Biomarkers of Exposure to Zearalenone in In Vivo and In Vitro Studies
Abstract
:1. Introduction
2. Biomarkers of ZEN in Urine
3. Biomarkers of Kidney Effects by ZEN
Mycotoxin | Study Population | Sample Analyzed | Parameters Measured | Exposed Concentration/Time | Result and Interpretation | Reference |
---|---|---|---|---|---|---|
ZEN | 20 post-weaning piglets (Landrace × Yorkshire × Duroc) | Blood Isolated organs | -Body weight -Vulva size -Conc. AST, ALT, ALP, GGT, Urea, CRE -Oxidative stress: SOD, GSHPx, MDA | Fed a basal diet ZEN1: 1 mg/kg ZEN2: 2 mg/kg ZEN3: 3 mg/kg 18 days | -Invariable body weight -↑ Vulva size by 277% (ZEN1)/643% (ZEN2)/762% (ZEN3) -↑ Conc. Aminotransferases and ALP + Urea + CRE -↓ SOD/GSHPx enzyme activity and ↑ MDA àHyperestrogenism, liver damage and induction of renal tissue degeneration, stimulation of oxidative stress and lipid peroxidation | [25] |
ZEN | 9 week old Sprague-Dawley rats Pregnants Rats | Blood Urine Kidney | -BUN, CRE and UA levels in blood/urine -Oxidative stress: MDA, SOD, GSPHx -Renal histopathological examination -Total RNA and PCR quantification | Fed a basal diet ZEN at 50/100/150 mg/kg On gestation days 0 through 7 | -↑ BUN/UA levels in plasma and ↓ CRE levels in plasma/urine -↑ MDA and ↓ SOD/GSHPx activity -Protein deposits, interstitial fibrosis, tubular degeneration, shrunken glomerulus -↑ expression of pro-inflammatory cytokines TLR4, NF-kBp65, TNF-α, IL-1β, IL-6, and β-actin | [23] |
ZEN | Male Wistar Crl:WI BR rats (8 weeks of age) | Kidney and Liver | -Body weight -Absolute and relative weight of liver and kidney -Lipid composition of the liver/kidney membrane -Hepatic and kidney antioxidant parameters | Fed Ssniff R/M-Z+H feed FB1: 150 µg/animal/day; DON: 30 µg/animal/day; ZEN: 15 µg/animal/day Toxins binary (FD, FZ, DZ) and ternary (FDZ) 14 days | -Initial = final weight -The group fed ZEN experienced ↑ absolute kidney size -Renal lipid profile: ↑ á. linoleic, ↑ á.gamma-linoleic and ↑ á. gondoic | [1] |
ZEN | Wistar rats (10 wk of age) | Blood | -Hepatotoxicity (Aminotransferases) -Hematotoxicity | ZEN: 1.5, 3, 5 mg/kg/day 28 days | -↑ Conc. Aminotransferases and ALP -Alteration of hematological parameters | [26] |
ZEN | Female Kunming mice | Blood | -Blood CRE and BUN levels -Oxidative stress: SOD and hydroxyl radical inhibitory capacity -MDA and NO -Renal apoptosis | Intraperitoneal injection ZEN: Z1 (20 mg/kg body weight), Z2 (30mg/kg body weight), DON: D1 (1.5 mg/kg body weight), D2 (2.5 mg/kg body weight) The binary mixtures D1Z1/D1Z2/D2Z1/D2Z2 12 days | -↑ CRE and BUN levels -↓ SOD enzyme activity and -OH inhibitory capacity -↑ MDA and NO in all groups treated with ZEN and DON -↑ rate of renal apoptosis in all treated groups except those that received low doses of ZEN | [24] |
ZEN, α-ZEL and β-ZEL | 52 volunteers, Apulia region (Italy) Adults | Urine | -Levels of ZEN and its main metabolites (α-ZEL and β-ZEL) | PDI aprox for ZEN: 0.015 µg/kg bw/day | -Mean of urine levels: ZEN: 0.057 ng/mL; α-ZEL: 0.077 ng/mL; β-ZEL: 0.090 ng/mL -Provisional PDI < TDI (0.2 µg/kg bw/day) | [13] |
ZEN, α-ZEL and β-ZEL | 60 volunteers from Dortmund (Germany) Adults | Urine | -Levels of ZEN and its main metabolites (α-ZEL and β-ZEL) | 2 weeks 6 weeks 7 weeks | -Means of urine levels: ZEN 0.10 ± 0.05 ng/mL; α-ZEL 0.16 ± 0.07ng/mL; β-ZEL 0.05 ± 0.04 ng/mL -Comparison with other urinary biomarker studies | [4] |
ZEN, α-ZEL and β-ZEL | Rural area (Mongol Para) and urban area (Rajshahi) in the Rajshahi district of Bangladesh. Adults | Urine | -Levels of ZEN and its main metabolites (α-ZEL and β-ZEL) | 2 periods: winter and summer | -Mean of urine levels: α-ZEL (0.338 ± 0.252 ng/mg CRE) >> ZEN (0.064 ± 0.060 ng/mg CRE) >> β-ZEL (0.029 ± 0.025 ng/mg CRE) -Pregnant: ZEN: 0.185 ± 0.187 ng/mg CRE; α-ZEL: 0.516 ± 0.484 ng/mg CRE; β-ZEL: 0.148 ± 0.146 ng/mg CRE | [19] |
4. Biomarkers of Liver Effects by ZEN
5. Cellular Response by ZEN Exposure
5.1. Biomarkers of Oxidative Stress
5.2. Heat Shock Protein
5.3. Cellular Membrane Effects
5.4. Effect in Gene Expression
6. Biomarkers of Reproductive Endocrine Effects
7. Biomarkers of Hematologic Effect
8. Conclusions
Author Contributions
Funding
Institutional Review Board
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szabó, A.; Szabó-Fodor, J.; Fébel, H.; Mézes, M.; Balogh, K.; Bázár, G.; Kocsó, D.; Ali, O.; Kovács, M. Individual and combined effects of fumonisin B1, deoxynivalenol and zearalenone on the hepatic and renal membrane lipid integrity of rats. Toxins 2018, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- Lei, M.; Zhang, N.; Qi, D. In vitro investigation of individual and combined cytotoxic effects of aflatoxin B1 and other selected mycotoxins on the cell line porcine kidney. Exp. Toxicol. Pathol. 2013, 65, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Degen, G.H. Urinary biomarkers of exposure to the mycoestrogen zearalenone and its modified forms in German adults. Arch. Toxicol. 2018, 92, 2691–2700. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA J. 2011, 9, 2197. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016, 14, 4425. [Google Scholar]
- Al-Jaal, B.A.; Jaganjac, M.; Barcaru, A.; Horvatovich, P.; Latiff, A. Aflatoxin, fumonisin, ochratoxin, zearalenone, and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 2001–2018. Food Chem. Toxicol. 2019, 129, 211–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 56; International Agency for Research on Cancer: Lyon, France, 1993; pp. 445–466. [Google Scholar]
- Lee, H.J.; Ryu, D. JFS special issue: 75 years of advancing food science, and preparing for the next 75: Advances in mycotoxin research: Public health perspectives. J. Food Sci. 2015, 80, T2970–T2983. [Google Scholar] [CrossRef]
- Owen, R.; Galloway, T.S.; Hagger, J.A.; Jones, M.B.; Depledge, M.H. Biomarkers and environmental risk assessment: Guiding principles from the human health field. Mar. Pollut. Bull. 2008, 56, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Steinkellner, H.; Binaglia, M.; Dall’Asta, C.; Gutleb, A.C.; Metzler, M.; Oswald, I.P.; Parent-Massin, D.; Alexander, J. Combined hazard assessment of mycotoxins and their modified forms applying relative potency factors: Zearalenone and T2/HT2 toxin. Food Chem. Toxicol. 2019, 131, 110599. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of multi-mycotoxin exposure in southern Italy by urinary multi-biomarker determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Agahi, F.; Juan, C.; Font, G.; Ana Juan-García, A. In silico methods for metabolomic and toxicity prediction of zearalenone, α-zearalenone, and β-zearalenone. Food Chem. Toxicol. 2020, 146, 111818. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, N.; Dänicke, S.; Edler, L.; Gottschalk, C.; Lassek, E.; Marko, D.; Rychlik, M.; Mally, A. A critical evaluation of health risk assessment of modified mycotoxins with a special focus on zearalenone. Mycotoxin Res. 2019, 35, 27–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Othmen, Z.O.; Golli, E.el; Abid-Essefi, S.; Bacha, H. Cytotoxicity effects induced by zearalenone metabolites, α zearalenol and β zearalenol, on cultured Vero cells. Toxicology 2008, 252, 72–77. [Google Scholar] [CrossRef]
- Vidal, A.; Mengelers, M.; Yang, S.; de Saeger, S.; de Boevre, M. Mycotoxin Biomarkers of Exposure: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1127–1155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhou, S.; Gong, Y.Y.; Zhao, Y.; Wu, Y. Human dietary and internal exposure to zearalenone based on a 24-h duplicate diet and following morning urine study. Environ. Int. 2020, 142, 105852. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Degen, G.H. Biomonitoring of zearalenone and its main metabolites in urines of Bangladeshi adults. Food Chem. Toxicol. 2019, 130, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Gambacorta, S.; Solfrizzo, M.; Visconti, A.; Powers, S.; Cossalter, A.M.; Pinton, P.; Oswald, I.P. Validation study on urinary biomarkers of exposure for aflatoxin B1, ochratoxin A, fumonisin B1, deoxynivalenol and zearalenone in piglets. World Mycotoxin J. 2013, 6, 299–308. [Google Scholar] [CrossRef]
- Tuanny, L.; Mousavi, A.; In, S.H.; Fernandes, C.A. Biomonitoring of mycotoxin exposure using urinary biomarker approaches a review. Toxin Rev. 2019, 40, 383–403. [Google Scholar] [CrossRef]
- Bandera, E.V.; Chandran, U.; Buckley, B.; Lin, Y.; Isukapalli, S.; Marshall, I.; King, M.; Zarbl, H. Urinary mycoestrogens, body size and breast development in New Jersey girls. Sci. Total Environ. 2011, 409, 5221–5227. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Liu, M.; Qu, Z.; Zhang, Y.; Yin, S.; Shan, A. Toxic effects of zearalenone on oxidative stress, inflammatory cytokines, biochemical and pathological changes induced by this toxin in the kidney of pregnant rats. Environ. Toxicol. Pharmacol. 2014, 37, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Ren, Z.; Gao, S.; Chen, Y.; Yang, Y.; Yang, D.; Deng, J.; Zuo, Z.; Wang, Y.; Shen, L. Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. Environ. Toxicol. Pharmacol. 2015, 40, 686–691. [Google Scholar] [CrossRef]
- Jiang, S.Z.; Yang, Z.B.; Yang, W.R.; Gao, J.; Liu, F.X.; Broomhead, J.; Chi, F. Effects of purified zearalenone on growth performance, organ size, serum metabolites, and oxidative stress in postweaning gilts. J. Anim. Sci. 2011, 89, 3008–3015. [Google Scholar] [CrossRef] [Green Version]
- Maaroufi, K.; Chekir, L.; Creppy, E.E.; Ellouz, F.; Bacha, H. Zearalenone induces modifications of hematological and biochemical parameters in rats. Toxicon 1996, 34, 535–540. [Google Scholar] [CrossRef]
- Tatay, E.; Espin, S.; García-Fernandez, A.J.; Ruiz, M.J. Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells. Toxicol. Vitro 2017, 45, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Juan-García, A.; Carbone, S.; Ben Mahmoud, M.; Sagratini, G.; Mañes, J. Beauvericin and ochratoxin A mycotoxins individually and combined in HepG2 cells alter lipid peroxidation, levels of reactive oxygen species, and glutathione. Food Chem. Toxicol. 2020, 139, 111247. [Google Scholar] [CrossRef] [PubMed]
- Taroncher, M.; Pigni, M.C.; Diana, M.N.; Juan-García, A.; Ruiz, M.J. Does low concentration mycotoxin exposure induce toxicity in HepG2 cells through oxidative stress? Toxicol. Mech. Methods 2020, 30, 417–426. [Google Scholar] [CrossRef]
- Agahi, F.; Juan-García, A.; Font, G.; Juan, C. Study of enzymatic activity in human neuroblastoma cells SH-SY5Y exposed to zearalenone’s derivates and beauvericin. Food Chem. Toxicol. 2021, 152, 112227. [Google Scholar] [CrossRef]
- Karaman, E.F.; Ariman, I.; Ozden, S. Responses of oxidative stress and inflammatory cytokines after zearalenone exposure in human kidney cells. World Mycotoxin J. 2020, 13, 411–421. [Google Scholar] [CrossRef]
- Bouaziz, C.; Bouslimi, A.; Kadri, R.; Zaied, C.; Bacha, H.; Abid-Essefi, S. The in vitro effects of zearalenone and T-2 toxins on Vero cells. Exp. Toxicol. Pathol. 2013, 65, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Schraml, E.; Hackl, M.; Grillari, J. MicroRNAs, and toxicology: A love marriage microRNAs in liquid biopsies are minimal-invasive biomarkers for tissue-specific toxicity. Toxicol. Rep. 2017, 4, 634–636. [Google Scholar] [CrossRef]
- Ghai, V.; Wang, K. Recent progress toward the use of circulating microRNAs as clinical biomarkers. Arch. Toxicol. 2016, 90, 2959–2978. [Google Scholar] [CrossRef] [PubMed]
- Klinge, C.M. miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets. Mol. Cell. Endocrinol. 2015, 418, 273–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, B.E.; Craig, P.M.; Trudeau, V.L. Implication of microRNA deregulation in the response of vertebrates to endocrine-disrupting chemicals. Environ. Toxicol. Chem. 2016, 35, 788–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzuzan, P.; Woźny, M.; Wolińska-Nizioł, L.; Piasecka, A.; Florczyk, M.; Jakimiuk, E.; Góra, M.; Łuczyński, M.K.; Gajecki, M. MicroRNA expression profles in liver and colon of sexually immature gilts after exposure to Fusarium mycotoxins. Pol. J. Vet. Sci. 2015, 18, 29–38. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Zhang, J.; Wang, Y.; Liu, W.; Gou, K.; Liu, Z.; Cui, S. MiR-7 Mediates the zearalenone signaling pathway regulating FSH synthesis and secretion by targeting FOS in female pigs. Endocrinology 2018, 159, 2993–3006. [Google Scholar] [CrossRef]
- Messerlian, C.; Martinez, R.M.; Hauser, R.; Baccarelli, A.A. ‘Omics’ and endocrine-disrupting chemicals—new paths forward. Nat. Rev. Endocrinol. 2017, 13, 740–748. [Google Scholar] [CrossRef]
- Grenier, B.; Hackl, M.; Skalicky, S.; Thamhesl, M.; Moll, W.D.; Berrios, R.; Schatzmayr, G.; Nagl, V. MicroRNAs in porcine uterus and serum are affected by zearalenone and represent a new target for mycotoxin biomarker discovery. Sci. Rep. 2019, 9, 1–14. [Google Scholar]
- Pałubicki, J.; Kosicki, R.; Twarużek, M.; Ałtyn, I.; Grajewski, J. Concentrations of zearalenone and its metabolites in female wild boars from woodlands and farmlands. Toxicon 2021, 196, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Song, G.; Lim, W. Effects of mycotoxin-contaminated feed on farm animals. J. Hazard. Mater. 2020, 389, 122087. [Google Scholar] [CrossRef] [PubMed]
Mycotoxin | Sample Analyzed | Evaluated Effect | Exposed Concentration/Time | Result and Interpretation | Reference |
---|---|---|---|---|---|
ZEN | PK-15 cells | -LDH release to the medium (membrane integrity marker) -Oxidative stress: ROs production -Induction of apoptosis | ZEN: 71–99 µM AFB1: 20–34 µM DON: 0.6–3.4 µM Tertiary combination. At 8 a.m., 12 h, 24 h and 48 h | -84.2 µM ZEN ↑ in 130% LDH release -ROs: ZEN/↓ AFB1 antagonism and ZEN/↑ AFB1 synergism -Additional effect of 40 µM ZEN + 1 µM AFB1 in late apoptosis | [3] |
ZEN | Vero cells | -Heat shock protein (HSP 70) | ZEN + T-2 toxin at equimolar concentration of 10 nM and between 0–100 nM | -↑ HSP 70 compared to control | [32] |
α-ZEL and β-ZEL | Vero cells | -Macromolecule synthesis -Oxidative stress -Heat shock protein (HSP 27 and HSP 70) | ZEN: 0–150 µM | -↓ protein synthesis and ↓ DNA synthesis -↑ MDA (↑ lipid peroxidation) -↑ HSP27 and ↑ HSP70 | [16] |
ZEN | HK-2 cells | -Oxidative stress -Gene expression -Heat shock protein (HSP70) | ZEN: 1–10–50 µM ZEN: 50–200 µM | -↑ oxidative stress -↑ expression of genes related to oxidative stress -↑ HSP70 | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llorens, P.; Herrera, M.; Juan-García, A.; Payá, J.J.; Moltó, J.C.; Ariño, A.; Juan, C. Biomarkers of Exposure to Zearalenone in In Vivo and In Vitro Studies. Toxins 2022, 14, 291. https://doi.org/10.3390/toxins14050291
Llorens P, Herrera M, Juan-García A, Payá JJ, Moltó JC, Ariño A, Juan C. Biomarkers of Exposure to Zearalenone in In Vivo and In Vitro Studies. Toxins. 2022; 14(5):291. https://doi.org/10.3390/toxins14050291
Chicago/Turabian StyleLlorens, Paula, Marta Herrera, Ana Juan-García, Juan José Payá, Juan Carlos Moltó, Agustín Ariño, and Cristina Juan. 2022. "Biomarkers of Exposure to Zearalenone in In Vivo and In Vitro Studies" Toxins 14, no. 5: 291. https://doi.org/10.3390/toxins14050291
APA StyleLlorens, P., Herrera, M., Juan-García, A., Payá, J. J., Moltó, J. C., Ariño, A., & Juan, C. (2022). Biomarkers of Exposure to Zearalenone in In Vivo and In Vitro Studies. Toxins, 14(5), 291. https://doi.org/10.3390/toxins14050291