free range South-American rattlesnake (Crotalus durissus). An Acad. Bras. Cienc. 2013, 85, 1047–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, M.G.; Ducatti, C.; Silva, E.T.; Sant’Anna, S.S.; Sartori, M.M.P.; Barraviera, B. Does the rattle of Crotalus durissus terrificus reveal its dietary history? J. Venom. Anim. Toxins Incl. Trop. Dis. 2014, 20, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffstetter, R. Un serpent terrestre dans le Cretace inferieur du Sahara. Bull. Société Géologique Fr. 1959, S7-I, 897–902. [Google Scholar] [CrossRef]
- Szyndlar, Z.; Rage, J.C. Fossil record of the true vipers. In Biology of the Vipers; Schuett, G.W., Höggren, M., Douglas, M.E., Greene, H.W., Eds.; Eagle Mountain Publishing: Eagle Mountain, UT, USA, 2002; pp. 419–444. [Google Scholar]
- Van Devender, T.R.; Conant, R. Pleistocene forests and copperheads in the eastern United States, and the historical biogeography of New World Agkistrodon. In Snakes of the Agkistrodon Complex: A Monographic Review; Gloyd, H.K., Conant, R., Eds.; Contributions to Herpetology Number 6; Society for the Study of Amphibians and Reptiles: Oxford, OH, USA, 1990; pp. 601–614. [Google Scholar]
- Gutberlet, R.L., Jr.; Harvey, M.B. The evolution of New World venomous snakes. In Venomous Reptiles of the Western Hemisphere, 2 Volumes; Campbell, J.A., Lamar, W.W., Eds.; Cornell University Press: Ithaca, NY, USA, 2004; pp. 634–682. [Google Scholar]
- Douglas, M.E.; Douglas, M.R.; Schuett, G.W.; Porras, L.W. Evolution of rattlesnakes (Viperidae; Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change. Mol. Ecol. 2006, 15, 3353–3374. [Google Scholar] [CrossRef]
- Holman, J.A. Fossil Snakes of North America: Origin, Evolution, Distribution, Paleocology; Indiana University Press: Bloomington, IN, USA, 2000. [Google Scholar]
- Gosling, W.D.; Bush, M.B. A biogeographic comment on: Wuster et al. (2005) Tracing an invasion: Landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol. Ecol. 2005, 14, 3615–3617. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis. Primers 2017, 3, 17079. [Google Scholar] [CrossRef]
- WHO. Snakebite Envenoming; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Kasturiratne, A.; Wickremasinghe, A.R.; De Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; De Silva, H.J. The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLoS Med. 2008, 5, e218. [Google Scholar] [CrossRef]
- Ministério da Saúde. Animais Peçonhentos-Serpentes; Situação Epidemiológica—Dados: Brasília, Brazil, 2019. [Google Scholar]
- Available online: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/animaisp/bases/animaisbrnet.def (accessed on 5 December 2022).
- Santos, H.L.R.; Sousa, J.D.D.B.; Alcântara, J.A.; Sachett, J.D.A.G.; Boas, T.S.V.; Saraiva, I.; Bernarde, P.S.; Magalhães, S.F.V.; de Melo, G.C.; Peixoto, H.M.; et al. Rattlesnakes bites in the Brazilian Amazon: Clinical epidemiology, spatial distribution and ecological determinants. Acta Trop. 2019, 191, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Sevilla-Sánchez, M.J.; Ayerbe-González, S.; Bolaños-Bolaños, E. Snakebite biomedical and epidemiological aspects in the department of Cauca, Colombia, 2009–2018. Biomedica 2021, 41, 314–337. [Google Scholar] [CrossRef] [PubMed]
- INAS. Protocolo de Vigilancia de Accidente Ofídico, Ministerio de Salud de Colombia. 2022. Available online: https://www.ins.gov.co/buscador-eventos/Lineamientos/Pro_Accidente%20Of%C3%ADdico.pdf (accessed on 5 December 2022).
- Aird, S.D.; Aggarwal, S.; Villar-Briones, A.; Tin, M.M.-Y.; Terada, K.; Mikheyev, A.S. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly. BMC Genom. 2015, 16, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Dobson, J.; Yang, D.C.; Brouw, B.O.D.; Cochran, C.; Huynh, T.; Kurrupu, S.; Sánchez, E.E.; Massey, D.J.; Baumann, K.; Jackson, T.N.; et al. Rattling the border wall: Pathophysiological implications of functional and proteomic venom variation between Mexican and US subspecies of the desert rattlesnake Crotalus scutulatus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2018, 205, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Georgieva, D.; Ohler, M.; Seifert, J.; von Bergen, M.; Arni, R.K.; Genov, N.; Betzel, C. Snake Venomic of Crotalus durissus terrificus—Correlation with Pharmacological Activities. J. Proteome Res. 2010, 9, 2302–2316. [Google Scholar] [CrossRef]
- Segura, Á.; Herrera, M.; Mares, F.R.; Jaime, C.; Sánchez, A.; Vargas, M.; Villalta, M.; Gómez, A.; Gutiérrez, J.M.; León, G. Proteomic, toxicological and immunogenic characterization of Mexican west-coast rattlesnake (Crotalus basiliscus) venom and its immunological relatedness with the venom of Central American rattlesnake (Crotalus simus). J. Proteom. 2017, 158, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Cañas, C.A.; Castaño-Valencia, S.; Castro-Herrera, F.; Cañas, F.; Tobón, G.J. Biomedical applications of snake venom: From basic science to autoimmunity and rheumatology. J. Transl. Autoimmun. 2020, 4, 100076. [Google Scholar] [CrossRef] [PubMed]
- Faure, G.; Porowinska, D.; Saul, F. Crotoxin from Crotalus durissus terrificus and Crotoxin-Related Proteins: Structure and Function Relationship. In Toxins and Drug Discovery; Springer: Dordrecht, The Netherlands, 2017; pp. 3–20. [Google Scholar]
- Yoshida-Kanashiro, E.; Navarrete, L.F.; Rodríguez-Acosta, A. On the unsual hemorrhagic and necrotic activities caused by the rattlesnake (Crotalus durissus cumanensis) in a Venezuelan patient. Rev. Cuba. Med. Trop. 2005, 55, 38–40. [Google Scholar]
- Cañas, C.A.; Castro, F.; Castaño, R.S. Serpientes Venenosas: Lecciones Aprendidas Desde Colombia; Fundación Valle del Lili: Cali, Colombia, 2016; p. 93. [Google Scholar]
- Deshwal, A.; Phan, P.; Datta, J.; Kannan, R.; Thallapuranam, S. A Meta-Analysis of the Protein Components in Rattlesnake Venom. Toxins 2021, 13, 372. [Google Scholar] [CrossRef]
- Rangel-Santos, A.; Dos-Santos, E.; Lopes-Ferreira, M.; Lima, C.; Cardoso, D.; Mota, I. A comparative study of biological activities of crotoxin and CB fraction of venoms from Crotalus durissus terrificus, Crotalus durissus cascavella and Crotalus durissus collilineatus. Toxicon 2004, 43, 801–810. [Google Scholar] [CrossRef]
- de Oliveira, I.S.; Cardoso, I.A.; Bordon, K.D.C.F.; Carone, S.E.I.; Boldrini-França, J.; Pucca, M.B.; Zoccal, K.F.; Faccioli, L.H.; Sampaio, S.V.; Rosa, J.C.; et al. Global proteomic and functional analysis of Crotalus durissus collilineatus individual venom variation and its impact on envenoming. J. Proteom. 2019, 191, 153–165. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, L.H.; Teixeira, L.F.; Zaqueo, K.D.; Bastos, J.F.; Nery, N.M.; Setúbal, S.S.; Pontes, A.S.; Butzke, D.; Cavalcante, W.; Gallacci, M.; et al. Local and systemic effects caused by Crotalus durissus terrificus, Crotalus durissus collilineatus, and Crotalus durissus cascavella snake venoms in swiss mice. Rev. Soc. Bras. Med. Trop. 2019, 52, e20180526. [Google Scholar] [CrossRef] [PubMed]
- Francischetti, I.M.; Gombarovits, M.E.; Valenzuela, J.G.; Carlini, C.R.; A Guimarães, J. Intraspecific variation in the venoms of the South American rattlesnake (Crotalus durissus terrificus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2000, 127, 23–36. [Google Scholar] [CrossRef]
- Dos-Santos, M.C.; Assis, E.B.; Moreira, T.D.; Pinheiro, J.; Fortes-Dias, C.L. Individual venom variability in Crotalus durissus ruruima snakes, a subspecies of Crotalus durissus from the Amazonian region. Toxicon 2005, 46, 958–961. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Soto, L.A.; Baldasso, P.A.; Romero-Vargas, F.F.; Winck, F.V.; Novello, J.C.; Marangoni, S. Biochemical, Pharmacological and Structural Characterization of Two PLA2 Isoforms Cdr-12 and Cdr-13 from Crotalus durissus ruruima Snake Venom. Protein J. 2007, 26, 39–49. [Google Scholar] [CrossRef]
- Ponce-Soto, L.A.; Lomonte, B.; Rodrigues-Simioni, L.; Novello, J.C.; Marangoni, S. Biological and Structural Characterization of Crotoxin and New Isoform of Crotoxin B PLA2 (F6a) from Crotalus durissus collilineatus Snake Venom. Protein J. 2007, 26, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Oguiura, N.; Collares, M.A.; Furtado, M.F.D.; Ferrarezzi, H.; Suzuki, H. Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene 2009, 446, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Romero-Vargas, F.F.; Ponce-Soto, L.A.; Martins-De-Souza, D.; Marangoni, S. Biological and biochemical characterization of two new PLA2 isoforms Cdc-9 and Cdc-10 from Crotalus durissus cumanensis snake venom. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 151, 66–74. [Google Scholar] [CrossRef]
- Pereañez, J.A.; Núñez, V.; Huancahuire-Vega, S.; Marangoni, S.; Ponce-Soto, L.A. Biochemical and biological characterization of a PLA2 from crotoxin complex of Crotalus durissus cumanensis. Toxicon 2009, 53, 534–542. [Google Scholar] [CrossRef]
- Quintana-Castillo, J.C.; Ávila-Gómez, I.C.; Ceballos-Ruiz, J.F.; Vargas-Muñoz, L.J.; Estrada-Gómez, S. Efecto citotóxico de fosfolipasas A2 del veneno de Crotalus durissus cumanensis de Colombia. Revista Investig. Salud Univ. Boyacá 2017, 4, 16–37. Available online: https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/194 (accessed on 22 October 2022).
- Patiño, A.C.; Pereañez, J.A.; Gutiérrez, J.M.; Rucavado, A. Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom. Toxicon 2013, 63, 32–43. [Google Scholar] [CrossRef]
- Salazar, A.M.; Aguilar, I.; Guerrero, B.; E Girón, M.; Lucena, S.; E Sánchez, E.; Rodríguez-Acosta, A. Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors. Blood Coagul. Fibrinolysis 2008, 19, 525–530. [Google Scholar] [CrossRef]
- Quintana-Castillo, J.C.; Vargas, L.J.; Segura, C.; Estrada-Gómez, S.; Bueno-Sánchez, J.C.; Alarcón, J.C. Characterization of the Venom of C. d. cumanesis of Colombia: Proteomic Analysis and Antivenomic Study. Toxins 2018, 10, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, I.; Guerrero, B.; Salazar, A.M.; Girón, M.E.; Pérez, J.C.; Sánchez, E.E.; Rodríguez-Acosta, A. Individual venom variability in the South American rattlesnake Crotalus durissus cumanensis. Toxicon 2007, 50, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Arévalo-Páez, M.; Rada-Vargas, E.; Betancur-Hurtado, C.; Renjifo, J.M.; Renjifo-Ibáñez, C. Neuromuscular effect of venoms from adults and juveniles of Crotalus durissus cumanensis (Humboldt, 1811) from Guajira, Colombia. Toxicon 2017, 139, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Hawgood, B.J. Karl Heinrich Slotta (1895–1987) biochemist: Snakes, pregnancy and coffee. Toxicon 2001, 39, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- Faure, G.; Choumet, V.; Bouchier, C.; Camoin, L.; Guillaume, J.-L.; Monegier, B.; Vuilhorgne, M.; Bon, C. The origin of the diversity of crotoxin isoforms in the venom of Crotalus durissus terrificus. Eur. J. Biochem. 1994, 223, 161–164. [Google Scholar] [CrossRef]
- Hendon, R.A.; Fraenkel-Conrat, H. Biological Roles of the Two Components of Crotoxin. Proc. Natl. Acad. Sci. USA 1971, 68, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Krizaj, I.; Faure, G.; Gubensek, F.; Bon, C. Neurotoxic phospholipases A2 ammodytoxin and crotoxin bind to distinct high-affinity protein acceptors in Torpedo marmorata electric organ. Biochemistry 1997, 36, 2779–2787. [Google Scholar] [CrossRef]
- Bon, C.; Changeux, J.-P.; Jeng, T.-W.; Fraenkel-Conrat, H. Postsynaptic Effects of Crotoxin and of Its Isolated Subunits. Eur. J. Biochem. 1979, 99, 471–482. [Google Scholar] [CrossRef]
- Hawgood, B.J.; Smith, I.H. The importance of phospholipase A2 in the early induction by crotoxin of biphasic changes in endplate potentials at the frog neuromuscular junction. Toxicon 1989, 27, 272–276. [Google Scholar] [CrossRef]
- Chang, C.C.; Lee, J.D. Crotoxin, the neurotoxin of South American rattlesnake venom, is a presynaptic toxin acting like beta-bungarotoxin. Naunyn Schmiedebergs Arch. Pharmacol. 1977, 296, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Brazil, O.V.; Excell, B.J. Action of crotoxin and crotactin from the venom of Crotalus durissus terrificus (South American rattlesnake) on the frog neuromuscular junction. J. Physiol. 1971, 212, 34–35. [Google Scholar]
- Rossetto, O.; Morbiato, L.; Caccin, P.; Rigoni, M.; Montecucco, C. Presynaptic enzymatic neurotoxins. J. Neurochem. 2006, 97, 1534–1545. [Google Scholar] [CrossRef]
- Ribeiro, G.D.B.; De Almeida, H.C.; Velarde, D.T. Crotoxin in humans: Analysis of the effects on extraocular and facial muscles. Arq. Bras. Oftalmol. 2012, 75, 385–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, G.D.B.; De Almeida, H.C.; Velarde, D.T.; Sá, M.L.V.D.M. Study of crotoxin on the induction of paralysis in extraocular muscle in animal model. Arq. Bras. Oftalmol. 2012, 75, 307–312. [Google Scholar] [CrossRef]
- Cavalcante, W.L.; Noronha-Matos, J.B.; Timóteo, M.A.; Fontes, M.R.; Gallacci, M.; Correia-De-Sá, P. Neuromuscular paralysis by the basic phospholipase A 2 subunit of crotoxin from Crotalus durissus terrificus snake venom needs its acid chaperone to concurrently inhibit acetylcholine release and produce muscle blockage. Toxicol. Appl. Pharmacol. 2017, 334, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Faure, G.; Bon, C. Several isoforms of crotoxin are present in individual venoms from the South American rattlesnake Crotalus durissus terrificus. Toxicon 1987, 25, 229–234. [Google Scholar] [CrossRef]
- Nemecz, D.; Ostrowski, M.; Ravatin, M.; Saul, F.; Faure, G. Crystal Structure of Isoform CBd of the Basic Phospholipase A2 Subunit of Crotoxin: Description of the Structural Framework of CB for Interaction with Protein Targets. Molecules 2020, 25, 5290. [Google Scholar] [CrossRef]
- Faure, G.; Bon, C. Crotoxin, a phospholipase A2 neurotoxin from the South American rattlesnake Crotalus durissus terrificus: Purification of several isoforms and comparison of their molecular structure and of their biological activities. Biochemistry 1988, 27, 730–738. [Google Scholar] [CrossRef]
- Faure, G.; Harvey, A.L.; Thomson, E.; Saliou, B.; Radvanyi, F.; Bon, C. Comparison of crotoxin isoforms reveals that stability of the complex plays a major role in its pharmacological action. Eur. J. Biochem. 1993, 214, 491–496. [Google Scholar] [CrossRef]
- Faure, G.; Xu, H.; Saul, F.A. Crystal Structure of Crotoxin Reveals Key Residues Involved in the Stability and Toxicity of This Potent Heterodimeric β-Neurotoxin. J. Mol. Biol. 2011, 412, 176–191. [Google Scholar] [CrossRef] [PubMed]
- Pereañez, J.A.; Gómez, I.D.; Patiño, A.C. Relationship between the structure and the enzymatic activity of crotoxin complex and its phospholipase A2 subunit: An in silico approach. J. Mol. Graph. Model. 2012, 35, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Cerdas, L. Mecanismo de acción de miotoxinas aisladas de venenos de serpientes [Mechanism of action of myotoxins isolated from snake venoms]. Rev. Biol. Trop. 1984, 32, 213–222. [Google Scholar] [PubMed]
- Breithaupt, H. Neurotoxic and myotoxic effects of crotalus phospholipase A and its complex with crotapotin. Naunyn Schmiedebergs Arch. Pharmacol. 1976, 292, 271–278. [Google Scholar] [CrossRef]
- Zornetta, I.; Caccin, P.; Fernandez, J.; Lomonte, B.; Gutierrez, J.M.; Montecucco, C. Envenomations by Bothrops and Crotalus Snakes Induce the Release of Mitochondrial Alarmins. PLOS Negl. Trop. Dis. 2012, 6, e1526. [Google Scholar] [CrossRef] [Green Version]
- Miyabara, E.; Tostes, R.; de Araújo, H.S.; Aoki, M.S.; Salvini, T.; Moriscot, A. Cyclosporin A attenuates skeletal muscle damage induced by crotoxin in rats. Toxicon 2004, 43, 35–42. [Google Scholar] [CrossRef]
- Dorandeu, F.; Pernot-Marino, I.; Veyret, J.; Perrichon, C.; Lallement, G. Secreted phospholipase A2-induced neurotoxicity and epileptic seizures after intracerebral administration: An unexplained heterogeneity as emphasized with paradoxin and crotoxin. J. Neurosci. Res. 1998, 54, 848–862. [Google Scholar] [CrossRef]
- Lomeo, R.D.S.; Gonçalves, A.P.D.F.; da Silva, C.N.; de Paula, A.T.; Santos, D.O.C.; Fortes-Dias, C.L.; Gomes, D.A.; de Lima, M.E. Crotoxin from Crotalus durissus terrificus snake venom induces the release of glutamate from cerebrocortical synaptosomes via N and P/Q calcium channels. Toxicon 2014, 85, 5–16. [Google Scholar] [CrossRef]
- Nogueira-Neto, F.D.S.; Amorim, R.L.; Brigatte, P.; Picolo, G.; Ferreira, W.A.; Gutierrez, V.P.; Conceição, I.M.; Della-Casa, M.S.; Takahira, R.K.; Nicoletti, J.L.M.; et al. The analgesic effect of crotoxin on neuropathic pain is mediated by central muscarinic receptors and 5-lipoxygenase-derived mediators. Pharmacol. Biochem. Behav. 2008, 91, 252–260. [Google Scholar] [CrossRef]
- de Andrade, C.M.; Rey, F.M.; Bianchini, F.J.; Sampaio, S.V.; Torqueti, M.R. Crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, as a potential tool against thrombosis development. Int. J. Biol. Macromol. 2019, 134, 653–659. [Google Scholar] [CrossRef]
- Sartim, M.A.; Menaldo, D.L.; Sampaio, S.V. Immunotherapeutic potential of Crotoxin: Anti-inflammatory and immunosuppressive properties. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, A.P.; Favoretto, B.C.; Clissa, P.B.; Sampaio, S.C.; Faquim-Mauro, E.L. Crotoxin Isolated from Crotalus durissus terrificus Venom Modulates the Functional Activity of Dendritic Cells via Formyl Peptide Receptors. J. Immunol. Res. 2018, 2018, 7873257. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.P.; Clissa, P.B.; Soto, D.R.; Câmara, N.O.; Faquim-Mauro, E.L. The modulatory effect of crotoxin and its phospholipase A2 subunit from Crotalus durissus terrificus venom on dendritic cells interferes with the generation of effector CD4+ T lymphocytes. Immunol. Lett. 2021, 240, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.S.; Neves, C.L.; Zambelli, V.O.; Lopes, F.S.; Sampaio, S.C.; Cirillo, M.C. Crotoxin, a rattlesnake toxin, down-modulates functions of bone marrow neutrophils and impairs the Syk-GTPase pathway. Toxicon 2017, 136, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.S.; Cataneo, S.C.; Iritus, A.C.C.; Sampaio, S.C.; Della-Casa, M.S.; Cirillo, M.C. Crotoxin, a rattlesnake toxin, induces a long-lasting inhibitory effect on phagocytosis by neutrophils. Exp. Biol. Med. 2012, 237, 1219–1230. [Google Scholar] [CrossRef]
- de Araújo Pimenta, L.; De Almeida, M.E.S.; Bretones, M.L.; Cirillo, M.C.; Curi, R.; Sampaio, S.C. Crotoxin promotes macrophage reprogramming towards an antiangiogenic phenotype. Sci. Rep. 2019, 9, 4281. [Google Scholar] [CrossRef] [Green Version]
- Pulido-Méndez, M.M.; Azuaje, E.; Rodríguez-Acosta, A. A novel activity on thymocytes cells exerted by the rattlesnake (Crotalus durissus cumanensis) venom. Biomedica 2021, 41, 449–457. [Google Scholar] [CrossRef]
- Rangel-Santos, A.; Lima, C.; Lopes-Ferreira, M.; Cardoso, D. Immunosuppresive role of principal toxin (crotoxin) of Crotalus durissus terrificus venom. Toxicon 2004, 44, 609–616. [Google Scholar] [CrossRef]
- Pulido-Méndez, M.M.; Azuaje, E.; Rodríguez-Acosta, A. Immunotoxinological effects triggered by the rattlesnake Crotalus durissus cumanensis, mapanare (Bothrops colombiensis) venoms and its purified fractions on spleen and lymph nodes cells. Immunopharmacol. Immunotoxicol. 2020, 42, 484–492. [Google Scholar] [CrossRef]
- Avalo, Z.; Barrera, M.C.; Agudelo-Delgado, M.; Tobón, G.J.; Cañas, C.A. Biological Effects of Animal Venoms on the Human Immune System. Toxins 2022, 14, 344. [Google Scholar] [CrossRef]
- Favoretto, B.; Ricardi, R.; Silva, S.; Jacysyn, J.; Fernandes, I.; Takehara, H.; Faquim-Mauro, E. Immunomodulatory effects of crotoxin isolated from Crotalus durissus terrificus venom in mice immunised with human serum albumin. Toxicon 2011, 57, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Ownby, C.L.; Colberg, T.R. Comparison of the immunogenicity and antigenic composition of several venoms of snakes in the family Crotalidae. Toxicon 1990, 28, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, R.C.; Randall, H.; Resk, J.; Carlson, R.W. Enzyme-linked immunosorbant assay (ELISA) of size-selected crotalid venom antigens by Wyeth’s polyvalent antivenom. Toxicon 1988, 26, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Kalinski, P. Regulation of Immune Responses by Prostaglandin E2. J. Immunol. 2012, 188, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Landucci, E.C.; Antunes, E.; Donato, J.L.; Faro, R.; Hyslop, S.; Marangoni, S.; Oliveira, B.; Cirino, G.; de Nucci, G. Inhibition of carrageenin-induced rat paw oedema by crotapotin, a polypeptide complexed with phospholipase A2. Br. J. Pharmacol. 1995, 114, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Landucci, E.C.; Toyama, M.; Marangoni, S.; Oliveira, B.; Cirino, G.; Antunes, E.; De Nucci, G. Effect of crotapotin and heparin on the rat paw oedema induced by different secretory phospholipases A2. Toxicon 1999, 38, 199–208. [Google Scholar] [CrossRef]
- Garcia, F.; Toyama, M.H.; Castro, F.R.; Proença, P.L.; Marangoni, S.; Santos, L.M. Crotapotin induced modification of T lymphocyte proliferative response through interference with PGE2 synthesis. Toxicon 2003, 42, 433–437. [Google Scholar] [CrossRef]
- Bretones, M.L.; Sampaio, S.C.; Barbeiro, D.F.; Ariga, S.K.; Soriano, F.G.; de Lima, T.M. Crotoxin modulates inflammation and macrophages’ functions in a murine sepsis model. Toxicon 2022, 216, 132–138. [Google Scholar] [CrossRef]
- Teixeira, N.; Sant’Anna, M.; Giardini, A.; Araujo, L.; Fonseca, L.; Basso, A.; Cury, Y.; Picolo, G. Crotoxin down-modulates pro-inflammatory cells and alleviates pain on the MOG35-55-induced experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Brain Behav. Immun. 2020, 84, 253–268. [Google Scholar] [CrossRef]
- Sant’Anna, M.B.; Giardini, A.C.; Ribeiro, M.A.C.; Lopes, F.S.R.; Teixeira, N.B.; Kimura, L.F.; Bufalo, M.C.; Ribeiro, O.G.; Borrego, A.; Cabrera, W.H.K.; et al. The Crotoxin:SBA-15 Complex Down-Regulates the Incidence and Intensity of Experimental Autoimmune Encephalomyelitis Through Peripheral and Central Actions. Front. Immunol. 2020, 11, 591563. [Google Scholar] [CrossRef]
- Almeida, C.D.S.; Andrade-Oliveira, V.; Câmara, N.O.S.; Jacysyn, J.F.; Faquim-Mauro, E.L. Crotoxin from Crotalus durissus terrificus Is Able to Down-Modulate the Acute Intestinal Inflammation in Mice. PLoS ONE 2015, 10, e0121427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, J.F.; Pereira, C.M.; Bittar, C.; Batista, M.N.; Campos, G.R.F.; Da Silva, S.; Cintra, A.C.O.; Zothner, C.; Harris, M.; Sampaio, S.V.; et al. Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle. PLoS ONE 2017, 12, e0187857. [Google Scholar] [CrossRef] [PubMed]
- Muller, V.D.; Soares, R.O.; dos Santos-Junior, N.N.; Trabuco, A.C.; Cintra, A.C.; Figueiredo, L.T.; Caliri, A.; Sampaio, S.V.; Aquino, V.H. Phospholipase A2 Isolated from the Venom of Crotalus durissus terrificus Inactivates Dengue virus and Other Enveloped Viruses by Disrupting the Viral Envelope. PLoS ONE 2014, 9, e112351. [Google Scholar] [CrossRef] [Green Version]
- Muller, V.D.M.; Russo, R.R.; Cintra, A.C.O.; Sartim, M.A.; Alves-Paiva, R.D.M.; Figueiredo, L.T.M.; Sampaio, S.V.; Aquino, V.H. Crotoxin and phospholipases A2 from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses. Toxicon 2012, 59, 507–515. [Google Scholar] [CrossRef]
- Santos, I.A.; Shimizu, J.F.; de Oliveira, D.M.; Martins, D.O.S.; Cardoso-Sousa, L.; Cintra, A.C.O.; Aquino, V.H.; Sampaio, S.V.; Nicolau-Junior, N.; Sabino-Silva, R.; et al. Chikungunya virus entry is strongly inhibited by phospholipase A2 isolated from the venom of Crotalus durissus terrificus. Sci. Rep. 2021, 11, 8717. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, A.E.Z.; Giannotti, K.; Junior, E.L.; Matsubara, M.; Dos Santos, M.C.; Fortes-Dias, C.L.; Teixeira, C. Crotalus durissus ruruimaSnake Venom and a Phospholipase A2Isolated from This Venom Elicit Macrophages to Form Lipid Droplets and Synthesize Inflammatory Lipid Mediators. J. Immunol. Res. 2019, 2019, 2745286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canelli, A.P.; Rodrigues, T.F.D.S.; De Goes, V.F.F.; Caetano, G.F.; Mazzi, M.V. Evaluation of the Effectiveness of Crotoxin as an Antiseptic against Candida spp. Biofilms. Toxins 2020, 12, 532. [Google Scholar] [CrossRef]
- Quintana, J.; Chacón, A.; Vargas, L.; Segura, C.; Gutiérrez, J.; Alarcón, J. Antiplasmodial effect of the venom of Crotalus durissus cumanensis, crotoxin complex and Crotoxin B. Acta Trop. 2012, 124, 126–132. [Google Scholar] [CrossRef]
- Kato, E.E.; Pimenta, L.A.; de Almeida, M.E.S.; Zambelli, V.O.; dos Santos, M.F.; Sampaio, S.C. Crotoxin Inhibits Endothelial Cell Functions in Two- and Three-dimensional Tumor Microenvironment. Front. Pharmacol. 2021, 12, 713332. [Google Scholar] [CrossRef]
- Han, R.; Liang, H.; Qin, Z.H.; Liu, C.Y. Crotoxin induces apoptosis and autophagy in human lung carcinoma cells in vitro via activation of the p38MAPK signaling pathway. Acta Pharmacol. Sin. 2014, 35, 1323–1332. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.; Xie, Y.; Qin, Z.-H.; Wu, J.-C.; Han, R.; He, J.-K. Anti-tumor activity of CrTX in human lung adenocarcinoma cell line A549. Acta Pharmacol. Sin. 2011, 32, 1397–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, C.F.; Amaral, C.; Augusto, T.V.; Correia-Da-Silva, G.; de Andrade, C.M.; Torqueti, M.R.; Teixeira, N. The anti-cancer potential of crotoxin in estrogen receptor-positive breast cancer: Its effects and mechanism of action. Toxicon 2021, 200, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.P.; Silva, V.A.O.; Silvestrini, A.V.P.; de Macedo, L.H.; Caetano, G.F.; Reis, R.M.; Mazzi, M.V. Crotoxin from Crotalus durissus terrificus venom: In vitro cytotoxic activity of a heterodimeric phospholipase A2 on human cancer-derived cell lines. Toxicon 2018, 156, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faure, G.; Bakouh, N.; Lourdel, S.; Odolczyk, N.; Premchandar, A.; Servel, N.; Hatton, A.; Ostrowski, M.K.; Xu, H.; Saul, F.A.; et al. Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis. J. Mol. Biol. 2016, 428, 2898–2915. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.G.; Murakami, M.T.; Cintra, A.C.; Franco, J.J.; Sampaio, S.V.; Arni, R.K. Functional and structural analysis of two fibrinogen-activating enzymes isolated from the venoms of Crotalus durissus terrificus and Crotalus durissus collilineatus. Acta Biochim. Biophys. Sin. 2009, 41, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boldrini-França, J.; Rodrigues, R.S.; Santos-Silva, L.K.; De Souza, D.L.N.; Gomes, M.S.R.; Cologna, C.T.; De Pauw, E.; Quinton, L.; Henrique-Silva, F.; Rodrigues, V.D.M.; et al. Expression of a new serine protease from Crotalus durissus collilineatus venom in Pichia pastoris and functional comparison with the native enzyme. Appl. Microbiol. Biotechnol. 2015, 99, 9971–9986. [Google Scholar] [CrossRef]
- Ferreira, R.S., Jr.; De Barros, L.C.; Abbade, L.P.F.; Barraviera, S.R.C.S.; Silvares, M.R.C.; De Pontes, L.G.; Dos Santos, L.D.; Barraviera, B. Heterologous fibrin sealant derived from snake venom: From bench to bedside––An overview. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 21. [Google Scholar] [CrossRef] [Green Version]
- Raw, I.; Rocha, M.C.; I Esteves, M.; Kamiguti, A.S. Isolation and characterization of a thrombin-like enzyme from the venom of Crotalus durissus terrificus. Braz. J. Med. Biol. Res. 1986, 19, 333–338. [Google Scholar]
- Barros, L.C.; Ferreira, R.S., Jr.; Barraviera, S.R.C.S.; Stolf, H.O.; Thomazini-Santos, I.A.; Mendes-Giannini, M.J.S.; Toscano, E.; Barraviera, B. A New Fibrin Sealant From Crotalus durissus terrificus Venom: Applications in Medicine. J. Toxicol. Environ. Health B Crit. Rev. 2009, 12, 553–571. [Google Scholar] [CrossRef]
- Frauz, K.; Teodoro, L.F.R.; Carneiro, G.D.; da Veiga, F.C.; Ferrucci, D.L.; Bombeiro, A.L.; Simões, P.W.; Alvares, L.E.; de Oliveira, A.L.R.; Vicente, C.P.; et al. Transected Tendon Treated with a New Fibrin Sealant Alone or Associated with Adipose-Derived Stem Cells. Cells 2019, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Barros, C.N.D.U.; Yamada, A.L.; Junior, R.S.F.U.; Barraviera, B.; Hussni, C.; Souza, J.B.D.U.; Watanabe, M.J.U.; Rodrigues, C.A.U.; Alves, A.L.G.U. A new heterologous fibrin sealant as a scaffold to cartilage repair—Experimental study and preliminary results. Exp. Biol. Med. 2015, 241, 1410–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Castro, M.V.; Barbizan, R.; Ferreira, R.S.; Barraviera, B.; de Oliveira, A.L.R. Direct Spinal Ventral Root Repair following Avulsion: Effectiveness of a New Heterologous Fibrin Sealant on Motoneuron Survival and Regeneration. Neural Plast. 2016, 2016, 2932784. [Google Scholar] [CrossRef] [Green Version]
- O Gasparotto, V.P.; Landim-Alvarenga, F.C.; Oliveira, A.L.R.; Simões, G.F.; Lima-Neto, J.F.; Barraviera, B.; Ferreira, R. A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells. Stem Cell Res. Ther. 2014, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- Da-Silva-Freitas, D.; Boldrini-França, J.; Arantes, E. PEGylation: A successful approach to improve the biopharmaceutical potential of snake venom thrombin-like serine protease. Protein Pept. Lett. 2015, 22, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Boldrini-França, J.; Pinheiro-Junior, E.L.; Peigneur, S.; Pucca, M.B.; Cerni, F.A.; Borges, R.J.; Costa, T.R.; Carone, S.E.I.; Fontes, M.R.D.M.; Sampaio, S.V.; et al. Beyond hemostasis: A snake venom serine protease with potassium channel blocking and potential antitumor activities. Sci. Rep. 2020, 10, 4476. [Google Scholar] [CrossRef] [Green Version]
- Alexander, G.; Grothusen, J.; Zepeda, H.; Schwartzman, R.J. Gyroxin, a toxin from the venom of Crotalus durissus terrificus, is a thrombin-like enzyme. Toxicon 1988, 26, 953–960. [Google Scholar] [CrossRef]
- Ferrari, C.; Ribeiro, R.; Lima, A.; Soares, A.; Cavalcante, W.; Vieira, L. Gyroxin, a toxin from Crotalus durissus terrificus snake venom, induces a calcium dependent increase in glutamate release in mice brain cortical synaptosomes. Neuropeptides 2020, 83, 102081. [Google Scholar] [CrossRef]
- da Silva, J.A.; Oliveira, K.; Camillo, M. Gyroxin increases blood-brain barrier permeability to Evans blue dye in mice. Toxicon 2011, 57, 162–167. [Google Scholar] [CrossRef]
- Sousa, I.D.; Barbosa, A.R.; Salvador, G.H.; Frihling, B.E.; Santa-Rita, P.H.; Soares, A.M.; Pessôa, H.L.; Marchi-Salvador, D.P. Secondary hemostasis studies of crude venom and isolated proteins from the snake Crotalus durissus terrificus. Int. J. Biol. Macromol. 2019, 131, 127–133. [Google Scholar] [CrossRef]
- Costa, C.R.C.; Belchor, M.N.; Rodrigues, C.F.B.; Toyama, D.D.O.; De Oliveira, M.A.; Novaes, D.P.; Toyama, M.H. Edema Induced by a Crotalus durissus terrificus Venom Serine Protease (Cdtsp 2) Involves the PAR Pathway and PKC and PLC Activation. Int. J. Mol. Sci. 2018, 19, 2405. [Google Scholar] [CrossRef] [Green Version]
- Zychar, B.C.; Dale, C.S.; Demarchi, D.S.; Gonçalves, L.R.C. Contribution of metalloproteases, serine proteases and phospholipases A2 to the inflammatory reaction induced by Bothrops jararaca crude venom in mice. Toxicon 2010, 55, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Zela, S.; Gava, L.; Michelan-Duarte, S.; Cintra, A.; Arni, R. Crystal structure of the platelet activator convulxin, a disulfide-linked α4β4 cyclic tetramer from the venom of Crotalus durissus terrificus. Biochem. Biophys. Res. Commun. 2003, 310, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Batuwangala, T.; LeDuc, M.; Gibbins, J.; Bon, C.; Jones, E.Y. Structure of the snake-venom toxin convulxin. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003, 60, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Francischetti, I.M.; Saliou, B.; Leduc, M.; Carlini, C.R.; Hatmi, M.; Randon, J.; Faili, A.; Bon, C. COnvulxin, a potent platelet-aggregating protein from Crotalus durissus terrificus venom, specifically binds to platelets. Toxicon 1997, 35, 1217–1228. [Google Scholar] [CrossRef]
- Prado-Franceschi, J.; Brazil, O.V. Convulxin, a new toxin from the venom of the South American rattlesnake Crotalus durissus terrificus. Toxicon 1981, 19, 875–887. [Google Scholar] [CrossRef]
- Rego, C.M.A.; Francisco, A.F.; Boeno, C.N.; Paloschi, M.V.; Lopes, J.A.; Silva, M.D.S.; Santana, H.M.; Serrath, S.N.; Rodrigues, J.E.; Lemos, C.T.L.; et al. Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci. Rep. 2022, 12, 4706. [Google Scholar] [CrossRef]
- Ramos, O.; Selistre-De-Araujo, H. Snake venom metalloproteases—Structure and function of catalytic and disintegrin domains. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 142, 328–346. [Google Scholar] [CrossRef]
- Hite, L.; Jia, L.; Bjarnason, J.; Fox, J. cDNA Sequences for Four Snake Venom Metalloproteinases: Structure, Classification, and Their Relationship to Mammalian Reproductive Proteins. Arch. Biochem. Biophys. 1994, 308, 182–191. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Rucavado, A.; Escalante, T.; Díaz, C. Hemorrhage induced by snake venom metalloproteinases: Biochemical and biophysical mechanisms involved in microvessel damage. Toxicon 2005, 45, 997–1011. [Google Scholar] [CrossRef]
- Herrera, C.; Voisin, M.B.; Escalante, T.; Rucavado, A.; Nourshargh, S.; Gutiérrez, J.M. Effects of PI and PIII Snake Venom Haemorrhagic Metalloproteinases on the Microvasculature: A Confocal Microscopy Study on the Mouse Cremaster Muscle. PLoS ONE 2016, 11, e0168643. [Google Scholar] [CrossRef] [Green Version]
- Butera, D.; Tanjoni, I. Importance of Snake Venom Metalloproteinases in Cell Biology: Effects on Platelets, Inflammatory and Endothelial Cells. Curr. Pharm. Des. 2007, 13, 2893–2905. [Google Scholar] [CrossRef]
- Calvete, J.J. The continuing saga of snake venom disintegrins. Toxicon 2013, 62, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Gould, R.J.; Polokoff, M.A.; Friedman, P.A.; Huang, T.-F.; Holt, J.C.; Cook, J.J.; Niewiarowski, S. Disintegrins: A Family of Integrin Inhibitory Proteins from Viper Venoms. Proc. Soc. Exp. Biol. Med. 1990, 195, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Kini, R.; Evans, H.J. Structural domains in venom proteins: Evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon 1992, 30, 265–293. [Google Scholar] [CrossRef] [PubMed]
- Cañas, C.A.; Castro-Herrera, F.; Castaño-Valencia, S. Clinical syndromes associated with Viperidae family snake envenomation in southwestern Colombia. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 51–56. [Google Scholar] [CrossRef]
- Staniszewska, I.; Walsh, E.M.; Rothman, V.L.; Gaathon, A.; Tuszynski, G.P.; Calvete, J.J.; Lazarovici, P.; Marcinkiewicz, C. Effect of VP12 and viperistatin on inhibition of collagen-receptor-dependent melanoma metastasis. Cancer Biol. Ther. 2009, 8, 1507–1516. [Google Scholar] [CrossRef] [Green Version]
- Toyama, M.H.; Marangoni, S.; Novello, J.C.; Leite, G.B.; Prado-Franceschi, J.; da Cruz-Höfling, M.A.; Rodrigues-Simioni, L. Biophysical, histopathological and pharmacological characterization of crotamine isoforms F22 and F32. Toxicon 2003, 41, 493–500. [Google Scholar] [CrossRef]
- Ponce-Soto, L.A.; Martins-De-Souza, D.; Marangoni, S. Structural and pharmacological characterization of the crotamine isoforms III-4 (MYX4_CROCu) and III-7 (MYX7_CROCu) isolated from the Crotalus durissus cumanensis venom. Toxicon 2010, 55, 1443–1452. [Google Scholar] [CrossRef]
- Oguiura, N.; Camargo, M.; da Silva, A.; Horton, D. Quantification of crotamine, a small basic myotoxin, in South American rattlesnake (Crotalus durissus terrificus) venom by enzyme-linked immunosorbent assay with parallel-lines analysis. Toxicon 2000, 38, 443–448. [Google Scholar] [CrossRef]
- Laure, C.J. Die Primärstruktur des Crotamins [The primary structure of crotamine (author’s transl)]. Hoppe Seylers Z. Physiol. Chem. 1975, 356, 213–215. [Google Scholar]
- Beltran, J.R.; Mascarenhas, Y.P.; Craievich, A.F.; Laure, C.J. SAXS study of the snake toxin alpha-crotamine. Eur. Biophys. J. 1990, 17, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Fadel, V.; Bettendorff, P.; Herrmann, T.; Jr, W.F.D.A.; Oliveira, E.B.; Yamane, T.; Wüthrich, K. Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus. Toxicon 2005, 46, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Coronado, M.A.; Georgieva, D.; Buck, F.; Gabdoulkhakov, A.H.; Ullah, A.; Spencer, P.J.; Arni, R.K.; Betzel, C. Purification, crystallization and preliminary X-ray diffraction analysis of crotamine, a myotoxic polypeptide from the Brazilian snake Crotalus durissus terrificus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 1052–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, D.L.; Tu, A.T. Chemical and functional homology of myotoxin a from prairie rattlesnake venom and crotamine from south american rattlesnake venom. Biochim. Biophys. Acta 1978, 532, 147–154. [Google Scholar] [CrossRef]
- Oguiura, N.; Boni-Mitake, M.; Rádis-Baptista, G. New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon 2005, 46, 363–370. [Google Scholar] [CrossRef]
- Chang, C.C.; Tseng, K.H. Effect of crotamine, a toxin of South American rattlesnake venom, on the sodium channel of murine skeletal muscle. Br. J. Pharmacol. 1978, 63, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Radis-Baptista, G. Crotamine, a Small Basic Polypeptide Myotoxin from Rattlesnake Venom with Cell-Penetrating Properties. Curr. Pharm. Des. 2011, 17, 4351–4361. [Google Scholar] [CrossRef]
- Brazil, O.V.; Fontana, M.D. Toxins as tools in the study of sodium channel distribution in the muscle fibre membrane. Toxicon 1993, 31, 1085–1098. [Google Scholar] [CrossRef]
- da Cunha, D.B.; Silvestrini, A.; da Silva, A.C.G.; Estevam, D.M.D.P.; Pollettini, F.L.; de Oliveira Navarro, J.; Alves, A.A.; Beretta, A.L.R.Z.; Bizzacchi, J.M.A.; Pereira, L.C.; et al. Mechanistic insights into functional characteristics of native crotamine. Toxicon 2018, 146, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, J.M.; Polson, A. The electrophoretic analysis of snake venoms. Arch. Biochem. 1947, 13, 253–259. [Google Scholar]
- Kerkis, A.; Kerkis, I.; Rádis-Baptista, G.; Oliveira, E.B.; Vianna-Morgante, A.M.; Pereira, L.V.; Yamane, T. Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J. 2004, 18, 1407–1409. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-C.; Hayashi, M.A.F.; Oliveira, E.B.; Karpel, R.L. DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier. PLoS ONE 2012, 7, e48913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieber, M.; Bosch, B.; Hanke, W.; de Lima, V.M.F. Membrane-modifying properties of crotamine, a small peptide-toxin from Crotalus durissus terifficus venom. Biochim. Biophys. Acta 2014, 1840, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Eberle, R.J.; Gering, I.; Tusche, M.; Ostermann, P.N.; Müller, L.; Adams, O.; Schaal, H.; Olivier, D.S.; Amaral, M.S.; Arni, R.K.; et al. Design of D-Amino Acids SARS-CoV-2 Main Protease Inhibitors Using the Cationic Peptide from Rattlesnake Venom as a Scaffold. Pharmaceuticals 2022, 15, 540. [Google Scholar] [CrossRef] [PubMed]
- Oguiura, N.; Boni-Mitake, M.; Affonso, R.; Zhang, G. In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus. J. Antibiot. 2011, 64, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Dal Mas, C.; Rossato, L.; Shimizu, T.; Oliveira, E.B.; da Silva Junior, P.I.; Meis, J.F.; Colombo, A.L.; Hayashi, M.A.F. Effects of the Natural Peptide Crotamine from a South American Rattlesnake on Candida auris, an Emergent Multidrug Antifungal Resistant Human Pathogen. Biomolecules 2019, 9, 205. [Google Scholar] [CrossRef] [Green Version]
- Yamane, E.S.; Bizerra, F.C.; Oliveira, E.B.; Moreira, J.T.; Rajabi, M.; Nunes, G.L.; de Souza, A.O.; da Silva, I.D.; Yamane, T.; Karpel, R.L.; et al. Unraveling the antifungal activity of a South American rattlesnake toxin crotamine. Biochimie 2013, 95, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Macedo, S.R.A.; de Barros, N.B.; Ferreira, A.S.; Moreira-Dill, L.S.; Calderon, L.A.; Soares, A.M.; Nicolete, R. Biodegradable Microparticles Containing Crotamine Isolated from Crotalus durissus terrificus Display Antileishmanial Activity in vitro. Pharmacology 2015, 95, 78–86. [Google Scholar] [CrossRef]
- Katz, S.; Barbiéri, C.L.; Soler, F.P.M.; Soares, A.M.; Chavantes, M.C.; Zamuner, S.R. Effect of Isolated Proteins from Crotalus Durissus Terrificus Venom on Leishmania (Leishmania) Amazonensis-Infected Macrophages. Protein Pept. Lett. 2020, 27, 718–724. [Google Scholar] [CrossRef]
- Valentim-Silva, J.R.; de Barros, N.B.; Macedo, S.R.; Ferreira, A.d.S.; Silva, R.S.; Dill, L.S.; Zanchi, F.B.; Nascimento, J.R.D.; Nascimento, F.R.D.; Lourenzoni, M.R.; et al. Antileishmanial activity, cytotoxicity and cellular response of amphotericin B in combination with crotamine derived from Crotalus durissus terrificus venom using in vitro and in silico approaches. Toxicon 2022, 217, 96–106. [Google Scholar] [CrossRef]
- Mas, C.D.; Moreira, J.; Pinto, S.; Monte, G.; Nering, M.; Oliveira, E.; Gazarini, M.; Mori, M.; Hayashi, M. Anthelmintic effects of a cationic toxin from a South American rattlesnake venom. Toxicon 2016, 116, 49–55. [Google Scholar] [CrossRef]
- Maluf, S.E.C.; Mas, C.D.; Oliveira, E.; Melo, P.; Carmona, A.; Gazarini, M.; Hayashi, M. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides 2016, 78, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Campeiro, J.D.; Marinovic, M.P.; Carapeto, F.C.; Mas, C.D.; Monte, G.G.; Porta, L.C.; Nering, M.B.; Oliveira, E.B.; Hayashi, M.A.F. Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile. Amino Acids 2017, 50, 267–278. [Google Scholar] [CrossRef] [PubMed]
- More, S.A.; Moreira, L.C.; Magalhães, M.R.; Valadares, M.C.; da Cunha, L.C. Cytotoxic activity in basal and tumoral cell lines of the C0K3N3 protein from the snake venom Crotalus durissus collilineatus, variety crotamine negative. Toxicon 2022, 210, 155–157. [Google Scholar] [CrossRef]
- Hayashi, M.A.F.; Oliveira, E.B.; Kerkis, I.; Karpel, R.L. Crotamine: A Novel Cell-Penetrating Polypeptide Nanocarrier with Potential Anti-Cancer and Biotechnological Applications. Methods Mol. Biol. 2012, 906, 337–352. [Google Scholar] [CrossRef]
- Silvestrini, A.V.P.; de Macedo, L.H.; de Andrade, T.A.M.; Mendes, M.F.; Pigoso, A.A.; Mazzi, M.V. Intradermal Application of Crotamine Induces Inflammatory and Immunological Changes In Vivo. Toxins 2019, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.J.; Kim, Y.K.; Krupa, M.; Nguyen, A.N.; Do, B.H.; Chung, B.; Vu, T.T.T.; Kim, S.C.; Choe, H. Crotamine stimulates phagocytic activity by inducing nitric oxide and TNF-α via p38 and NFκ-B signaling in RAW 264.7 macrophages. BMB Rep. 2016, 49, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Do, B.H.; Lee, J.-S.; Yang, H.C.; Nguyen, A.N.; Krupa, M.; Kim, C.J.; Jang, Y.J.; Choe, H. Antinociceptive and Anti-Inflammatory Effects of Recombinant Crotamine in Mouse Models of Pain. Toxins 2021, 13, 707. [Google Scholar] [CrossRef]
- Moreira, L.A.; Oliveira, L.P.; Magalhães, M.R.; Oliveira, S.A.M.; Oliveira-Neto, J.R.; Carvalho, P.M.G.; Carvalho, A.A.V.; Fajemiroye, J.O.; Cruz, A.C.; Cunha, L.C. Acute toxicity, antinociceptive, and anti-inflammatory activities of the orally administered crotamine in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 1703–1711. [Google Scholar] [CrossRef]
- Du, X.-Y.; Clemetson, K.J. Snake venom l-amino acid oxidases. Toxicon 2002, 40, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Bordon, K.C.F.; Wiezel, G.A.; Cabral, H.; Arantes, E.C. Bordonein-L, a new L-amino acid oxidase from Crotalus durissus terrificus snake venom: Isolation, preliminary characterization and enzyme stability. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 26. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.A.; Stoevab, S.; Abbasia, A.; Alam, J.M.; Kayedb, R.; Faigled, M.; Neumeisterd, B.; Voelterb, W. Isolation, Structural, and Functional Characterization of an Apoptosis-Inducing -Amino Acid Oxidase from Leaf-Nosed Viper (Eristocophis macmahoni) Snake Venom. Arch. Biochem. Biophys. 2000, 384, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, T.L.; Silva, V.A.O.; da Cunha, D.B.; Polettini, F.L.; Thomaz, C.D.; Pianca, A.A.; Zambom, F.L.; Mazzi, D.P.D.S.L.; Reis, R.M.; Mazzi, M.V. Isolation, characterization and screening of the in vitro cytotoxic activity of a novel L-amino acid oxidase (LAAOcdt) from Crotalus durissus terrificus venom on human cancer cell lines. Toxicon 2016, 119, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-Y.; Yu, T.-F.; Lian, E.C.-Y. Purification and characterization of l-amino acid oxidase from king cobra (Ophiophagus hannah) venom and its effects on human platelet aggregation. Toxicon 1994, 32, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Lazo, F.; Vivas-Ruiz, D.E.; Sandoval, G.A.; Rodríguez, E.F.; Kozlova, E.E.; Costal-Oliveira, F.; Chávez-Olórtegui, C.; Severino, R.; Yarlequé, A.; Sanchez, E.F. Biochemical, biological and molecular characterization of an L-Amino acid oxidase (LAAO) purified from Bothrops pictus Peruvian snake venom. Toxicon 2017, 139, 74–86. [Google Scholar] [CrossRef]
- Sakurai, Y.; Shima, M.; Matsumoto, T.; Takatsuka, H.; Nishiya, K.; Kasuda, S.; Fujimura, Y.; Yoshioka, A. Anticoagulant activity of M-LAO, l-amino acid oxidase purified from Agkistrodon halys blomhoffii, through selective inhibition of factor IX. Biochim. Biophys. Acta 2003, 1649, 51–57. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Wang, J.-H.; Lee, W.-H.; Wang, Q.; Liu, H.; Zheng, Y.-T.; Zhang, Y. Molecular characterization of Trimeresurus stejnegeri venom l-amino acid oxidase with potential anti-HIV activity. Biochem. Biophys. Res. Commun. 2003, 309, 598–604. [Google Scholar] [CrossRef]
- Torres, A.F.C.; Dantas, R.T.; Toyama, M.H.; Filho, E.D.; Zara, F.J.; de Queiroz, M.G.R.; Nogueira, N.A.P.; de Oliveira, M.R.; Toyama, D.D.O.; Monteiro, H.S.; et al. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: Phospholipase A2 and l-amino acid oxidase. Toxicon 2010, 55, 795–804. [Google Scholar] [CrossRef]
- Toyama, M.H.; Toyama, D.D.O.; Passero, L.F.; Laurenti, M.D.; Corbett, C.E.; Tomokane, T.Y.; Fonseca, F.V.; Antunes, E.; Joazeiro, P.P.; Beriam, L.O.; et al. Isolation of a new l-amino acid oxidase from Crotalus durissus cascavella venom. Toxicon 2006, 47, 47–57. [Google Scholar] [CrossRef]
- Wiezel, G.; Rustiguel, J.K.; Morgenstern, D.; Zoccal, K.F.; Faccioli, L.H.; Nonato, M.C.; Ueberheide, B.; Arantes, E.C. Insights into the structure, function and stability of bordonein-L, the first L-amino acid oxidase from Crotalus durissus terrificus snake venom. Biochimie 2019, 163, 33–49. [Google Scholar] [CrossRef]
- Vargas, L.J.; Quintana, J.C.; Pereañez, J.A.; Núñez, V.; Sanz, L.; Calvete, J. Cloning and characterization of an antibacterial l-amino acid oxidase from Crotalus durissus cumanensis venom. Toxicon 2013, 64, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, A.; Gonçalves, F.J.M.; Oliveira, H.; Marques, S. Venom of Viperidae: A Perspective of its Antibacterial and Antitumor Potential. Curr. Drug Targets 2022, 23, 126–144. [Google Scholar] [CrossRef] [PubMed]
- E Silva, M.R.; Beraldo, W.T.; Rosenfeld, G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am. J. Physiol. 1949, 156, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, K.K.F.; Vane, J.R. Conversion of Angiotensin I to Angiotensin II. Nature 1967, 216, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Cushman, D.W.; Ondetti, M.A. Design of angiotensin converting enzyme inhibitors. Nat. Med. 1999, 5, 1110–1112. [Google Scholar] [CrossRef]
- Available online: https://www.nobelprize.org/prizes/medicine/1982/vane/facts/ (accessed on 5 December 2022).
- Lopes, D.M.; Junior, N.E.; Costa, P.P.; Martins, P.L.; Santos, C.F.; Carvalho, E.D.; Carvalho, M.D.; Pimenta, D.C.; Cardi, B.A.; Fonteles, M.C.; et al. A new structurally atypical bradykinin-potentiating peptide isolated from Crotalus durissus cascavella venom (South American rattlesnake). Toxicon 2014, 90, 36–44. [Google Scholar] [CrossRef]
- Giorgi, R.; Bernardi, M.; Cury, Y. Analgesic effect evoked by low molecular weight substances extracted from Crotalus durissus terrificus venom. Toxicon 1993, 31, 1257–1265. [Google Scholar] [CrossRef]
- Konno, K.; Picolo, G.; Gutierrez, V.P.; Brigatte, P.; Zambelli, V.O.; Camargo, A.C.; Cury, Y. Crotalphine, a novel potent analgesic peptide from the venom of the South American rattlesnake Crotalus durissus terrificus. Peptides 2008, 29, 1293–1304. [Google Scholar] [CrossRef]
- Gutierrez, V.P.; Konno, K.; Chacur, M.; Sampaio, S.C.; Picolo, G.; Brigatte, P.; Zambelli, V.O.; Cury, Y. Crotalphine induces potent antinociception in neuropathic pain by acting at peripheral opioid receptors. Eur. J. Pharmacol. 2008, 594, 84–92. [Google Scholar] [CrossRef]
- Picolo, G.; Cassola, A.C.; Cury, Y. Activation of peripheral ATP-sensitive K+ channels mediates the antinociceptive effect of Crotalus durissus terrificus snake venom. Eur. J. Pharmacol. 2003, 469, 57–64. [Google Scholar] [CrossRef]
- Machado, F.C.; O Zambelli, V.; O Fernandes, A.C.; Heimann, A.S.; Cury, Y.; Picolo, G. Peripheral interactions between cannabinoid and opioid systems contribute to the antinociceptive effect of crotalphine. Br. J. Pharmacol. 2014, 171, 961–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Freitas, B.G.; Hösch, N.G.; Pereira, L.M.; Barbosa, T.C.; Picolo, G.; Cury, Y.; Zambelli, V.O. PKCζ-Mitogen-Activated Protein Kinase Signaling Mediates Crotalphine-Induced Antinociception. Toxins 2021, 13, 912. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, V.P.; Zambelli, V.O.; Picolo, G.; Chacur, M.; Sampaio, S.C.; Brigatte, P.; Konno, K.; Cury, Y. The peripheral L-arginine–nitric oxide–cyclic GMP pathway and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine on neuropathic pain in rats. Behav. Pharmacol. 2012, 23, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Bressan, E.; Touska, F.; Vetter, I.; Kistner, K.; Kichko, T.I.; Teixeira, N.B.; Picolo, G.; Cury, Y.; Lewis, R.J.; Fischer, M.J.; et al. Crotalphine desensitizes TRPA1 ion channels to alleviate inflammatory hyperalgesia. Pain 2016, 157, 2504–2516. [Google Scholar] [CrossRef]
- da Costa, D.S.M.; Meotti, F.C.; Andrade, E.L.; Leal, P.C.; Motta, E.M.; Calixto, J.B. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain 2010, 148, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Giardini, A.C.; Evangelista, B.G.; Sant’Anna, M.B.; Martins, B.B.; Lancellotti, C.L.P.; Ciena, A.P.; Chacur, M.; Pagano, R.L.; Ribeiro, O.G.; Zambelli, V.O.; et al. Crotalphine Attenuates Pain and Neuroinflammation Induced by Experimental Autoimmune Encephalomyelitis in Mice. Toxins 2021, 13, 827. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Peinado, C.; Dias, S.A.; Domingues, M.M.; Benfield, A.H.; Freire, J.M.; Rádis-Baptista, G.; Gaspar, D.; Castanho, M.A.R.B.; Craik, D.J.; Henriques, S.T.; et al. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15–34), antimicrobial peptides from rattlesnake venom. J. Biol. Chem. 2018, 293, 1536–1549. [Google Scholar] [CrossRef] [Green Version]
- Bandeira, I.C.J.; Bandeira-Lima, D.; Mello, C.P.; Pereira, T.P.; De Menezes, R.R.P.P.B.; Sampaio, T.L.; Falcão, C.B.; Rádis-Baptista, G.; Martins, A.M.C. Antichagasic effect of crotalicidin, a cathelicidin-like vipericidin, found in Crotalus durissus terrificus rattlesnake’s venom gland. Parasitology 2017, 145, 1059–1064. [Google Scholar] [CrossRef]
- Cavalcante, C.S.P.; Aguiar, L.; Fontenelle, R.O.S.; Menezes, R.; Martins, A.M.C.; Falcao, C.; Andreu, D.; Rádis-Baptista, G. Insights into the candidacidal mechanism of Ctn[15–34]—A carboxyl-terminal, crotalicidin-derived peptide related to cathelicidins. J. Med. Microbiol. 2018, 67, 129–138. [Google Scholar] [CrossRef]
- Aguiar, F.; Santos, N.; Cavalcante, C.D.P.; Andreu, D.; Baptista, G.; Gonçalves, S. Antibiofilm Activity on Candida albicans and Mechanism of Action on Biomembrane Models of the Antimicrobial Peptide Ctn[15–34]. Int. J. Mol. Sci. 2020, 21, 8339. [Google Scholar] [CrossRef]
- Pérez-Peinado, C.; Valle, J.; Freire, J.M.; Andreu, D. Tumor Cell Attack by Crotalicidin (Ctn) and Its Fragment Ctn[15–34]: Insights into Their Dual Membranolytic and Intracellular Targeting Mechanism. ACS Chem. Biol. 2020, 15, 2945–2957. [Google Scholar] [CrossRef] [PubMed]
- Falcao, C.B.; Radis-Baptista, G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 2019, 126, 170234. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Júnior, N.G.; Freire, M.S.; Almeida, J.A.; Rezende, T.M.; Franco, O.L. Antimicrobial and proinflammatory effects of two vipericidins. Cytokine 2018, 111, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, J.S.; Martins, A.M.; Nascimento, N.R.; Sousa, C.M.; Alves, R.S.; Toyama, D.O.; Toyama, M.H.; Evangelista, J.J.F.; de Menezes, D.B.; Fonteles, M.C.; et al. Renal and vascular effects of the natriuretic peptide isolated from Crotalus durissus cascavella venom. Toxicon 2008, 52, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Aires, R.S.; Filho, L.F.d.S.; Ferreira, L.F.G.R.; Hernandes, M.Z.; Marcondes, M.F.M.; Carmona, A.K.; da Paixão, A.D.O.; Vieira, L.D. NPCdc, a synthetic natriuretic peptide, is a substrate to neprilysin and enhances blood pressure-lowering induced by enalapril in 5/6 nephrectomized rats. Toxicon 2021, 203, 30–39. [Google Scholar] [CrossRef]
- Girish, K.; Shashidharamurthy, R.; Nagaraju, S.; Gowda, T.; Kemparaju, K. Isolation and characterization of hyaluronidase a “spreading factor” from Indian cobra (Naja naja) venom. Biochimie 2004, 86, 193–202. [Google Scholar] [CrossRef]
- Xu, X.; Wang, X.; Xi, X.; Liu, J.; Huang, J.; Lu, Z. Purification and partial characterization of hyaluronidase from five pace snake (Agkistrodon acutus) venom. Toxicon 1982, 20, 973–981. [Google Scholar] [CrossRef]
- Tu, A.T.; Hendon, R.R. Characterization of lizard venom hyaluronidase and evidence for its action as a spreading factor. Comp. Biochem. Physiol. B 1983, 76, 377–383. [Google Scholar] [CrossRef]
- Bordon, K.C.; Perino, M.G.; Giglio, J.R.; Arantes, E.C. Isolation, enzymatic characterization and antiedematogenic activity of the first reported rattlesnake hyaluronidase from Crotalus durissus terrificus venom. Biochimie 2012, 94, 2740–2748. [Google Scholar] [CrossRef]
- de Oliveira, I.S.; Pucca, M.B.; Wiezel, G.A.; Cardoso, I.A.; Bordon, K.D.C.F.; Sartim, M.A.; Kalogeropoulos, K.; Ahmadi, S.; Baiwir, D.; Nonato, M.C.; et al. Unraveling the structure and function of CdcPDE: A novel phosphodiesterase from Crotalus durissus collilineatus snake venom. Int. J. Biol. Macromol. 2021, 178, 180–192. [Google Scholar] [CrossRef]
- Souza-Imberg, A.; Carneiro, S.M.; Giannotti, K.C.; Sant’Anna, S.S.; Yamanouye, N. Origin and characterization of small membranous vesicles present in the venom of Crotalus durissus terrificus. Toxicon 2017, 136, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.G.; Pucca, M.B.; Cardoso, I.A.; Bordon, K.D.C.F.; Wiezel, G.A.; Amorim, F.G.; Rodrigues, R.S.; Rodrigues, V.D.M.; Brites, V.L.D.C.; Rosa, J.C.; et al. Insights into structure and function of CdcVEGFs, the vascular endothelial growth factor from Crotalus durissus collilineatus snake venom. Biochimie 2022, 200, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Perales, J.; Villela, C.; Domont, G.B.; Choumet, V.; Saliou, B.; Moussatche, H.; Bon, C.; Faure, G. Molecular Structure and Mechanism of Action of the Crotoxin Inhibitor from Crotalus durissus terrificus Serum. Eur. J. Biochem. 1995, 227, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.C.; de Melo, L.A.; Dias, G.L.F.; Fortes-Dias, C.L. Endogenous phospholipase A2 inhibitors in snakes: A brief overview. J. Venom. Anim. Toxins Incl. Trop. Dis. 2016, 22, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lizano, S.; Domont, G.; Perales, J. Natural phospholipase A2 myotoxin inhibitor proteins from snakes, mammals and plants. Toxicon 2003, 42, 963–977. [Google Scholar] [CrossRef] [PubMed]
- Fortes-Dias, C.L.; Fernandes, C.A.H.; Ortolani, P.L.; Campos, P.C.; de Melo, L.A.; Felicori, L.F.; Fontes, M.R.M. Identification, description and structural analysis of beta phospholipase A2 inhibitors (sbβPLIs) from Latin American pit vipers indicate a binding site region for basic snake venom phospholipases A2. Toxicon X 2019, 2, 100009. [Google Scholar] [CrossRef]
- Ohkura, N.; Okuhara, H.; Inoue, S.; Ikeda, K.; Hayashi, K. Purification and characterization of three distinct types of phospholipase A2 inhibitors from the blood plasma of the Chinese mamushi, Agkistrodon blomhoffii siniticus. Biochem. J. 1997, 325 Pt 2, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Fortes-Dias, C.; Fonseca, B.; Kochva, E.; Diniz, C. Purification and properties of an antivenom factor from the plasma of the South American rattlesnake (Crotalus durissus terrificus). Toxicon 1991, 29, 997–1008. [Google Scholar] [CrossRef]
- Fortes-Dias, C.L.; Ortolani, P.L.; Fernandes, C.A.H.; Lobo, K.R.; de Melo, L.A.; Borges, M.H.; Pazin, W.M.; Neto, M.D.O.; Fernandez, R.M.; Fontes, M.R.M. Insights on the structure of native CNF, an endogenous phospholipase A2 inhibitor from Crotalus durissus terrificus, the South American rattlesnake. Biochim. Biophys. Acta 2014, 1844, 1569–1579. [Google Scholar] [CrossRef]
- Pinto, K.R.; Souza, N.M.V.; Maciel, F.V.; de Abreu, T.A.G.; Reis, H.F.F.; Ortolani, P.L.; Fortes-Dias, C.L.; Cavalcante, W.L.G. Crotalus Neutralizing Factor (CNF) inhibits the toxic effects of Crotoxin at mouse neuromuscular preparations. Toxicon 2020, 191, 48–53. [Google Scholar] [CrossRef]
- Xavier, C.V.; Setúbal, S.D.S.; Lacouth-Silva, F.; Pontes, A.S.; Nery, N.M.; de Castro, O.B.; Fernandes, C.F.; Soares, A.M.; Fortes-Dias, C.L.; Zuliani, J.P. Phospholipase A2 Inhibitor from Crotalus durissus terrificus rattlesnake: Effects on human peripheral blood mononuclear cells and human neutrophils cells. Int. J. Biol. Macromol. 2017, 105, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Gimenes, S.N.C.; Aglas, L.; Wildner, S.; Huber, S.; Silveira, A.C.P.; Lopes, D.S.; Rodrigues, R.S.; Goulart, L.R.; Briza, P.; Ferreira, F.; et al. Biochemical and functional characterization of a new recombinant phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum. Int. J. Biol. Macromol. 2020, 164, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Gimenes, S.N.C.; Lopes, D.S.; Alves, P.T.; Azevedo, F.V.P.V.; Vecchi, L.; Goulart, L.R.; Rodrigues, T.C.S.; Santos, A.L.Q.; Brites, V.L.D.C.; Teixeira, T.L.; et al. Antitumoral effects of γCdcPLI, a PLA2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 breast cancer cell. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rezende, N.A.; Torres, F.M.; Dias, M.B.; Campolina, D.; Chavez-Olortegui, C.; Amaral, C.F.S. South American rattlesnake bite (Crotalus durissus sp.) without envenoming: Insights on diagnosis and treatment. Toxicon 1998, 36, 2029–2032. [Google Scholar] [CrossRef] [PubMed]
- Jorge, M.T.; Ribeiro, L.A.; de Sérgio, N.A. A Comparison of Clinical and Epidemiological Aspects of Bites by Small and Large South American Rattlesnakes. Trop. Doct. 1997, 27, 106–107. [Google Scholar] [CrossRef]
- Instituto Nacional de Salud. Suero Antiofídico Polivalente INS, Colombia, Medication Package Insert. 2017; pp. 1–2. Available online: https://www.ins.gov.co/lineas-de-accion/Produccion/SiteAssets/Paginas/suero-antiofidico-polivalente/Inserto%20Suero%20Antiof%C3%ADdico%20Polivalente.pdf (accessed on 5 December 2022).
- Pardal, P.P.D.O.; Silva, C.L.Q.D.; Hoshino, S.D.S.N.; Pinheiro, M.D.F.R. Acidente por cascavel (Crotalus sp.) em Ponta de Pedras, Ilha do Marajó, Pará—Relato de caso. Rev. Para. Med. 2007, 21, 69–73. Available online: http://scielo.iec.gov.br/scielo.php?script=sci_arttext&pid=S0101-59072007000300012&lng=en (accessed on 23 October 2011).
- Bon, C.; Bouchier, C.; Choumet, V.; Faure, G.; Jiang, M.S.; Lambezat, M.P.; Radvanyi, F.; Saliou, B. Crotoxin, half-century of investigations on a phospholipase A2 neurotoxin. Acta Physiol Pharmacol Latinoam. 1989, 39, 439–448. [Google Scholar]
- Ministério da Saúde. Manual de diagnóstico e tratamento de acidentes por animais peçonhentos; Ministério da Saúde, Fundação Nacional de Saúde: Brasília, Brazil, 2001.
- Jorge, M.T.; Ribeiro, L.A. Epidemiologia e quadro clínico do acidente por cascavel sul-americana (Crotalus durissus). Rev. do Inst. Med. Trop. SÃ\poundso Paulo 1992, 34, 347–354. [Google Scholar] [CrossRef]
- Bucaretchi, F.; De Capitani, E.M.; Hyslop, S.; Mello, S.M.; Fernandes, C.B.; Bergo, F.; Nascimento, F.B. Compartment syndrome after South American rattlesnake (Crotalus durissus terrificus) envenomation. Clin. Toxicol. 2014, 52, 639–641. [Google Scholar] [CrossRef]
- Pinho, F.M.; Zanetta, D.M.; Burdmann, E.A. Acute renal failure after Crotalus durissus snakebite: A prospective survey on 100 patients. Kidney Int. 2005, 67, 659–667. [Google Scholar] [CrossRef] [Green Version]
- Pinho, F.M.O.; Yu, L.; Burdmann, E.A. Snakebite-Induced Acute Kidney Injury in Latin America. Semin. Nephrol. 2008, 28, 354–362. [Google Scholar] [CrossRef]
- Azevedo-Marques, M.; Hering, S.; Cupo, P. Animais Peçonhentos no Brasil, 2nd ed.; Cardoso, J.L.C., Haddad, V., Jr., França, F.S., Malaque, C.M.S., Wen, F.H., Eds.; Sarvier: São Paulo, Brazil, 2009; pp. 108–115. [Google Scholar]
- Azevedo-Marques, M.; Hering, S.; Cupo, P. Evidence that Crotalus durissus terrificus (South American rattlesnake) envenomation in humans causes myolysis rather than hemolysis. Toxicon 1987, 25, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Bucaretchi, F.; De Capitani, E.M.; Branco, M.M.; Fernandes, L.C.R.; Hyslop, S. Coagulopathy as the main systemic manifestation after envenoming by a juvenile South American rattlesnake (Crotalus durissus terrificus): Case report. Clin. Toxicol. 2013, 51, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Azevedo-Marques, M.; Cupo, P.; Coimbra, T.; Hering, S.; Rossi, M.; Laure, C. Myonecrosis, myoglobinuria and acute renal failure induced by south american rattlesnake (Crotalus durissus terrificus) envenomation in Brazil. Toxicon 1985, 23, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Pinho, F.M.; Pereira, I.D. Ofidismo [Snake bites]. Rev. Assoc. Med. Bras. 1992, 47, 24–29. (In French) [Google Scholar] [CrossRef]
- Evangelista, J.S.A.M.; Evangelista, J.J.F.; Evangelista, I.L.; Nojosa, D.; Nascimento, N.; Souza, M.H.; Alves, R.S.; Martins, A.M.C.; Moraes, M.E.A.; Monteiro, H.S.A. Hypotensive Effects of the Crotalus Durissus Cascavella Venom: Involvement of NO. Nat. Prod. Commun. 2011, 6, 871–874. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.; Jesus, R.; Simões, L.; Vasconcelos, W.; Medeiros, I.; Veras, R.; Casais-E-Silva, L.; Silva, D. NO production and potassium channels activation induced by Crotalus durissus cascavella underlie mesenteric artery relaxation. Toxicon 2017, 133, 10–17. [Google Scholar] [CrossRef]
- Albuquerque, P.L.M.M.; Jacinto, C.N.; Silva Junior, G.B.; Lima, J.B.; Veras, M.d.S.B.; Daher, E.F.; Daher, E.F. Acute kidney injury caused by Crotalus and Bothrops snake venom: A review of epidemiology, clinical manifestations and treatment. Rev. Inst. Med. Trop. Sao Paulo 2013, 55, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, H.; da Silva, I.; Martins, A.; Fonteles, M. Actions of Crotalus durissus terrificus venom and crotoxin on the isolated rat kidney. Braz. J. Med. Biol. Res. 2001, 34, 1347–1352. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, S.C.; Villarroel, J.S.; Barone, J.M.; Zambotti-Villela, L.; Silveira, P.F. Aminopeptidase activities, oxidative stress and renal function in Crotalus durissus terrificus envenomation in mice. Toxicon 2008, 52, 445–454. [Google Scholar] [CrossRef]
- Martins, A.M.; Toyama, M.H.; Havt, A.; Novello, J.C.; Marangoni, S.; Fonteles, M.C.; Monteiro, H.S. Determination of Crotalus durissus cascavella venom components that induce renal toxicity in isolated rat kidneys. Toxicon 2002, 40, 1165–1171. [Google Scholar] [CrossRef]
- Cupo, P.; de Azevedo-Marques, M.M.; Hering, S.E. Absence of myocardial involvement in children victims of Crotalus durissus terrificus envenoming. Toxicon 2003, 42, 741–745. [Google Scholar] [CrossRef] [PubMed]
- de Paola, F.; Rossi, M.A. Myocardial damage induced by tropical rattlesnake (Crotalus durissus terrificus) venom in rats. Cardiovasc. Pathol. 1993, 2, 77–81. [Google Scholar] [CrossRef] [PubMed]
- de Siqueira, J.E.; Higuchi Mde, L.; Nabut, N.; Lose, A.; Souza, J.K.; Nakashima, M. Lesão miocárdica em acidente ofídico pela espécie Crotalus durissus terrificus (cascavel). Relato de caso [Myocardial lesions after snake bites by the Crotalus durissus terrificus species (rattlesnake). A case report]. Arq. Bras. Cardiol. 1990, 54, 323–325. [Google Scholar]
- Cupo, P.; Azevedo-Marques, M.; Hering, S. Acute myocardial infarction-like enzyme profile in human victims of Crotalus durissus terrificus envenoming. Trans. R. Soc. Trop. Med. Hyg. 1990, 84, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Santos, W.; Montoni, F.; Eichler, R.; Arcos, S.S.S.; Andreotti, D.Z.; Kisaki, C.Y.; Evangelista, K.B.; Calacina, H.M.; Lima, I.F.; Soares, M.A.M.; et al. Proteomic analysis reveals rattlesnake venom modulation of proteins associated with cardiac tissue damage in mouse hearts. J. Proteom. 2022, 258, 104530. [Google Scholar] [CrossRef] [PubMed]
- Simões, L.O.; Alves, Q.L.; Camargo, S.B.; Araújo, F.A.; Hora, V.R.; Jesus, R.L.; Barreto, B.C.; Macambira, S.G.; Soares, M.B.; Meira, C.S.; et al. Cardiac effect induced by Crotalus durissus cascavella venom: Morphofunctional evidence and mechanism of action. Toxicol. Lett. 2020, 337, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Neto, J.D.O.; Silveira, J.A.D.M.; Serra, D.S.; Viana, D.D.A.; Borges-Nojosa, D.M.; Sampaio, C.M.S.; Monteiro, H.S.A.; Cavalcante, F.S.; Evangelista, J.S.A.M. Pulmonary mechanic and lung histology induced by Crotalus durissus cascavella snake venom. Toxicon 2017, 137, 144–149. [Google Scholar] [CrossRef]
- Azevedo, E.; Figueiredo, R.G.; Pinto, R.V.; Ramos, T.; Sampaio, G.P.; Santos, R.P.B.; Guerreiro, M.L.D.S.; Biondi, I.; Trindade, S.C. Evaluation of systemic inflammatory response and lung injury induced by Crotalus durissus cascavella venom. PLoS ONE 2020, 15, e0224584. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.G.; Soley, B.D.S.; Gris, V.; Pires, A.D.R.A.; Caderia, S.M.S.C.; Eler, G.J.; Hermoso, A.P.M.; Bracht, A.; Dalsenter, P.R.; Acco, A. Effects of the Crotalus durissus terrificus snake venom on hepatic metabolism and oxidative stress. J. Biochem. Mol. Toxicol. 2011, 25, 195–203. [Google Scholar] [CrossRef]
- Barraviera, B.; Coelho, K.Y.; Curi, P.R.; Meira, D.A. Liver dysfunction in patients bitten by Crotalus durissus terrificus (Laurenti, 1768) snakes in Botucatu (State of São Paulo, Brazil). Rev. Inst. Med. Trop. Sao Paulo 1995, 37, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, F.H.; Bustos-Obregon, E.; Matias, R.; Dourado, D.M. Crotalus durissus sp. rattlesnake venom induces toxic injury in mouse sperm. Toxicon 2018, 153, 17–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministério da Saúde. Secretaria de Vigilância em Saúde; Guia de Vigilância em Saúde: Brasília, Brazil, 2017.
- World Health Organization. Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins; WHO: Geneva, Switzerland, 2010; p. 6. Available online: http://www.who.int/biologicals/expert_committee/Antivenom_WHO_Guidelines_DJW_DEB_mn_cp.pdf (accessed on 5 December 2022).
- Calmette, A. The Treatment of Animals Poisoned with Snake Venom by the Injection of Antivenomous Serum. Br. Med. J. 1896, 2, 399–400. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, I.S.; Pucca, M.B.; Sampaio, S.V.; Arantes, E.C. Antivenomic approach of different Crotalus durissus collilineatus venoms. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.; Young, D. Clinical safety evaluation of F(ab′)2 antivenom (Crotalus durissus—Bothrops asper) administration in dogs. J. Veter.-Emerg. Crit. Care 2011, 21, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; León, G.; Burnouf, T. Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals 2011, 39, 129–142. [Google Scholar] [CrossRef]
- Grandgeorge, M.; Véron, J.; Lutsch, C.; Makula, M.; Riffard, P.; Pépin, S.; Scherrmann, J. Preparation of improved F(ab′)2 antivenoms. An example: New polyvalent anti-European vipers (equine). Toxicon 1996, 34, 148. [Google Scholar] [CrossRef]
- Al-Abdulla, I.; Garnvwa, J.M.; Rawat, S.; Smith, D.S.; Landon, J.; Nasidi, A. Formulation of a liquid ovine Fab-based antivenom for the treatment of envenomation by the Nigerian carpet viper (Echis ocellatus). Toxicon 2003, 42, 399–404. [Google Scholar] [CrossRef]
- Calvete, J.J.; Sanz, L.; Angulo, Y.; Lomonte, B.; Gutierrez, J.M. Venoms, venomics, antivenomics. FEBS Lett. 2009, 583, 1736–1743. [Google Scholar] [CrossRef] [Green Version]
- Baudou, F.G.; Litwin, S.; Lanari, L.C.; Laskowicz, R.D.; Damin, C.F.; Chippaux, J.-P.; de Roodt, A.R. Antivenom against Crotalus durissus terrificus venom: Immunochemical reactivity and experimental neutralizing capacity. Toxicon 2017, 140, 11–17. [Google Scholar] [CrossRef]
- Lynch, M.J.; Ritter, S.C.; Cannon, R.D. Successful Treatment of South American Rattlesnake (Crotalus durissus terrificus) Envenomation with Crotalidae Polyvalent Immune Fab (CroFab™). J. Med. Toxicol. 2010, 7, 44–46. [Google Scholar] [CrossRef] [Green Version]
- Beghini, D.G.; da Cruz-Höfling, M.A.; Randazzo-Moura, P.; Rodrigues-Simioni, L.; Novello, J.C.; Hyslop, S.; Marangoni, S. Cross-neutralization of the neurotoxicity of Crotalus durissus terrificus and Bothrops jararacussu venoms by antisera against crotoxin and phospholipase A2 from Crotalus durissus cascavella venom. Toxicon 2005, 46, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Instituto Bioclon. Antivipmyn®Tri, México, Full Prescribing Information (FPI). 2016, pp. 1–7. Available online: https://archiveansm.integra.fr/afssaps/content/download/149311/1964979/version/2/file/FINAL_Antivipmyn+Tri+IPP-A_sep2016_ENG.pdf (accessed on 5 December 2022).
- Otero-Patiño, R.; Silva-Hadad, J.; Barona, M.; Toro, M.; Quintana, J.; Díaz, A.; Vásquez, I.; Rodríguez, V.; Delgado, C.; Fernández, M.; et al. Accidente bothrópico en Colombia: Estudio multicéntrico de la eficacia, y seguridad de Antivipmyn-Tri® un antiveneno polivalente producido en México. Iatreia 2007, 20, 244–262. [Google Scholar]
- Baum, R.; Bronner, J.; Akpunonu, P.; Plott, J.; Bailey, A.; Keyler, D. Crotalus durissus terrificus (viperidae; crotalinae) envenomation: Respiratory failure and treatment with antivipmyn TRI® antivenom. Toxicon 2019, 163, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.; Renjifo-Ibáñez, C.; Renjifo, J.M.; Cabrera, R. Protocol to obtain targeted transcript sequence data from snake venom samples collected in the Colombian field. Toxicon 2018, 148, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Warrell, D.A. Snake bite. Lancet 2010, 375, 77–88. [Google Scholar] [CrossRef]
- Maciel, F.V.; Ramos Pinto, Ê.K.; Valério Souza, N.M.; Gonçalves de Abreu, T.A.; Ortolani, P.L.; Fortes-Dias, C.L.; Garrido Cavalcante, W.L. Varespladib (LY315920) prevents neuromuscular blockage and myotoxicity induced by crotoxin on mouse neuromuscular preparations. Toxicon 2021, 202, 40–45. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Lewin, M.R.; Williams, D.J.; Lomonte, B. Varespladib (LY315920) and Methyl Varespladib (LY333013) Abrogate or Delay Lethality Induced by Presynaptically Acting Neurotoxic Snake Venoms. Toxins 2020, 12, 131. [Google Scholar] [CrossRef] [Green Version]
- de Souza, J.; Oliveira, I.C.; Yoshida, E.H.; Cantuaria, N.M.; Cogo, J.C.; Torres-Bonilla, K.A.; Hyslop, S.; Junior, N.J.S.; Floriano, R.S.; Gutiérrez, J.M.; et al. Effect of the phospholipase A2 inhibitor Varespladib, and its synergism with crotalic antivenom, on the neuromuscular blockade induced by Crotalus durissus terrificus venom (with and without crotamine) in mouse neuromuscular preparations. Toxicon 2022, 214, 54–61. [Google Scholar] [CrossRef]
- Conte, T.; Franco, D.; Baptista, I.; Bueno, C.; Selistre-De-Araújo, H.; Brum, P.; Moriscot, A.; Miyabara, E. Radicicol improves regeneration of skeletal muscle previously damaged by crotoxin in mice. Toxicon 2008, 52, 146–155. [Google Scholar] [CrossRef]
- Nascimento, T.; Conte, T.; Rissato, T.; Luna, M.; Soares, A.; Moriscot, A.; Yamanouye, N.; Miyabara, E. Radicicol enhances the regeneration of skeletal muscle injured by crotoxin via decrease of NF-kB activation. Toxicon 2019, 167, 6–9. [Google Scholar] [CrossRef]
- Luiz, M.B.; Pereira, S.S.; Prado, N.D.R.; Gonçalves, N.R.; Kayano, A.M.; Moreira-Dill, L.S.; Sobrinho, J.C.; Zanchi, F.B.; Fuly, A.L.; Fernandes, C.F.; et al. Camelid Single-Domain Antibodies (VHHs) against Crotoxin: A Basis for Developing Modular Building Blocks for the Enhancement of Treatment or Diagnosis of Crotalic Envenoming. Toxins 2018, 10, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.C.S.; Pereira, S.S.; Gouveia, M.P.; Luiz, M.B.; Sousa, R.M.O.; Kayano, A.M.; Francisco, A.F.; Prado, N.D.R.; Dill, L.S.M.; Fontes, M.R.M.; et al. Anti-Metalloprotease P-I Single-Domain Antibodies: Tools for Next-Generation Snakebite Antivenoms. BioMed Res. Int. 2022, 2022, 2748962. [Google Scholar] [CrossRef] [PubMed]
C. durissus | Reported Region | Crotoxin | SVSP | CTL | SVMP | Crotamine | LAAO | BIP | Disintegrin | Others | Refs. | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | |||||||||||
C. d. cumanensis Humboldt, 1833 | Colombia and Venezuela | 64.71 | 6.33 | 1.18 | - | - | 3.3 | - | 0.0 *–5.77 | 3.16 | - | 13.7 | 1.85 | [8,9,10] |
C. d. ruruima Hoge, 1966 | North of Venezuela | 82.7 | 8.1 | 4.3 | – | – | 2.9 | – | 1.5 | <0.5 | <0.1 | - | [11] | |
C. d. cascavella Wagler, 1824 | North of Brazil | 72.5 | 1.2 | <0.1 | – | – | <0.1 | – | – | <0.1 | – | - | 20.3 | [12] |
C. d. collilineatus Hoge, 1966 | Northeast of Brazil | 67.4 | 1.9 | <0.1 | – | – | 0.4 | – | 20.8 | 0.5 | – | - | 13.8 | [12] |
C. d. terrificus Laurenti, 1768 | Centre of Brazil | 48.5–82.7 | 0.7–25.3 | <0.1–2.7 | 0.09–5.5 | 1–19 | 0.6–4.5 | 1.8 | 0.5–22.3 | 48.5–82.7 | 0.7–25.3 | - | <0.1–2.7 | [3,11,13,14,15] |
C. d. durissus Linnaeus, 1758 | South of the Amazonian forest of Brazil, extreme southeast of Peru, Bolivia, Paraguay, Uruguay, north of Argentina | 68 | 5.1 | <0.2 | 2.4 | 12 | 3.6 | 0.9 | 7.9 | [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cañas, C.A. Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins 2022, 14, 875. https://doi.org/10.3390/toxins14120875
Cañas CA. Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins. 2022; 14(12):875. https://doi.org/10.3390/toxins14120875
Chicago/Turabian StyleCañas, Carlos A. 2022. "Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia" Toxins 14, no. 12: 875. https://doi.org/10.3390/toxins14120875
APA StyleCañas, C. A. (2022). Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins, 14(12), 875. https://doi.org/10.3390/toxins14120875