Assessment of the Appearance and Toxin Production Potential of Invasive Nostocalean Cyanobacteria Using Quantitative Gene Analysis in Nakdong River, Korea
Abstract
:1. Introduction
2. Results
2.1. Genus-Specific Gene Copy Numbers per Cell of INC
2.2. Toxin Gene Copy Numbers per Cell and Concentrations of Toxin-Producing Cyanobacteria
2.3. Cell Density of INC in the Nakdong River
2.4. Cyanobacteria with Toxin Genes in the Nakdong River
2.5. ELISA-Based Toxin Analysis
2.6. Appearance Characteristics of INC
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Selection of INC and Cultivation of Toxin-Producing Cyanobacteria
5.2. Isolation of Genomic DNA
5.3. Design of Toxin and Genus-Specific Primers for Quantitative Gene Analysis
5.4. Quantitative Gene Analysis
5.5. Calculation of Genus-Specific Gene Copy Number per Cell for the Target Cyanobacteria
5.6. Calculation of Toxin Gene Copy Number per Cell for Toxin-Producing Cyanobacteria
5.7. Analysis of INC at Eight Sites in Nakdong River
5.8. Toxin Analysis Using ELISA Kit
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howard, A.; Easthope, M.P. Application of model to predict cyanobacterial growth patterns in response to climatic change at Farmoor Reservoir. Oxford, UK. Sci. Total Environ. 2002, 282–283, 459–469. [Google Scholar] [CrossRef]
- Komatsu, E.; Fukushima, T.; Harasawa, H. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecol. Model. 2007, 209, 351–366. [Google Scholar] [CrossRef]
- Sotero-Santos, R.B.; Carvalho, E.G.; Dellamano-Oliveira, M.J.; Rocha, O. Occurrence and toxicity of an Anabaena bloom in a tropical reservoir (Southeast Brazil). Harmful Algae 2008, 7, 509–598. [Google Scholar] [CrossRef]
- Walker, H.W. Harmful Algae Blooms in Drinking Water: Removal of Cyanobacterial Cells and Toxins; Taylor and Francis: Boca Raton, FL, USA, 2014. [Google Scholar]
- Watson, S.B. Aquatic taste and odor: A primary signal of drinking-water integrity. J. Toxicol. Environ. Health 2004, 67, 1779–1795. [Google Scholar] [CrossRef]
- Van Apeldoorn, M.E.; van Egmond, H.P.; Speijers, G.J.A.; Bakker, G.J.I. Toxins of cyanobacteria. Mol. Nut. Food Res. 2007, 51, 57–60. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef] [PubMed]
- Briand, J.F.; Leboulanger, C.; Humbert, J.F.; Bernard, C.; Dufour, P. Cylindrospermopsis raciborskii (cyanobacteria) invasion at mid-latitudes: Selection, wide physiological tolerance, or global warming? J. Phycol. 2004, 40, 231–238. [Google Scholar] [CrossRef]
- Antunes, J.T.; Leão, P.N.; Vasconcelos, V.M. Cylindrospermopsis raciborskii: Review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front. Microbiol. 2015, 6, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirés, S.; Ballot, A. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 2016, 54, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Kokociński, M.; Gagala, I.; Jasser, I.; Karosienė, J.; Kasperovičienė, J.; Kobos, J.; Koreivienė, J.; Sonininen, J.; Szczurowska, A.; Woszczyk, M.; et al. Distribution of invasive Cylindrospermopsis raciborskii in the East-Central Europe is driven by climatic and local environmental variables. FEMS Microbiol. Ecol. 2017, 93, fix035. [Google Scholar] [CrossRef] [Green Version]
- Kokociński, M.; Dziga, D.; Antosiak, A.; Soininen, J. Are bacterio-and phytoplankton community compositions related in lakes differing in their cyanobacteria contribution and physico-chemical properties? Genes 2021, 12, 855. [Google Scholar] [CrossRef] [PubMed]
- Huo, D.; Gan, N.; Geng, R.; Cao, Q.; Song, L.; Yu, G.; Li, R. Cyanobacterial blooms in China: Diversity, distribution, and cyanotoxins. Harmful Algae 2021, 109, 102106. [Google Scholar] [CrossRef]
- Kaštovský, J.; Hauer, T.; Mareš, J.; Krautová, M.; Bešta, T.; Komárek, J.; Desortová, B.; Heteša, J.; Hindáková, A.; Houk, V.; et al. A review of the alien and expansive species of freshwater cyanobacteria and algae in the Czech Republic. Biol. Invasions 2010, 12, 3599–3625. [Google Scholar] [CrossRef]
- Zapomělová, E.; Skácelová, O.; Pumann, P.; Kopp, R.; Janeček, E. Biogeo- graphically interesting planktonic Nostocales (Cyanobacteria) in the Czech Republic and their polyphasic evaluation resulting in taxonomic revisions of Anabaena bergii Ostenfeld 1908 (Chrysosporum gen. nov.) and A. tenericaulis Nygaard 1949 (Dolichospermum tenericaule comb. nova). Hydrobiologia 2012, 698, 353–365. [Google Scholar]
- Bolius, S.; Wiedner, C.; Weithoff, G. Low invasion success of an invasive cyanobacterium in a chlorophyte dominated lake. Sci. Rep. 2019, 9, 8297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivonen, K. Cyanobacterial Toxins. In Encyclopedia of Microbiology; Schaechter, M., Ed.; Elsevier Publishers: Oxford, UK, 2009; pp. 290–307. [Google Scholar]
- Chonudomkul, D.; Yongmanitchai, W.; Theeragool, G. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microbiol. Ecol. 2004, 48, 345–355. [Google Scholar] [CrossRef]
- Hodoki, Y.; Ohbayashi, K.; Kobayashi, Y.; Takasu, H.; Okuda, N.; Nakano, S. Anatoxin-a-producing Raphidiopsis mediterranea Skuja var. grandis Hill is one ecotype of non-heterocytous Cuspidothrix issatschenkoi (Usačev) Rajaniemi et al. in Japanese lakes. Harmful Algae 2013, 21–22, 44–53. [Google Scholar] [CrossRef]
- Lei, L.; Peng, L.; Huang, X.; Han, B.P. Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, SouthChina. Environ. Monit. Assess. 2014, 186, 3079–3090. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, G.; Pan, Q.; Yang, Y.; Li, R. Identification of genes for anatoxin-a biosynthesis in Cuspidothrix issatschenkoi. Harmful Algae 2015, 46, 43–48. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Lee, S.H.; Yun, M.R.; Oh, S.E.; Kim, J.S.; Moon, H.C.; Hwang, C.W.; Park, H.D. First isolation report and molecular phylogenetic characteristics of Raphidiopsis raciborskii in South Korea. Korean J. Microbiol. 2019, 55, 350–359. (In Korean) [Google Scholar]
- Song, M.A.; Lee, O.M. A study of newly recorded genera and species of filamentous blue-green algae (Cyanophyceae, cyanobacteria) in Korea. J. Ecol. Environ. 2015, 38, 619–627. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, H.K.; Kim, I.S. Invasion and toxin production by exotic nostocalean cyanobacteria (Cuspidothrix, Cylindrospermopsis, and Sphaerospermopsis) in the Nakdong River, Korea. Harmful Algae 2020, 100, 101954. [Google Scholar] [CrossRef]
- Komárek, J. Freshwater Flora of Central Europe Vol. 19/3 Cyanoprokaryota, 3rd Part: Heterocytous Genera; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Wilson, K.M.; Schembri, M.A.; Baker, P.D.; Saint, C.P. Molecular characterization of the toxic cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. Appl. Environ. Microbiol. 2000, 66, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, P.T.; Rasmussen, J.P.; Burford, M.A.; Eaglesham, G.K.; Lennox, S.M. Evaluation of quantitative real-time PCR to characterise spatial and temporal variations in cyanobacteria, Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju and cylindrospermopsin concentrations in three subtropical Australian reservoirs. Harmful Algae 2010, 9, 243–254. [Google Scholar] [CrossRef]
- Chiu, Y.T.; Chen, Y.H.; Wang, T.S.; Yen, H.K.; Lin, T.F. A qPCR-Based Tool to Diagnose the Presence of Harmful Cyanobacteria and Cyanotoxins in DrinkingWater Sources. Int. J. Environ. Res. Public Health 2017, 14, 547. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, J.; Karadžić, V.; Predojević, V.; Blagojević, A.; Popović, S.; Trbojević, I.; Simić, G.S. Morphological and ecological characteristics of potentially toxic invasive cyanobacterium Sphaerospermopsis aphanizomenoides (Forti) Zapomelová, Jezberová, Hrouzek, Hisem, Reháková & Komárková (Nostocales, Cyanobacteria) in Serbia. Braz. J. Bot. 2016, 39, 225–237. [Google Scholar]
- Budzyńska, A.; Gołdyn, R. Domination of invasive Nostocales (Cyanoprokaryota) at 52°N latitude. Phycol. Res. 2017, 65, 322–332. [Google Scholar] [CrossRef]
- Cordeiro, R.; Azevedo, J.; Luz, R.; Vasconcelos, V.; Goncalves, V.; Fonseca, A. Cyanotoxin screening in BACA culture collection: Identification of new cylindrospermopsin producing cyanobacteria. Toxins 2021, 13, 258. [Google Scholar] [CrossRef]
- Podduturi, R.; Schlüter, L.; Liu, T.; Osti, J.A.S.; Moraes, M.A.B.; Jørgensen, N.O.G. Monitoring of saxitoxin production in lakes in Denmark by molecular, chromatographic and microscopic approaches. Harmful Algae 2021, 101, 101966. [Google Scholar] [CrossRef]
- Kim, I.S.; Park, H.K.; Kim, Y.J. Development of genus-specific PCR primers for molecular monitoring of invasive nostocalean cyanobacteria. Int. J. Environ. Res. Public Health 2021, 18, 5703. [Google Scholar] [CrossRef]
- Kellmann, R.; Mills, T.; Neilan, B.A. Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes. J. Mol. Evol. 2006, 62, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Mihali, T.K.; Kellmann, R.; Muenchhoff, J.; Barrow, K.D.; Neilan, B.A. Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl. Environ. Microbiol. 2008, 74, 716–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gkelis, S.; Papadimitriou, T.; Zaoutsos, N.; Leonardos, I. Anthropogenic and climate-induced change favors toxic cyanobacteria blooms: Evidence from monitoring a highly eutrophic, urban Mediterranean lake. Harmful Algae 2014, 39, 322–333. [Google Scholar] [CrossRef]
- Ballot, A.; Schere, P.; Wood, S.A. Variability in the anatoxin gene clusters of Cuspidothrix issatschenkoi from Germany, New Zealand, China and Japan. PLoS ONE 2018, 13, e0200774. [Google Scholar] [CrossRef]
- Qiu, Y.; Yuan, T.; Kon, T.; Zurawell, R.; Huang, Y.; Graham, M.; Gabos, S.; Pang, X. Rapid detection and quantitation of microcystin-producing Microcystis using real-time PCR. J. Mol. Biomark. Diagn. 2013, S5, 006. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.C.; Yim, B.C.; Kim, B.H.; Yoon, B.S.; Lee, O.K. Development of mcyB-specific ultra-rapid real-time PCR for quantitative detection of Microcystis aeruginosa. J. Korean Soc. Water Environ. 2018, 34, 46–56. (In Korean) [Google Scholar]
- Zhang, W.; Lou, I.; Ung, W.K.; Kong, Y.; Mol, K.M. Application of PCR and real-time PCR for monitoring cyanobacteria, Microcystis spp. and Cylindrospermopsis raciborskii in Macau freshwater reservoir. Front. Earth Sci. 2014, 8, 291–301. [Google Scholar] [CrossRef]
- Gugger, M.; Molica, R.; Berre, B.L.; Dufour, P.; Bernard, C.; Humbert, J.F. Genetic diversity of Cylindrospermopsis strains (cyanobacteria) isolated from four continents. Appl. Environ. Microbiol. 2005, 71, 1097–1100. [Google Scholar] [CrossRef] [Green Version]
- Wiedner, C.; Rücker, J.; Brüggemann, R.; Nixdorf, B. Climate change affects timing and size of population of an invasive cyanobacterium in temperate regions. Oecologia 2007, 152, 473–484. [Google Scholar] [CrossRef]
- Park, H.K.; Lee, H.J.; Heo, J.; Yum, J.H.; Kim, Y.J.; Kim, H.M.; Hong, D.G.; Lee, I.J. Deciphering the key factors determining spatio-temporal heterogeneity of cyanobacterial bloom dynamics in the Nakdong River with consecutive large weirs. Sci. Total Environ. 2021, 775, 143079. [Google Scholar] [CrossRef]
- Bolch, C.; Blackburn, S. Isolation and purification of Australian isolates of toxic cyanobacteria Microcystis aeruginosa. J. Appl. Phycol. 1996, 8, 5–13. [Google Scholar] [CrossRef]
- Lee, H.G.; Kim, H.M.; Min, J.; Park, C.; Jeong, H.J.; Lee, K.; Kim, K.Y. Quantification of the paralytic shellfish poisoning dinoflagellate Alexandrium species using a digital PCR. Harmful Algae 2020, 92, 101726. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Cruz, M.C.; Williams, R.B.H.; Wuertz, S.; Whittle, A.J. Microbial abundance and community composition in biofilms on in-pipe sensors in a drinking water distribution system. Sci. Total Environ. 2021, 766, 142314. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.; Lee, J. Colonization of toxic cyanobacteria on the surface and inside of leafy green: A hidden source of cyanotoxin production and exposure. Int. J. Food Microbiol. 2021, 94, 103655. [Google Scholar] [CrossRef] [PubMed]
- Huggett, J.F.; Foy, C.A.; Benes, V.; Emslie, K.; Garson, J.A.; Haynes, R.; Hellemans, J.; Kubista, M.; Mueller, R.D.; Nolan, T. The digital MIQE guidelines: Minimum information for publication of quantitative digital PCR experiments. Clin. Chem. 2013, 59, 892–902. [Google Scholar] [CrossRef]
- John, D.M.; Whitton, B.A.; Brook, A.J. The Freshwater Algal Flora of the British Isles; An Identification Guide to Freshwater and Terrestrial Algae, 2nd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
No. | Cuspidothrix (rpoB) | Sphaerospermopsis (rbcLX) | Cylindrospermopsis (rpoC1) | |||
---|---|---|---|---|---|---|
Strain No. | Copies Cell−1 | Strain No. | Copies Cell−1 | Strain No. | Copies Cell−1 | |
1 | NIVA-711 | 1.4 | NRERC-600 | 1.6 | CS-1101 | 2.3 |
2 | NRERC-650 | 1.0 | NRERC-601 | 2.8 | NRERC-501 | 1.2 |
3 | NRERC-651 | 1.0 | NRERC-602 | 4.1 | NRERC-502 | 1.3 |
4 | NRERC-652 | 1.1 | NRERC-603 | 1.6 | NRERC-503 | 1.3 |
5 | NRERC-654 | 1.1 | NRERC-604 | 3.3 | NRERC-504 | 1.5 |
6 | NRERC-655 | 1.1 | NRERC-605 | 1.7 | ||
7 | NRERC-656 | 1.4 | NRERC-606 | 4.1 | ||
8 | NRERC-657 | 1.3 | NRERC-607 | 4.3 | ||
9 | NRERC-658 | 1.0 | NRERC-608 | 3.7 | ||
10 | NRERC-659 | 1.1 | ||||
11 | NRERC-660 | 1.2 | ||||
12 | NRERC-661 | 1.0 | ||||
Average | 1.1 | Average | 3.0 | Average | 1.3 |
Strain No. | Species Name | Target Gene | Cell Quota | |
---|---|---|---|---|
Gene (Copies Cell−1) | Toxin (pg Cell−1) | |||
NIVA-711 | Cuspidothrix issatschenkoi | anaF | 2.1 | 0.012 |
CS-1101 | Cylindrospermopsis raciborskii | cyrA, J | 2.0 | 0.013 |
NIVA-851 | Aphanizomenon gracile | sxtA, I | 2.1 | 0.001 |
Site | Saxitoxin 1 | Anatoxin-a 1 | Cylindrospermopsin 1 | |||
---|---|---|---|---|---|---|
13 Apr. | 27 Apr. | 11 May | 1 Jun. | 8 Jun. | Mar. to Nov. | |
SJ | ND 2 | ND | ND | ND | ND | ND |
ND | ND | ND | ND | 0.174 | 0.283 | ND |
GM | ND | ND | ND | ND | 0.154 | ND |
CG | ND | 0.032 | ND | ND | ND | ND |
GG | ND | ND | 0.024 | ND | ND | ND |
DS | 0.043 | ND | ND | ND | ND | ND |
HC | ND | ND | ND | ND | ND | ND |
CH | 0.023 | ND | ND | ND | ND | ND |
Species Name | Strains No. | Toxin |
---|---|---|
Cylindrospermopsis raciborskii | CS-1101 | Cylindrospermopsin |
Cylindrospermopsis raciborskii | NRERC-501, 502, 503, 504 | Nontoxic |
Sphaerospermopsis aphanizomenoides | NRERC-600, 601, 602, 603, 605, 606, 607 | Nontoxic |
Sphaerospermopsis reniformis | NRERC-604, 608 | Nontoxic |
Cuspidothrix issatschenkoi | NRERC-650, 651, 652, 655, 656, 657, 658, 659, 660 | Nontoxic |
Cuspidothrix issatschenkoi | NIVA-711, NRERC-654, 661 | Anatoxin-a |
Aphanizomenon gracile | NIVA-851 | Saxitoxin |
Gene | Primer | Sequence (5′→3′) | References |
---|---|---|---|
rpoC1 | dd-rpoC1-probe | ATCCTGGTAATGCTGACACACTCGTTT | This study |
dd-rpoC1-F | TGAGCAAATCGTCTACTTTAACTC | ||
dd-rpoC1-R | GCACCAATTCCTACTTCTACC | ||
rbcLX | dd-sph-probe | TGTTTTGGCGCAGCTAGGCGA | This study |
dd-sph-F | ATCTATGGGGCTGGGTCAAG | ||
dd-sph-R | GAATTTTCCCGGCAGAAAAG | ||
rpoB | dd-cus-probe | AACTGACAACGAGCAACAAACAACTGA | This study |
dd-cus-F | TAGTCAGTGGTCAATAGTCA | ||
dd-cus-R | TCTCACCAATGGTTTTTGATT |
Toxin | Gene | Primer | Sequence (5′→3′) | References |
---|---|---|---|---|
Ana | anaF | dd-anaF-probe | AAGCGCGGATGCTTGCAACC | This study |
dd-anaF-F | AAAGAATCCGACCTAGCTTT | |||
dd-anaF-R | AACCTTCACTGCGAACATAC | |||
Cyr | cyrA | dd-cyrA-probe | AATTGCCAACCGTTATCCATGAAGAGTT | This study |
dd-cyrA-F | CCCATCCCACATTGATTGTAC | |||
dd-cyrA-R | GCAGAACATAGGCATCTCATC | |||
cyrJ | dd-cyrJ-probe | CTGATTCGCCAACCCAAAGAAATGCTCT | ||
dd-cyrJ-F | GCATCAAGCGTATCATTTAAT | |||
dd-cyrJ-R | AGCCTGTTTCTTCAAAGGTAAA | |||
Sxt | sxtA | dd-sxtA-probe | CTCCTCCCGACACATGGAACCC | This study |
dd-sxtA-F | GCTACACAACGAGCAACG | |||
dd-sxtA-R | GGACGGTAATTAGCAATAATTCCC | |||
sxtI | dd-sxtI-probe | TGAATATGGACTACTTCAACTACACGGT | ||
dd-sxtI-F | CCATCTGTTGGATCTCAAAGA | |||
dd-sxtI-R | TGTGGAACTTATGATTGGTCA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; Park, H.-K.; Kim, I.-S. Assessment of the Appearance and Toxin Production Potential of Invasive Nostocalean Cyanobacteria Using Quantitative Gene Analysis in Nakdong River, Korea. Toxins 2022, 14, 294. https://doi.org/10.3390/toxins14050294
Kim Y-J, Park H-K, Kim I-S. Assessment of the Appearance and Toxin Production Potential of Invasive Nostocalean Cyanobacteria Using Quantitative Gene Analysis in Nakdong River, Korea. Toxins. 2022; 14(5):294. https://doi.org/10.3390/toxins14050294
Chicago/Turabian StyleKim, Yong-Jin, Hae-Kyung Park, and In-Soo Kim. 2022. "Assessment of the Appearance and Toxin Production Potential of Invasive Nostocalean Cyanobacteria Using Quantitative Gene Analysis in Nakdong River, Korea" Toxins 14, no. 5: 294. https://doi.org/10.3390/toxins14050294
APA StyleKim, Y. -J., Park, H. -K., & Kim, I. -S. (2022). Assessment of the Appearance and Toxin Production Potential of Invasive Nostocalean Cyanobacteria Using Quantitative Gene Analysis in Nakdong River, Korea. Toxins, 14(5), 294. https://doi.org/10.3390/toxins14050294