Development of a Novel UPLC-MS/MS Method for the Simultaneous Determination of 16 Mycotoxins in Different Tea Categories
Abstract
:1. Introduction
2. Results and Discussion
2.1. UPLC-MS/MS Analysis Conditions
2.2. Improvement of Sample Pretreatment Processes
2.2.1. Optimization of Mycotoxins Extractant in Tea Samples
2.2.2. Evaluation of Purification Effects on Mycotoxins in Tea Samples
2.3. Method Validation
2.4. Occurrence of Mycotoxins in Tea Samples
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of Stock Solutions
4.3. Samples Collection
4.4. Sample Preparation
4.5. UPLC-MS/MS Analysis
4.6. Method Evaluation and Application
4.7. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haas, D.; Pfeifer, B.; Reiterich, C.; Partenheimer, R.; Reck, B.; Buzina, W. Identification and quantification of fungi and mycotoxins from Pu-erh tea. Int. J. Food Microbiol. 2013, 166, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Chen, N.; Huang, S.; Fan, X.; Zhang, Y.; Ren, D.; Yi, L. Chemical profiling and discrimination of green tea and Pu-erh raw tea based on UPLC-Q-Orbitrap-MS/MS and chemometrics. Food Chem. 2020, 326, 126760. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zeng, Z.; Huang, Y.; Zhang, X. Chemical compositions of Pu’er tea fermented by Eurotium Cristatum and their lipid-lowering activity. LWT 2018, 98, 204–211. [Google Scholar] [CrossRef]
- Asghar, M.A.; Zahir, E.; Shahid, S.M.; Khan, M.N.; Asghar, M.A.; Iqbal, J.; Walker, G. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT 2018, 90, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Rameshrad, M.; Razavi, B.M.; Hosseinzadeh, H. Protective effects of green tea and its main constituents against natural and chemical toxins: A comprehensive review. Food Chem. Toxicol. 2017, 100, 115–137. [Google Scholar] [CrossRef]
- Ashiq, S.; Hussain, M.; Ahmad, B. Natural occurrence of mycotoxins in medicinal plants: A review. Fungal Genet. Biol. 2014, 66, 1–10. [Google Scholar] [CrossRef]
- Cladiere, M.; Delaporte, G.; Le Roux, E.; Camel, V. Multi-class analysis for simultaneous determination of pesticides, mycotoxins, process-induced toxicants and packaging contaminants in tea. Food Chem. 2018, 242, 113–121. [Google Scholar] [CrossRef]
- Sedova, I.; Kiseleva, M.; Tutelyan, V. Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation. Toxins 2018, 10, 444. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-M.; Huang, D.-F.; Fang, Y.; Wang, F.; Li, F.-L.; Liao, M. Soil fungal communities in tea plantation after 10 years of chemical vs. integrated fertilization. Chil. J. Agric. Res. 2017, 77, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Redan, B.W. Processing Aids in Food and Beverage Manufacturing: Potential Source of Elemental and Trace Metal Contaminants. J. Agric. Food Chem. 2020, 68, 13001–13007. [Google Scholar] [CrossRef]
- Ma, Y.; Ling, T.J.; Su, X.Q.; Jiang, B.; Nian, B.; Chen, L.J.; Liu, M.L.; Zhang, Z.Y.; Wang, D.P.; Mu, Y.Y.; et al. Integrated proteomics and metabolomics analysis of tea leaves fermented by Aspergillus niger, Aspergillus tamarii and Aspergillus fumigatus. Food Chem. 2021, 334, 127560. [Google Scholar] [CrossRef]
- Zhao, M.; Su, X.Q.; Nian, B.; Chen, L.J.; Zhang, D.L.; Duan, S.M.; Wang, L.Y.; Shi, X.Y.; Jiang, B.; Jiang, W.W.; et al. Integrated Meta-omics Approaches to Understand the Microbiome of Spontaneous Fermentation of Traditional Chinese Pu-erh Tea. mSystems 2019, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Frisvad, J.C.; Moller, L.L.H.; Larsen, T.O.; Kumar, R.; Arnau, J. Safety of the fungal workhorses of industrial biotechnology: Update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol. 2018, 102, 9481–9515. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Wang, X.; Fu, R.; Yan, H.; Han, S.; Gerelt, K.; Cui, P.; Chen, J.; Qi, K.; Zhou, Y. Determination of six groups of mycotoxins in Chinese dark tea and the associated risk assessment. Environ. Pollut. 2020, 261, 114180. [Google Scholar] [CrossRef]
- Ye, Z.; Cui, P.; Wang, Y.; Yan, H.; Wang, X.; Han, S.; Zhou, Y. Simultaneous Determination of Four Aflatoxins in Dark Tea by Multifunctional Purification Column and Immunoaffinity Column Coupled to Liquid Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 11481–11488. [Google Scholar] [CrossRef]
- Reinholds, I.; Bogdanova, E.; Pugajeva, I.; Alksne, L.; Stalberga, D.; Valcina, O.; Bartkevics, V. Determination of Fungi and Multi-Class Mycotoxins in Camelia Sinensis and Herbal Teas and Dietary Exposure Assessment. Toxins 2020, 12, 555. [Google Scholar] [CrossRef]
- Pakshir, K.; Mirshekari, Z.; Nouraei, H.; Zareshahrabadi, Z.; Zomorodian, K.; Khodadadi, H.; Hadaegh, A. Mycotoxins Detection and Fungal Contamination in Black and Green Tea by HPLC-Based Method. J. Toxicol. 2020, 2020, 2456210. [Google Scholar] [CrossRef]
- Pallarés, N.; Font, G.; Mañes, J.; Ferrer, E. Multimycotoxin LC–MS/MS Analysis in Tea Beverages after Dispersive Liquid–Liquid Microextraction (DLLME). J. Agric. Food Chem. 2017, 65, 10282–10289. [Google Scholar] [CrossRef]
- Monbaliu, S.; Wu, A.; Zhang, D.; Van Peteghem, C.; De Saeger, S. Multimycotoxin UPLC-MS/MS for tea, herbal infusions and the derived drinkable products. J. Agric. Food Chem. 2010, 58, 12664–12671. [Google Scholar] [CrossRef]
- Watanabe, E. Review of sample preparation methods for chromatographic analysis of neonicotinoids in agricultural and environmental matrices: From classical to state-of-the-art methods. J. Chromatogr. A 2021, 1643, 462042. [Google Scholar] [CrossRef]
- Guo, J.; Tong, M.; Tang, J.; Bian, H.; Wan, X.; He, L.; Hou, R. Analysis of multiple pesticide residues in polyphenol-rich agricultural products by UPLC-MS/MS using a modified QuEChERS extraction and dilution method. Food Chem. 2019, 274, 452–459. [Google Scholar] [CrossRef]
- Zhan, J.; Zhang, R.R.; Shi, X.Z.; Huang, Z.; Cao, G.Z.; Chen, X.F.; Hu, L. A novel sample-preparation method for the generic and rapid determination of pesticides and mycotoxins in tea by ultra-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2021, 1636, 461794. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Guidance Document on Method Validation and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed (Document no. SANTE/12682/2019). Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 8 October 2021).
- Commission Regulation (EC). Setting Maximum Levels for Certain Contaminants in Foodstuffs (Document no. EC/1881/2006). Available online: https://www.legislation.gov.uk/eur/2006/1881 (accessed on 10 August 2021).
- Bogdanova, E.; Pugajeva, I.; Reinholds, I.; Bartkevics, V. Two-dimensional liquid chromatography—High resolution mass spectrometry method for simultaneous monitoring of 70 regulated and emerging mycotoxins in Pu-erh tea. J. Chromatogr. A 2020, 1622, 461145. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Liu, N.; Yan, Z.; Yu, D.; Wang, L.; Wang, K.; Wei, X.; Wu, A. Development and Validation of the One-step Purification Method Coupled to LC-MS/MS for Simultaneous Determination of Four Aflatoxins in Fermented Tea. Food Chem. 2021, 354, 129497. [Google Scholar] [CrossRef] [PubMed]
- Technical Regulations of the Customs Union. On Food Safety (Document No. TRCU/021/2011). Available online: http://www.eurexcert.com/TRCUpdf/TRCU-0021-On-food-safety.pdf (accessed on 16 November 2021).
- Zhang, L.; Dou, X.W.; Zhang, C.; Logrieco, A.F.; Yang, M.H. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Reinholds, I.; Bogdanova, E.; Pugajeva, I.; Bartkevics, V. Mycotoxins in herbal teas marketed in Latvia and dietary exposure assessment. Food Addit. Contam. Part B Surveill. 2019, 12, 199–208. [Google Scholar] [CrossRef]
- Kiseleva, M.G.; Chalyy, Z.A.; Sedova, I.B.; Minaeva, L.P.; Sheveleva, S.A. Studying the contamination of tea and herbal infu-sions with myсotoxins (Message 2). Health Risk Anal. 2020, 2020, 38–51. [Google Scholar] [CrossRef]
- Mannani, N.; Tabarani, A.; Abdennebi, E.H.; Zinedine, A. Assessment of aflatoxin levels in herbal green tea available on the Moroccan market. Food Control 2020, 108, 106882. [Google Scholar] [CrossRef]
- Li, W.; Xu, K.; Xiao, R.; Yin, G.; Liu, W. Development of an HPLC-Based Method for the Detection of Aflatoxins in Pu-erh Tea. Int. J. Food Prop. 2015, 18, 842–848. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, M.; Chen, Q.; Huang, L.; Mao, Y.; Xia, N.; Teng, J.; Wei, B. Citrinin produced using strains of Penicillium citrinum from Liupao tea. Food Biosci. 2019, 28, 183–191. [Google Scholar] [CrossRef]
- Li, Z.; Mao, Y.; Teng, J.; Xia, N.; Huang, L.; Wei, B.; Chen, Q. Evaluation of Mycoflora and Citrinin Occurrence in Chinese Liupao Tea. J. Agric. Food Chem. 2020, 68, 12116–12123. [Google Scholar] [CrossRef]
- Lorenz, N.; Danicke, S.; Edler, L.; Gottschalk, C.; Lassek, E.; Marko, D.; Rychlik, M.; Mally, A. A critical evaluation of health risk assessment of modified mycotoxins with a special focus on zearalenone. Mycotoxin Res. 2019, 35, 27–46. [Google Scholar] [CrossRef] [Green Version]
Detection (Mycotoxins) | Extraction//Purification (The Chromatographic Column) | Matrix (Recoveries) | LODs//LOQs µg·kg−1 |
---|---|---|---|
UPLC-MS/MS (22 Mycotoxins) [19] | 1% formic acid-EtOAc//NH2-SPE, C18-SPE (Acquity UPLC BEH C18) | Raw tea materials (China and Belgium) (91–107%) | 2.1–122// 4.1–243 |
HPLC-MS/MS-IT (16 Mycotoxins) [18] | DLLME: NaCl, EtOAc, ACN, MeOH, CHCL3 (Gemini-NX column C18) | Black, red, green tea beverages (Spain) (65–127%) | 0.05–10.0// 0.2–33.0 |
HPLC-FD (5 Mycotoxins) [17] | 80% MeOH, NaCl//AFs-IAC, OTA-IAC (ZORBAX Eclipse XDB C18) | Black, green tea (Iran) (74.1–99.6%) | 0.1–0.47// 0.4–1.23 |
HPLC (10 Mycotoxins) [14] | ACN or MeOH//water containing NaCl//MFC-IAC (C18 column Xbridge) | Dark tea (China) (76.8–95.6%) | 0.018–34.4// Not Found |
UPLC-MS/MS (7 Mycotoxins) [22] | 1.0 mol/L ammonium acetate, 98% ACN-DMSO// MgSO4, C18 (Acquity HSS-T3 column) | Black tea (China) (75.20–124.4%) | Not Found// 5 |
UPLC-MS/MS (16 Mycotoxins) This work | 1% formic acid -ACN//MWCNTs-COOH, HLB, SG (Agilent Extend C18) | Green, oolong, black, and dark tea (China) (61.27–118.46%) | 0.015–15.00// 0.03–30.00 |
Analytes | Molecular Weight | TR (min) | Molecular Ion | ESI | Parent Ions (m/z) | Product Ions (m/z) | CE (eV) |
---|---|---|---|---|---|---|---|
AFB1 | 312.27 | 10.82 | [M + H]+ | ESI+ | 313.110 | 241.100 a | 44 |
313.120 | 285.200 | 23 | |||||
313.130 | 213.100 | 46 | |||||
AFB2 | 314.29 | 10.55 | [M + H]+ | ESI+ | 315.110 | 287.200 a | 30 |
315.120 | 259.300 | 33 | |||||
315.130 | 243.200 | 40 | |||||
AFG1 | 328.27 | 10.18 | [M + H]+ | ESI+ | 329.110 | 199.000 | 58 |
329.120 | 243.300 | 32 | |||||
329.130 | 200.100 a | 41 | |||||
AFG2 | 330.29 | 9.86 | [M + H]+ | ESI+ | 331.110 | 189.100 a | 42 |
331.120 | 245.100 | 34 | |||||
331.130 | 314.200 | 25 | |||||
ZEN | 318.36 | 13.17 | [M − H]− | ESI− | 317.110 | 175.030 a | 25 |
317.120 | 131.020 | 31 | |||||
317.130 | 273.170 | 20 | |||||
α-ZEL | 320.38 | 12.90 | [M − H]− | ESI− | 319.110 | 275.200 a | 21 |
319.120 | 160.000 | 33 | |||||
319.130 | 301.200 | 23 | |||||
β-ZEL | 320.38 | 12.36 | [M − H]− | ESI− | 319.110 | 275.200 a | 21 |
319.120 | 160.000 | 33 | |||||
319.130 | 301.200 | 23 | |||||
α-ZAL | 322.40 | 12.74 | [M − H]− | ESI− | 321.110 | 277.200 a | 23 |
321.120 | 303.200 | 22 | |||||
321.130 | 259.200 | 25 | |||||
β-ZAL | 322.40 | 12.10 | [M − H]− | ESI− | 321.110 | 277.200 a | 23 |
321.120 | 303.200 | 22 | |||||
321.130 | 259.200 | 25 | |||||
DON | 296.32 | 6.55 | [M + CH3COO]− | ESI− | 355.000 | 265.000 a | 17 |
355.100 | 247.200 | 22 | |||||
15-Ac DON | 338.35 | 9.41 | [M + NH4]+ | ESI+ | 356.000 | 137.000 a | 5 |
356.100 | 321.000 | 13 | |||||
3-Ac DON | 338.35 | 9.46 | [M + CH3COO]− | ESI− | 397.000 | 307.160 a | 16 |
397.100 | 173.100 | 15 | |||||
OTA | 403.81 | 11.96 | [M + H]+ | ESI+ | 404.110 | 105.100 | 18 |
404.120 | 221.000 | 35 | |||||
404.130 | 239.100 a | 25 | |||||
NEO | 382.40 | 8.09 | [M + NH4]+ | ESI+ | 400.100 | 185.100 a | 16 |
400.120 | 215.100 | 14 | |||||
T-2 | 466.52 | 12.51 | [M + NH4]+ | ESI+ | 484.110 | 215.000 a | 20 |
484.120 | 165.000 | 66 | |||||
484.130 | 197.000 | 24 | |||||
CIT | 250.25 | 11.28 | [M + OH]− | ESI− | 267.110 | 221.000 | 20 |
267.120 | 177.000 | 28 | |||||
267.130 | 249.000 a | 21 |
Targets | Spiked Recovery (%) RSD (%, n = 6) | Precision (RSD, %) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Green Tea | Oolong Tea | Black Tea | Dark Tea | RSDr | RSDR | |||||||||
Low | Middle | High | Low | Middle | High | Low | Middle | High | Low | Middle | High | (n = 6) | (n = 6) | |
AFB1 | 92.90 | 101.72 | 65.51 | 86.60 | 95.47 | 68.48 | 90.99 | 94.08 | 63.27 | 92.65 | 99.67 | 74.88 | 94.26 | 108.08 |
13.75 | 7.81 | 4.55 | 7.76 | 5.84 | 3.49 | 5.97 | 2.67 | 3.17 | 8.06 | 10.45 | 4.00 | 4.75 | 3.36 | |
AFB2 | 90.28 | 100.87 | 62.20 | 79.70 | 86.54 | 65.41 | 84.60 | 86.57 | 66.74 | 80.99 | 98.44 | 72.24 | 88.50 | 102.82 |
17.77 | 11.12 | 3.55 | 10.01 | 5.68 | 4.61 | 3.50 | 6.60 | 3.12 | 15.66 | 10.27 | 3.09 | 8.11 | 6.46 | |
AFG1 | 107.01 | 109.72 | 64.29 | 115.83 | 105.93 | 69.55 | 104.52 | 104.10 | 65.24 | 114.44 | 101.74 | 77.21 | 107.91 | 109.54 |
10.72 | 8.55 | 4.12 | 4.17 | 2.58 | 4.75 | 8.46 | 6.92 | 4.37 | 6.04 | 4.38 | 5.69 | 4.36 | 4.79 | |
AFG2 | 89.13 | 88.61 | 63.93 | 77.31 | 99.96 | 102.65 | 64.48 | 114.39 | 87.49 | 77.02 | 98.27 | 93.81 | 88.65 | 101.26 |
19.39 | 8.76 | 7.89 | 19.34 | 5.87 | 11.72 | 1.19 | 19.13 | 17.04 | 19.95 | 15.80 | 18.75 | 16.59 | 4.69 | |
ZEN | 76.58 | 91.47 | 63.55 | 78.48 | 88.46 | 71.93 | 71.46 | 76.65 | 61.81 | 69.62 | 73.45 | 60.79 | 78.27 | 85.55 |
8.19 | 10.06 | 4.40 | 8.57 | 10.16 | 7.57 | 5.96 | 3.50 | 2.68 | 8.35 | 3.53 | 0.70 | 9.35 | 8.99 | |
α-ZEL | 117.62 | 99.86 | 85.93 | 116.21 | 98.63 | 95.79 | 100.79 | 89.30 | 78.86 | 110.90 | 97.93 | 86.53 | 103.91 | 88.12 |
1.68 | 6.21 | 18.97 | 2.95 | 7.31 | 18.74 | 14.34 | 4.46 | 13.34 | 8.72 | 10.77 | 16.89 | 8.95 | 9.67 | |
β-ZEL | 88.37 | 69.75 | 94.55 | 101.14 | 67.84 | 103.51 | 77.20 | 62.80 | 91.34 | 85.42 | 64.25 | 101.90 | 77.10 | 78.42 |
7.34 | 11.08 | 17.71 | 11.50 | 8.84 | 12.59 | 3.94 | 3.18 | 11.48 | 7.88 | 6.63 | 14.62 | 16.43 | 8.29 | |
α-ZAL | 74.79 | 79.36 | 86.95 | 72.93 | 74.65 | 100.73 | 76.86 | 71.90 | 92.19 | 73.71 | 71.40 | 100.65 | 74.45 | 73.12 |
9.12 | 6.52 | 18.66 | 6.52 | 9.06 | 16.70 | 5.86 | 4.25 | 19.28 | 7.44 | 3.35 | 16.01 | 3.32 | 8.62 | |
β-ZAL | 67.43 | 69.41 | 89.46 | 62.71 | 67.92 | 101.03 | 64.14 | 61.27 | 86.52 | 63.42 | 63.26 | 97.79 | 64.95 | 70.39 |
6.79 | 9.61 | 19.17 | 4.03 | 8.25 | 14.71 | 9.31 | 1.56 | 18.90 | 9.36 | 5.08 | 15.91 | 4.19 | 12.55 | |
DON | 75.45 | 90.96 | 108.16 | 103.11 | 98.11 | 112.90 | 83.49 | 98.84 | 104.18 | 66.74 | 90.48 | 106.39 | 88.40 | 97.25 |
13.81 | 4.13 | 6.56 | 13.36 | 7.65 | 5.65 | 7.51 | 4.61 | 7.96 | 11.90 | 4.53 | 9.15 | 13.21 | 15.22 | |
15AcDON | 101.34 | 101.17 | 76.59 | 87.24 | 82.43 | 83.40 | 84.65 | 77.16 | 74.57 | 95.42 | 100.72 | 87.43 | 91.27 | 95.57 |
10.58 | 19.74 | 12.89 | 19.73 | 18.16 | 9.68 | 14.51 | 18.03 | 11.06 | 19.48 | 18.17 | 10.59 | 9.82 | 9.04 | |
3AcDON | 101.45 | 99.22 | 96.07 | 105.69 | 101.47 | 100.25 | 100.10 | 108.85 | 95.55 | 97.13 | 102.95 | 90.57 | 102.11 | 107.59 |
7.09 | 3.80 | 12.89 | 7.21 | 3.42 | 7.77 | 5.70 | 3.59 | 6.16 | 8.08 | 4.84 | 15.04 | 3.41 | 3.48 | |
OTA | 90.02 | 90.26 | 77.02 | 80.60 | 66.11 | 92.40 | 64.36 | 64.80 | 90.64 | 68.73 | 64.18 | 97.53 | 73.63 | 97.17 |
18.90 | 19.72 | 11.19 | 12.99 | 6.46 | 8.15 | 4.46 | 0.94 | 8.32 | 11.26 | 4.13 | 11.77 | 14.63 | 8.34 | |
NEO | 75.32 | 99.07 | 96.55 | 100.04 | 106.40 | 109.62 | 74.58 | 76.63 | 102.32 | 67.99 | 77.98 | 100.31 | 84.75 | 100.54 |
14.53 | 17.79 | 15.07 | 14.05 | 12.87 | 8.88 | 14.59 | 8.69 | 9.43 | 11.52 | 7.76 | 9.87 | 16.12 | 11.06 | |
T-2 | 66.54 | 104.40 | 88.89 | 81.20 | 93.91 | 100.05 | 80.21 | 88.71 | 102.24 | 65.51 | 92.03 | 104.72 | 84.06 | 96.23 |
11.08 | 13.56 | 16.89 | 17.63 | 9.14 | 14.55 | 9.66 | 4.20 | 4.15 | 10.08 | 6.01 | 4.58 | 14.99 | 13.28 | |
CIT | 103.01 | 105.01 | 61.89 | 114.85 | 111.90 | 77.47 | 118.46 | 111.03 | 65.41 | 101.74 | 74.15 | 61.50 | 105.02 | 97.45 |
7.66 | 10.15 | 4.05 | 4.86 | 5.94 | 10.03 | 2.29 | 3.44 | 7.94 | 11.81 | 15.04 | 2.23 | 12.27 | 9.68 |
Mycotoxin | Green Tea | Oolong Tea | Black Tea | Dark Tea | TSP | rMRLS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |||
AFB1 | <LOD | <LOD | ND | <LOD | <LOD | ND | <LOD | <LOD | ND | 0.97 | 1.11 | 1.04 | (0,0,0,0)/80 | 5 a |
AFB2 | <LOD | <LOD | ND | 0.16 | 0.61 | 0.39 | <LOD | 0.15 | 0.15 | 0.13 | 0.32 | 0.22 | (0,0,0,0)/80 | 5 b |
AFG1 | 0.06 | 0.07 | 0.07 | 0.19 | 0.91 | 0.47 | 0.43 | 0.87 | 0.62 | 0.38 | 0.84 | 0.61 | (0,0,0,0)/80 | 5 b |
AFG2 | 0.90 | 6.75 | 2.97 | 2.98 | 13.36 | 8.71 | 0.79 | 7.51 | 3.46 | 3.27 | 23.49 | 8.98 | (1,15,6,15)/80 | 5 b |
AFs | 0.90 | 6.75 | 2.98 | 2.98 | 14.27 | 9.03 | 1.22 | 7.51 | 3.71 | 0.20 | 24.07 | 8.83 | (0,0,0,1)/80 | 20 a |
ZEN | <LOD | 0.26 | 0.26 | <LOD | <LOD | ND | <LOD | <LOD | ND | <LOD | 1.44 | 1.44 | (0,0,0,0)/80 | 75 c |
α-ZEL | 10.30 | 24.71 | 19.72 | 29.27 | 48.03 | 39.77 | 19.19 | 116.22 | 51.28 | 25.31 | 71.09 | 36.55 | (0.0,5,0)/80 | 75 d |
β-ZEL | 20.49 | 34.95 | 25.98 | 40.94 | 96.08 | 57.54 | 26.62 | 226.24 | 90.21 | 25.21 | 62.78 | 45.38 | (0,2,6,0)/80 | 75 d |
α-ZAL | <LOD | <LOD | ND | <LOD | 12.87 | 12.87 | <LOD | <LOD | ND | <LOD | <LOD | ND | (0,0,0,0)/80 | 75 d |
β-ZAL | <LOD | <LOD | ND | <LOD | <LOD | ND | <LOD | <LOD | ND | <LOD | <LOD | ND | (0,0,0,0)/80 | 75 d |
DON | 11.42 | 89.89 | 42.72 | 667.35 | 1181.48 | 958.58 | 247.40 | 508.99 | 423.59 | 176.02 | 328.94 | 253.56 | (0,5,0,0)/80 | 750 c |
15AcDON | <LOD | <LOD | ND | <LOD | <LOD | ND | 77.40 | 707.57 | 294.25 | <LOD | 425.70 | 192.65 | (0,0,0,0)/80 | 750 e |
3Ac DON | <LOD | <LOD | ND | <LOD | 8.03 | 6.71 | <LOD | <LOD | ND | <LOD | <LOD | ND | (0,0,0,0)/80 | 750 e |
OTA | <LOD | <LOD | ND | <LOD | 1.07 | 0.34 | 0.53 | 2.81 | 1.52 | 0.30 | 11354.64 | 666.45 | (0,0,0,4)/80 | 5 c |
NEO | <LOD | <LOD | ND | <LOD | 1.30 | 0.91 | 1.28 | 4.61 | 2.50 | 3.49 | 13.56 | 7.79 | (0,0,0,0)/80 | 200 f |
T-2 | <LOD | <LOD | ND | <LOD | <LOD | ND | <LOD | <LOD | ND | <LOD | <LOD | ND | (0,0,0,0)/80 | 200 c |
CIT | 4.16 | 9.41 | 6.73 | 4.84 | 91.90 | 25.91 | 8.90 | 93.27 | 54.59 | 12.20 | 203.76 | 62.76 | (0,0,0,1)/80 | 200 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Yan, Z.; Yu, S.; Wu, A.; Liu, N. Development of a Novel UPLC-MS/MS Method for the Simultaneous Determination of 16 Mycotoxins in Different Tea Categories. Toxins 2022, 14, 169. https://doi.org/10.3390/toxins14030169
Zhou H, Yan Z, Yu S, Wu A, Liu N. Development of a Novel UPLC-MS/MS Method for the Simultaneous Determination of 16 Mycotoxins in Different Tea Categories. Toxins. 2022; 14(3):169. https://doi.org/10.3390/toxins14030169
Chicago/Turabian StyleZhou, Haiyan, Zheng Yan, Song Yu, Aibo Wu, and Na Liu. 2022. "Development of a Novel UPLC-MS/MS Method for the Simultaneous Determination of 16 Mycotoxins in Different Tea Categories" Toxins 14, no. 3: 169. https://doi.org/10.3390/toxins14030169
APA StyleZhou, H., Yan, Z., Yu, S., Wu, A., & Liu, N. (2022). Development of a Novel UPLC-MS/MS Method for the Simultaneous Determination of 16 Mycotoxins in Different Tea Categories. Toxins, 14(3), 169. https://doi.org/10.3390/toxins14030169