Biological Effects of Animal Venoms on the Human Immune System
Abstract
:1. Introduction
2. Effects on Innate Immunity
2.1. Effects on Phagocytes
2.2. Effects on Mast Cells
2.3. Effects on Complement
2.4. Effects on Cytokines
2.5. Effects on Inflammasomes
2.6. Effects on Transcription Factors
3. Effects on Adaptive Immunity
3.1. Effects on B-Lymphocytes
3.2. Effects on T-Lymphocytes
4. Effects on Binding to Extracellular Matrix
5. Biomedical Applications of Venom in Autoimmunity-Special Attention to Snake Venoms
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, E. (Ed.) A Textbook of Modern Toxicology, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 1–648. [Google Scholar]
- Zhang, Y. Why do we study animal toxins? Zool Res. 2015, 36, 183–222. [Google Scholar]
- Oldrati, V.; Arrell, M.; Violette, A.; Perret, F.; Sprüngli, X.; Wolfender, J.L.; Stöcklin, R. Advances in venomics. Mol. Biosyst. 2016, 12, 3530–3543. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.; Riedl, R. Paracelsus’ legacy in the faunal realm: Drugs deriving from animal toxins. Drug Discov. Today 2022, 27, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Khan, S. Advances in Usage of Venom Proteins as Diagnostics and Therapeutic Mediators. Protein Pept. Lett. 2018, 25, 610–611. [Google Scholar] [PubMed]
- Knoefel, P.K. Felice Fontana on poisons. Clio Med. 1980, 15, 35–66. [Google Scholar]
- Calmette, A. The Treatment of Animals Poisoned with Snake Venom by the Injection of Antivenomous Serum. Br. Med. J. 1896, 2, 399–400. [Google Scholar] [CrossRef] [Green Version]
- Pareja-Santos, A.; Saraiva, T.C.; Costa, E.P.; Santos, M.F.; Zorn, T.T.; Souza, V.M.O.; Lopes-Ferreira, M.; Lima, C. Delayed local inflammatory response induced by Thalassophryne nattereri venom is related to extracellular matrix degradation. Int. J. Exp. Pathol. 2009, 90, 34–43. [Google Scholar] [CrossRef]
- Herkert, M.; Shakhman, O.; Schweins, E.; Becker, C.M. Β-bungarotoxin is a potent inducer of apoptosis in cultured rat neurons by receptor-mediated internalization. Eur. J. Neurosci. 2001, 14, 821–828. [Google Scholar] [CrossRef]
- Lee, K.G.; Cho, H.J.; Bae, Y.S.; Park, K.K.; Choe, J.Y.; Chung, I.K.; Kim, M.; Yeo, J.-H.; Park, K.-H.; Lee, Y.-S. Bee venom suppresses LPS-mediated NO/iNOS induction through inhibition of PKC-α expression. J. Ethnopharmacol. 2009, 123, 15–21. [Google Scholar] [CrossRef]
- Cañas, C.A.; Castaño-Valencia, S.; Castro-Herrera, F.; Cañas, F.; Tobón, G.J. Biomedical applications of snake venom: From basic science to autoimmunity and rheumatology. J. Transl. Autoimmun. 2020, 4, 100076. [Google Scholar] [CrossRef] [PubMed]
- Park, S.P.; Kim, B.M.; Koo, J.Y.; Cho, H.; Lee, C.H.; Kim, M.; Na, H.S.; Oh, U. A tarantula spider toxin, GsMTx4, reduces mechanical and neuropathic pain. Pain 2008, 137, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S.A. Cellular and Molecular Immunology, 9th ed.; Elsevier: Philadelphia, PA, USA, 2018; pp. 1–565. [Google Scholar]
- Cray, C.; Zaias, J.; Altman, N.H. Acute phase response in animals: A review. Comp. Med. 2009, 59, 517–526. [Google Scholar] [PubMed]
- Dunkelberger, J.R.; Song, W.C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010, 20, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Zenewicz, L.A.; Shen, H. Innate and adaptive immune responses to Listeria monocytogenes: A short overview. Microbes Infect. 2007, 9, 1208–1215. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, L.M.; Vogel, L.A.; Bowden, R.M. Understanding the vertebrate immune system: Insights from the reptilian perspective. J. Exp. Biol. 2010, 213, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Zoccal, K.F.; Bitencourt, C.D.S.; Paula-Silva, F.W.G.; Sorgi, C.A.; De Castro Figueiredo Bordon, K.; Arantes, E.C.; Faccioli, L.H. TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators. PLoS ONE 2014, 9, e88174. [Google Scholar] [CrossRef] [Green Version]
- Jonas, P.; Vogel, W.; Arantes, E.C.G.J. Toxin gamma of the scorpion Tityus serrulatus modifies both activation and inactivation of sodium permeability of nerve membrane. Pflug. Arch. 1986, 407, 92–99. [Google Scholar] [CrossRef]
- Cologna, C.T.; Peigneur, S.; Rustiguel, J.K.; Nonato, M.C.; Tytgat, J.; Arantes, E.C. Investigation of the relationship between the structure and function of Ts2, a neurotoxin from Tityus serrulatus venom. FEBS J. 2012, 279, 1495–1504. [Google Scholar] [CrossRef]
- Novello, J.C.; Arantes, E.C.; Varanda, W.A.; Oliveira, B.; Giglio, J.R.; Marangoni, S. TsTX-IV, a short chain four-disulfide-bridged neurotoxin from Tityus serrulatus venom which acts on Ca2+-activated K+ channels. Toxicon 1999, 37, 651–660. [Google Scholar] [CrossRef]
- Zoccal, K.F.; da Bitencourt, C.S.; Sorgi, C.A.; de Bordon, K.C.F.; Sampaio, S.V.; Arantes, E.C.; Faccioli, L.H. Ts6 and Ts2 from Tityus serrulatus venom induce inflammation by mechanisms dependent on lipid mediators and cytokine production. Toxicon 2013, 61, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiguez, E.; Giannotti, K.C.; Moreira, V.; Matsubara, M.H.; Gutíerrez, J.M.; Lomonte, B.; Rodríguez, J.P.; Balsinde, J.; Teixeira, C. Critical role of TLR2 and MyD88 for functional response of macrophages to a group IIA-secreted phospholipase A2 from snake venom. PLoS ONE 2014, 9, e93741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, V.; Teixeira, C.; Da Silva, H.B.; D’Império Lima, M.R.; Dos-Santos, M.C. The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom. Toxicon 2016, 118, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Nunes, F.P.B.; Zychar, B.C.; Della-Casa, M.S.; Sampaio, S.C.; Gonçalves, L.R.C.; Cirillo, M.C. Crotoxin is responsible for the long-lasting anti-inflammatory effect of Crotalus durissus terrificus snake venom: Involvement of formyl peptide receptors. Toxicon 2010, 55, 1100–1106. [Google Scholar] [CrossRef]
- Teixeira, N.B.; Sant’Anna, M.B.; Giardini, A.C.; Araujo, L.P.; Fonseca, L.A.; Basso, A.S.; Cury, Y.; Picolo, G. Crotoxin down-modulates pro-inflammatory cells and alleviates pain on the MOG35-55-induced experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Brain Behav. Immun. 2020, 84, 253–268. [Google Scholar] [CrossRef]
- Freitas, A.P.; Favoretto, B.C.; Clissa, P.B.; Sampaio, S.C.; Faquim-Mauro, E.L. Crotoxin Isolated from Crotalus durissus terrificus venom modulates the functional activity of dendritic cells via formyl peptide receptors. J. Immunol. Res. 2018, 2018, 7873257. [Google Scholar] [CrossRef] [Green Version]
- Favoretto, B.C.; Ricardi, R.; Silva, S.R.; Jacysyn, J.F.; Fernandes, I.; Takehara, H.A.; Faquim-Mauro, E.L. Immunomodulatory effects of crotoxin isolated from Crotalus durissus terrificus venom in mice immunised with human serum albumin. Toxicon 2011, 57, 600–607. [Google Scholar] [CrossRef]
- Sampaio, S.C.; Sousa-e-Silva, M.C.; Borelli, P.; Curi, R.; Cury, Y. Crotalus durissus terrificus snake venom regulates macrophage metabolism and function. J. Leukoc. Biol. 2001, 70, 551–558. [Google Scholar]
- Sampaio, S.C.; Brigatte, P.; Sousa-E-Silva, M.C.C.; Dos-Santos, E.C.; Rangel-Santos, A.C.; Curi, R.; Cury, Y. Contribution of crotoxin for the inhibitory effect of Crotalus durissus terrificus snake venom on macrophage function. Toxicon 2003, 41, 899–907. [Google Scholar] [CrossRef]
- Morel, F.; Doussiere, J.; Vignais, P.V. The superoxide-generating oxidase of phagocytic cells: Physiological, molecular and pathological aspects. Eur. J. Biochem. 1991, 546, 523–546. [Google Scholar] [CrossRef]
- Cruz, A.H.; Mendonça, R.Z.; Petricevich, V.L. Crotalus durissus terrificus venom interferes with morphological, functional, and biochemical changes in murine macrophage. Mediat. Inflamm. 2005, 2005, 349–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuhara, Y.D.M.; Reis, M.L.; Dellalibera-Joviliano, R.; Cunha, F.Q.C.; Donadi, E.A. Increased plasma levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in patients moderately or severely envenomed by Tityus serrulatus scorpion sting. Toxicon 2003, 41, 49–55. [Google Scholar] [CrossRef]
- Petricevich, V.L.; Lebrun, I. Immunomodulatory effects of the Tityus serrulatus venom on murine macrophage functions in vitro. Mediat. Inflamm. 2005, 2005, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Petricevich, V.L.; Reynaud, E.; Cruz, A.H.; Possani, L.D. Macrophage activation, phagocytosis and intracellular calcium oscillations induced by scorpion toxins from Tityus serrulatus. Clin. Exp. Immunol. 2008, 154, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Zoccal, K.F.; da Bitencourt, C.S.; Secatto, A.; Sorgi, C.A.; de Bordon, K.C.F.; Sampaio, S.V.; Arantes, E.C.; Faccioli, L.H. Tityus serrulatus venom and toxins Ts1, Ts2 and Ts6 induce macrophage activation and production of immune mediators. Toxicon 2011, 57, 1101–1108. [Google Scholar] [CrossRef]
- Ramírez-Bello, V.; Sevcik, C.; Peigneur, S.; Tytgat, J.; D’Suze, G. Macrophage alteration induced by inflammatory toxins isolated from Tityus discrepans scorpion venom. The role of Na+/Ca2+ exchangers. Toxicon 2014, 82, 61–75. [Google Scholar] [CrossRef]
- Ait-Lounis, A.; Laraba-Djebari, F. TNF-alpha modulates adipose macrophage polarization to M1 phenotype in response to scorpion venom. Inflamm. Res. 2015, 64, 929–936. [Google Scholar] [CrossRef]
- Lee, M.J.; Jang, M.; Choi, J.; Lee, G.; Min, H.J.; Chung, W.S.; Kim, J.-I.; Jee, Y.; Chae, Y.; Kim, S.-H.; et al. Bee venom acupuncture alleviates experimental autoimmune encephalomyelitis by upregulating regulatory T cells and suppressing Th1 and Th17 responses. Mol. Neurobiol. 2016, 53, 1419–1445. [Google Scholar] [CrossRef]
- Gomez, H.F.; Miller, M.J.; Desai, A.; Warren, J.S. Loxosceles spider venom induces the production of alpha and beta chemokines: Implications for the pathogenesis of dermonecrotic arachnidism. Inflammation 1999, 23, 207–215. [Google Scholar]
- Dunbar, J.P.; Sulpice, R.; Dugon, M.M. The kiss of (cell) death: Can venom-induced immune response contribute to dermal necrosis following arthropod envenomations? Clin. Toxicol. 2019, 57, 677–685. [Google Scholar] [CrossRef]
- Lima, T.S.; Cataneo, S.C.; Iritus, A.C.C.; Sampaio, S.C.; Della-Casa, M.S.; Cirillo, M.C. Crotoxin, a rattlesnake toxin, induces a long-lasting inhibitory effect on phagocytosis by neutrophils. Exp. Biol. Med. 2012, 237, 1219–1230. [Google Scholar] [CrossRef] [PubMed]
- Pontes, A.S.; Da Setúbal, S.S.; Xavier, C.V.; Lacouth-Silva, F.; Kayano, A.M.; Pires, W.L.; Nery, N.M.; Boeri de Castro, O.; da Silva, S.D.; Calderon, L.A.; et al. Effect of l-amino acid oxidase from Calloselasma rhodosthoma snake venom on human neutrophils. Toxicon 2014, 80, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, J.C.; Grund, L.Z.; Seibert, C.S.; Marques, E.E.; Soares, A.B.; Quesniaux, V.F.; Ryffel, B.; Lopes-Ferreira, M.; Lima, C. Stingray venom activates IL-33 producing cardiomyocytes, but not mast cell, to promote acute neutrophil-mediated injury. Sci. Rep. 2017, 7, 7912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, G.R.; Neto, P.P.; Barbosa, F.C.; Dos Santos, R.S.; Brigatte, P.; Spencer, P.J.; Coccuzzo Sampaio, S.; D’ Amelio, F.; Carvalho Pimenta, D.; Mozer Sciani, J. Biochemical and biological characterization of the Hypanus americanus mucus: A perspective on stingray immunity and toxins. Fish Shellfish Immunol. 2019, 93, 832–840. [Google Scholar] [CrossRef]
- Schmitz, J.; Owyang, A.; Oldham, E.; Song, Y.; Murphy, E.; McClanahan, T.K.; Zurawski, G.; Moshrefi, M.; Qin, J.; Li, X. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005, 23, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Veldhoen, M.; Hirota, K.; Westendorf, A.M.; Buer, J.; Dumoutier, L.; Renauld, J.C.; Stockinger, B. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008, 453, 106–109. [Google Scholar] [CrossRef]
- Liu, Y.; Mei, J.; Gonzales, L.; Yang, G.; Dai, N.; Wang, P.; Zhang, P.; Favara, M.; Malcolm, K.C.; Guttentag, S. IL-17A and TNF-α Exert synergistic effects on expression of CXCL5 by alveolar type II Cells In Vivo and In Vitro. J. Immunol. 2011, 186, 3197–3205. [Google Scholar] [CrossRef] [Green Version]
- Sundell, I.B.; Aziz, K.A.; Zuzel, M.; Theakston, R.D. The role of phospholipases A2 in the stimulation of neutrophil motility by cobra venoms. Toxicon 2003, 41, 459–468. [Google Scholar] [CrossRef]
- Fialho, E.M.S.; Maciel, M.C.G.; Silva, A.C.B.; Reis, A.S.; Assunção, A.K.M.; Fortes, T.S.; Silva, L.A.; Guerra, R.N.M.; Kwasniewski, F.H.; Nascimento, F.R.F. Immune cells recruitment and activation by Tityus serrulatus scorpion venom. Toxicon 2011, 58, 480–485. [Google Scholar] [CrossRef]
- Borges, C.M.; Silveira, M.R.; Aparecida, M.; Beker, C.L.; Freire-Maia, L.; Teixeira, M.M. Scorpion venom-induced neutrophilia is inhibited by a PAF receptor antagonist in the rat. J. Leukoc. Biol. 2000, 67, 515–519. [Google Scholar] [CrossRef]
- Lima, T.S.; Neves, C.L.; Zambelli, V.O.; Lopes, F.S.R.; Sampaio, S.C.; Cirillo, M.C. Crotoxin, a rattlesnake toxin, down-modulates functions of bone marrow neutrophils and impairs the Syk-GTPase pathway. Toxicon 2017, 136, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Palm, N.W.; Medzhitov, R. Role of the inflammasome in defense against venoms. Proc. Natl. Acad. Sci. USA 2013, 110, 1809–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, T.; Camargo, E.A.; Ribela, M.T.C.P.; Damico, D.C.; Marangoni, S.; Antunes, E.; De Nucci, G.; Landucci, E.C.T. Inflammatory oedema induced by Lachesis muta muta (Surucucu) venom and LmTX-I in the rat paw and dorsal skin. Toxicon 2009, 53, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Burin, S.M.; Menaldo, D.L.; Sampaio, S.V.; Frantz, F.G.; Castro, F.A. An overview of the immune modulating effects of enzymatic toxins from snake venoms. Int. J. Biol. Macromol. 2018, 109, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Gülen, T.; Akin, C. Anaphylaxis and Mast Cell Disorders. Immunol. Allergy Clin. N. Am. 2022, 42, 45–63. [Google Scholar] [CrossRef]
- Vogel, C.W.; Fritzinger, D.C. Cobra venom factor: Structure, function, and humanization for therapeutic complement depletion. Toxicon 2010, 56, 1198–1222. [Google Scholar] [CrossRef]
- Kock, M.A.; Hew, B.E.; Bammert, H.; Fritzinger, D.C.; Vogel, C.W. Structure and function of recombinant cobra venom factor. J. Biol. Chem. 2004, 279, 30836–30843. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, C.; Tsuru, D.; Oda-Ueda, N.; Ohno, M.; Hattori, S.; Kim, S.T. Flavoxobin, a serine protease from Trimeresurus flavoviridis (habu snake) venom, independently cleaves Arg726-Ser727 of human C3 and acts as a novel, heterologous C3 convertase. Immunology 2002, 107, 111–117. [Google Scholar] [CrossRef]
- Menaldo, D.L.; Bernardes, C.P.; Pereira, J.C.; Silveira, D.S.C.; Mamede, C.C.N.; Stanziola, L.; de Olivera, F.; Pereira-Crott, L.S.; Favvioli, L.H.; Sampaio, S.V. Effects of two serine proteases from Bothrops pirajai snake venom on the complement system and the inflammatory response. Int. Immunopharmacol. 2013, 15, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Tambourgi, D.V.; van den Berg, C.W. Animal venoms/toxins and the complement system. Mol. Immunol. 2014, 61, 153–162. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chertov, O.; Yang, D.; Zack Howard, O.M.; Oppenheim, J.J. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol. Rev. 2000, 177, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Petricevich, V.L. Balance between pro- and anti-inflammatory cytokines in mice treated with Centruroides noxius scorpion venom. Mediat. Inflamm. 2006, 2006, 54273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adi-Bessalem, S.; Hammoudi-Triki, D.; Laraba-Djebari, F. Pathophysiological effects of Androctonus australis hector scorpion venom: Tissue damages and inflammatory response. Exp. Toxicol. Pathol. 2008, 60, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Raouraoua-Boukari, R.; Sami-Merah, S.; Hammoudi-Triki, D.; Martin-Eauclaire, M.F.; Laraba-Djebari, F. Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: Biomarker interactions. Neuroimmunomodulation 2012, 19, 103–110. [Google Scholar] [CrossRef]
- Nunes, D.C.O.; Rodrigues, R.S.; Lucena, M.N.; Cologna, C.T.; Oliveira, A.C.S.; Hamaguchi, A.; Homsi-Brandeburgo, M.I.; Arantes, E.C.; Teixeira, D.N.S.; Ueira-Vieira, C.; et al. Isolation and functional characterization of proinflammatory acidic phospholipase A2 from Bothrops leucurus snake venom. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 154, 226–233. [Google Scholar] [CrossRef]
- Corasolla Carregari, V.; Stuani Floriano, R.; Rodrigues-Simioni, L.; Winck, F.V.; Baldasso, P.A.; Ponce-Soto, L.A.; Marangoni, S. Biochemical, pharmacological, and structural characterization of new basic PLA2 Bbil-TX from Bothriopsis bilineata snake venom. Biomed. Res. Int. 2013, 2013, 612649. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, C.B.; Santos JC dos Silva, J.M.; Godoi PHS de Magalhães, M.R.; Spadafora-Ferreira, M.; Gonçalves Fonseca, S.; Pfrimer, I.A.H. Crotalus durissus collilineatus venom induces TNF- α and IL-10 production in human peripheral blood mononuclear cells. ISRN Inflamm. 2014, 2014, 563628. [Google Scholar] [CrossRef] [Green Version]
- Stone, S.F.; Isbister, G.K.; Shahmy, S.; Mohamed, F.; Abeysinghe, C.; Karunathilake, H.; Ariaratnam, A.; Jacoby-Alner, T.E.; Cotterell, C.L.; Brown, S.G.A. Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation. PLoS Negl. Trop. Dis. 2013, 7, e2326. [Google Scholar] [CrossRef]
- Petricevich, V.L.; Teixeira, C.F.P.; Tambourgi, D.V.; Gutiérrez, J.M. Increments in serum cytokine and nitric oxide levels in mice injected with Bothrops asper and Bothrops jararaca snake venoms. Toxicon 2000, 38, 1253–1266. [Google Scholar] [CrossRef]
- Boda, F.; Banfai, K.; Garai, K.; Curticapean, A.; Berta, L.; Sipos, E.; Kvell, K. Effect of Vipera ammodytes ammodytes snake venom on the human cytokine network. Toxins 2018, 10, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akdis, M.; Burgler, S.; Crameri, R.; Eiwegger, T.; Fujita, H.; Gomez, E.; Klunker, S.; Meyer, N.; O’Mahony, L.; Palomares, O.; et al. Interleukins: From 1 to 37, and Interferon- g: Receptors, functions and roles in diseases. Allergy Clin. Immunol. 2011, 127, 701–721. [Google Scholar] [CrossRef] [PubMed]
- da Setubal, S.S.; Pontes, A.S.; Nery, N.M.; Bastos, J.S.F.; Castro, O.B.; Pires, W.L.; Zaqueo, K.D.; de Azevedo Calderon, L.; Guerino Stábeli, R.; Andreimar Martins, S. Effect of Bothrops bilineata snake venom on neutrophil function. Toxicon 2013, 76, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández Cruz, A.; Garcia-Jimenez, S.; Zucatelli Mendonça, R.; Petricevich, V.L. Pro- and anti-inflammatory cytokines release in mice injected with Crotalus durissus terrificus venom. Mediat. Inflamm. 2008, 2008, 874962. [Google Scholar] [CrossRef] [Green Version]
- Hernández Cruz, A.; Barbosa Navarro, L.; Mendonça, R.Z.; Petricevich, V.L. Inflammatory mediators release in urine from mice injected with Crotalus durissus terrificus venom. Mediat. Inflamm. 2011, 2011, 103193. [Google Scholar] [CrossRef] [Green Version]
- Kayama, F.; Yoshida, T.; Elwell, M.I.L.M.R. Role of Tumor Necrosis Factor-α in cadmium-induced hepatotoxicity. Toxicol. Appl. Pharmacol. 1995, 131, 224–234. [Google Scholar] [CrossRef]
- Kocyigit, A.; Guler, E.M.; Kaleli, S. Anti-inflammatory and antioxidative properties of honey bee venom on Freund’s Complete Adjuvant-induced arthritis model in rats. Toxicon 2019, 161, 4–11. [Google Scholar] [CrossRef]
- De Almeida, C.S.; Andrade-Oliveira, V.; Câmara, N.O.S.; Jacysyn, J.F.; Faquim-Mauro, E.L. Crotoxin from Crotalus durissus terrificus is able to down-modulate the acute intestinal inflammation in mice. PLoS ONE 2015, 10, e0121427. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Cui, K.; Kou, J.; Wang, S.; Xu, Y.; Ding, Z.; Han, R.; Qin, Z. Naja naja atra venom protects against manifestations of systemic lupus erythematosus in MRL/lpr mice. Evid.-Based Complement Altern. Med. 2014, 2014, 969482. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, E.; Gassmann Figueiredo, R.I.; Vieira Pinto, R.; de Carvalho Freitas Ramos, T.; Pedral Sampaio, G.; Pereira Bulhosa Santos, R.; da Silva Guerreiro, M.L.; Biondi, I.; Castro Trindae, S. Evaluation of systemic inflammatory response and lung injury induced by Crotalus durissus cascavella venom. PLoS ONE 2020, 15, e0224584. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Z.; He, H.; Han, R.; Zhu, J.L.; Kou, J.Q.; Ding, X.L.; Qin, Z.-H. The protective effects of cobra venom from Naja naja atra on acute and chronic nephropathy. Evid.-Based Complement Altern Med. 2013, 2013, 478049. [Google Scholar]
- Ruan, Y.; Yao, L.; Zhang, B.; Zhang, S.; Guo, J. Anti-inflammatory effects of Neurotoxin-Nna, a peptide separated from the venom of Naja naja atra. BMC Complement Altern. Med. 2013, 13, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, Y.H.; Huh, J.E.; Lee, J.D.; Choi, D.Y.; Park, D.S. Antinociceptive effect and the mechanism of bee venom acupuncture (Apipuncture) on inflammatory pain in the rat model of collagen-induced arthritis: Mediation by α2-Adrenoceptors. Brain Res. 2006, 1073–1074, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Z.; Qin, Z.H. Anti-inflammatory and immune regulatory actions of Naja naja atra venom. Toxins 2018, 10, 100. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.; Bhattacharya, S.; Chakraborty, M.; Bhattacharjee, P.; Mishra, R.; Gomes, A. Anti-arthritic activity of Indian monocellate cobra (Naja kaouthia) venom on adjuvant induced arthritis. Toxicon 2010, 55, 670–673. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Escalante, T.; Rucavado, A.; Herrera, C.; Fox, J.W. A comprehensive view of the structural and functional alterations of extracellular matrix by snake venom metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming. Toxins 2016, 8, 304. [Google Scholar] [CrossRef] [Green Version]
- Fabrizio, C.; Fulvia, C.; Carlo, P.; Laura, M.; Elisa, M.; Francesca, M.; Romana, S.F.; Simona, T.; Cristiano, A.; Guido, V. Systemic Lupus Erythematosus with and without anti-dsDNA Antibodies: Analysis from a large monocentric cohort. Mediat. Inflamm. 2015, 2015, 328078. [Google Scholar] [CrossRef]
- Schroder, K.; Tschopp, J. The Inflammasomes. Cell 2010, 140, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Strowig, T.; Henao-Mejia, J.; Elinav, E.; Flavell, R. Inflammasomes in health and disease. Nature 2012, 481, 278–286. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. Shared Principles in NF-κB Signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.R.; Mu, T.C.; Gao, Z.X.; Wang, J.; Sy, M.S.; Li, C.Y. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κb (NF-κB) signaling and cytokine production. J. Biol. Chem. 2017, 292, 18747–18759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grozio, A.; Paleari, L.; Catassi, A.; Servent, D.; Cilli, M.; Piccardi, F.; Paganuzzi, M.; Cesario, A.; Granone, P.; Mourier, G.; et al. Natural agents targeting the alpha7-nicotinic-receptor in NSCLC: A promising prospective in anti-cancer drug development. Int. J. Cancer 2008, 122, 1911–1915. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Song, H.S.; Kim, K.H.; Son, D.J.; Lee, S.H.; Yoon, D.Y.; Kim, Y.; Park, I.Y.; Song, S.; Hwang, B.Y.; et al. Cobrotoxin inhibits NF-kappa B activation and target gene expression through reaction with NF-kappa B signal molecules. Biochemistry 2005, 44, 8326–8336. [Google Scholar] [CrossRef] [PubMed]
- Danneels, E.L.; Gerlo, S.; Heyninck, K.; Van Craenenbroeck, K.; De Bosscher, K.; Haegeman, G.; de Graaf, D.G. How the venom from the ectoparasitoid wasp Nasonia vitripennis exhibits anti-inflammatory properties on mammalian cell lines. PLoS ONE 2014, 9, e96825. [Google Scholar] [CrossRef] [Green Version]
- Riccardi, C.; Bruscoli, S.; Ayroldi, E.; Agostini, M.; Migliorati, G. Gilz, a glucocorticoid hormone induced gene, modulates t lymphocytes activation and death through interaction with NF-kB. Adv. Exp. Med. Biol. 2001, 495, 31–39. [Google Scholar]
- Shih, C.H.; Chiang, T.B.; Wang, W.J. Convulxin, a C-type lectin-like protein, inhibits HCASMCs functions via WAD-motif/integrin-αv interaction and NF-κB-independent gene suppression of GRO and IL-8. Exp. Cell Res. 2017, 352, 234–244. [Google Scholar] [CrossRef]
- Lee, K.J.; Kim, Y.K.; Krupa, M.; Nguyen, A.N.; Do, B.H.; Chung, B.; Vu, T.T.T.; Kim, S.C.; Choe, H. Crotamine stimulates phagocytic activity by inducing nitric oxide and TNF-α via p38 and NFκ-B signaling in RAW 264.7 macrophages. BMB Rep. 2016, 49, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Franklin, C.C.; Kraft, A.S. Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J. Biol. Chem. 1997, 272, 16917–16923. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.S.; Warrington, R.; Watson, W.; Kim, H.L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, D.F.; Mota, I. Effect of Crotalus venom on the humoral and cellular immune response. Toxicon 1997, 35, 607–612. [Google Scholar] [CrossRef]
- Rangel-Santos, A.; Lima, C.; Lopes-Ferreira, M.; Cardoso, D.F. Immunosuppresive role of principal toxin (crotoxin) of Crotalus durissus terrificus venom. Toxicon 2004, 44, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Ladics, G.S. Use of SRBC antibody responses for immunotoxicity testing. Methods 2007, 41, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.Q.; Han, R.; Xu, Y.L.; Ding, X.L.; Wang, S.Z.; Chen, C.X.; Hong-Zhang, J.; Ding, Z.H.; Qin, Z.-H. Differential effects of Naja naja atra venom on immune activity. Evid. -Based Complement Altern Med. 2014, 2014, 287631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambelli, V.O.; Sampaio, S.C.; Sudo-Hayashi, L.S.; Greco, K.; Britto, L.R.G.; Alves, A.S.; Zychar, B.C.; Gonçalves, L.R.; Spadacci-Morena, D.D.; Otton, R.; et al. Crotoxin alters lymphocyte distribution in rats: Involvement of adhesion molecules and lipoxygenase-derived mediators. Toxicon 2008, 51, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Savale, S.K.; Laboratories, M.; Nasik, L.; Development, B.M.; Estimation, S. Genotoxicity of Drugs: Introduction, Prediction and Evaluation. Asian J. Biomater. Res. 2018, 4, 1–29. [Google Scholar]
- Gajski, G.; Garaj-Vrhovac, V. Genotoxic potential of bee venom (Apis Mellifera) on human peripheral blood lymphocytes in vitro using single cell gel electrophoresis assay. J. Environ. Sci. Heal Part A Toxic. 2008, 43, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.O.; Park, S.Y.; Heo, M.S.; Kim, K.C.; Park, C.; Ko, W.S.; Choi, Y.H.; Kim, G.-Y. Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. Int. Immunopharmacol. 2006, 6, 1796–1807. [Google Scholar] [CrossRef]
- Marcussi, S.; Stábeli, R.G.; Santos-Filho, N.A.; Menaldo, D.L.; Silva Pereira, L.L.; Zuliani, J.P.; Calderon, L.A.; da Silva, S.L.; Greggi Antunes, L.M.; Soares, A.M. Genotoxic effect of Bothrops snake venoms and isolated toxins on human lymphocyte DNA. Toxicon 2013, 65, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, C.; Kucuksezer, U.C.; Akdis, M.; Akdis, C.A. Mechanisms of immunotherapy to wasp and bee venom. Clin. Exp. Allergy 2011, 41, 1226–1234. [Google Scholar] [CrossRef]
- Pereira-Santos, M.C.; Baptista, A.P.; Melo, A.; Alves, R.R.; Soares, R.S.; Pedro, E.; Pereira-Barbosa, M.; Victorino, R.M.M.; Sousa, A.E. Expansion of circulating Foxp3+CD25bright CD4+ T cells during specific venom immunotherapy. Clin. Exp. Allergy. 2008, 38, 291–297. [Google Scholar] [CrossRef]
- Meiler, F.; Zumkehr, J.; Klunker, S.; Rückert, B.; Akdis, C.A.; Akdis, M. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J. Exp. Med. 2008, 205, 2887–2898. [Google Scholar] [CrossRef] [Green Version]
- Plitas, G.; Rudensky, A.Y. Regulatory T Cells: Differentiation and Function. Cancer Immunol. Res. 2017, 4, 721–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caramalho, I.; Melo, A.; Pedro, E.; Barbosa, M.M.P.; Victorino, R.M.M.; Pereira Santos, M.C.; Sousa, A.E. Bee venom enhances the differentiation of human regulatory T cells. Allergy Eur. J. Allergy Clin. Immunol. 2015, 70, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sur, B.; Lee, B.; Yeom, M.; Hong, J.H.; Kwon, S.; Kim, S.T.; Lee, H.S.; Park, H.-J.; Lee, H.; Hahm, D.-H. Bee venom acupuncture alleviates trimellitic anhydride-induced atopic dermatitis-like skin lesions in mice. BMC Complement Altern Med. 2016, 16, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-M.; Liu, X.-J.; Bai, S.-S.; Mu, L.-L.; Kong, Q.-F.; Sun, B.; Wang, D.-D.; Wang, J.-H.; Shu, S.; Wang, G.-Y.; et al. The effect of electroacupuncture on T cell responses in rats with experimental autoimmune encephalitis. J. Neuroimmunol. 2010, 220, 25–33. [Google Scholar] [CrossRef]
- Yang, E.J.; Jiang, J.H.; Lee, S.M.; Yang, S.C.; Hwang, H.S.; Lee, M.S.; Choi, S.-U. Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J. Neuroinflamm. 2010, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zazueta-Favela, D.; Donis-Maturano, L.; Licea-Navarro, A.F.; Bernáldez-Sarabia, J.; Dan, K.W.L.; Cota-Arce, J.M.; Escobedo, G.; De León-Nava, M.A. Marine peptides as immunomodulators: Californiconus californicus-derived synthetic conotoxins induce IL-10 production by regulatory T cells (CD4+Foxp3+). Immunopharmacol. Immunotoxicol. 2019, 41, 463–468. [Google Scholar] [CrossRef]
- Kolls, J.K.; Lindén, A. Interleukin-17 family members and inflammation. Immunity 2004, 21, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Casella-Martins, A.; Ayres, L.R.; Burin, S.M.; Morais, F.R.; Pereira, J.C.; Faccioli, L.H.; Sampaio, S.V.; Arantes, E.C.; Castro, F.A.; Pereira-Crott, L.S. Immunomodulatory activity of Tityus serrulatus scorpion venom on human T lymphocytes. J. Venom Anim. Toxins Incl. Trop Dis. 2015, 21, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Cañas, C.A.; Castaño-Valencia, S.; Castro-Herrera, F. Pharmacological blockade of KV1.3 channel as a promising treatment in autoimmune diseases. J. Transl. Autoimmun. 2022, 5, 100146. [Google Scholar] [CrossRef] [PubMed]
- Garaj-Vrhovac, V.; Gajski, G. Evaluation of the cytogenetic status of human lymphocytes after exposure to a high concentration of bee venom in vitro. Arh. Hig. Rada Toksikol. 2009, 60, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajski, G.; Garaj-Vrhovac, V. Bee venom induced cytogenetic damage and decreased cell viability in human white blood cells after treatment in vitro: A multi-biomarker approach. Environ. Toxicol. Pharmacol. 2011, 32, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Gajski, G.; Domijan, A.M.; Žegura, B.; Štern, A.; Gerić, M.; Novak Jovanović, I.; Vrhovac, I.; Madunić, J.; Breljak, D.; Filipič, M.; et al. Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes. Toxicon 2016, 110, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Gajski, G.; Domijan, A.M.; Garaj-Vrhovac, V. Alterations of GSH and MDA levels and their association with bee venom-induced DNA damage in human peripheral blood leukocytes. Environ. Mol. Mutagen 2012, 53, 469–477. [Google Scholar] [CrossRef]
- Shattil, J.S.; Kashiwagi, H.; Pampori, N. Integrin signaling: The platelet paradigm. Blood 1988, 91, 2645–2657. [Google Scholar] [CrossRef] [Green Version]
- Marcinkiewicz, C.; Weinreb, P.H.; Calvete, J.J.; Kisiel, D.G.; Mousa, S.A.; George, P.T.; Roy, R.L. Obtustatin: A potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Res. 2003, 63, 2020–2023. [Google Scholar]
- Brown, M.C.; Staniszewska, I.; Del Valle, L.; Tuszynski, G.P.; Marcinkiewicz, C. Angiostatic activity of obtustatin as α1β1 integrin inhibitor in experimental melanoma growth. Int. J. Cancer 2008, 123, 2195–2203. [Google Scholar] [CrossRef] [Green Version]
- Staniszewska, I.; Walsh, E.M.; Rothman, V.L.; Gaathon, A.; Tuszynski, G.P.; Calvete, J.J.; Marcinkiewicz, C. Effect of VP12 and viperistatin on inhibition of collagen-receptor-dependent melanoma metastasis. Cancer Biol. Ther. 2009, 8, 1507–1516. [Google Scholar] [CrossRef] [Green Version]
- Tseng, Y.L.; Peng, H.C.; Huang, T.F. Rhodostomin, a disintegrin, inhibits adhesion of neutrophils to fibrinogen and attenuates superoxide production. J. Biomed. Sci. 2004, 11, 683–691. [Google Scholar] [CrossRef]
- Du, X.Y.; Navdaev, A.; Clemetson, J.M.; Magnenat, E.; Wells, T.N.; Clemetson, K.J. Bilinexin, a snake C-type lectin from Agkistrodon bilineatus venom agglutinates platelets via GPIb and alpha2beta1. Thromb. Haemost. 2001, 86, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Calvete, J.J.; Moreno-Murciano, M.P.; Theakston, R.D.; Kisiel, D.G.; Marcinkiewicz, C. Snake venom disintegrins: Novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem. J. 2003, 372, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.F.; Holt, J.C.; Lukasiewicz, H.; Niewiarowski, S. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J. Biol. Chem. 1987, 262, 16157–16163. [Google Scholar] [CrossRef]
- Golubkov, V.; Hawes, D.; Markland, F.S. Anti-angiogenic activity of contortrostatin, a disintegrin from Agkistrodon contortrix contortrix snake venom. Angiogenesis 2003, 6, 213–224. [Google Scholar] [CrossRef]
- Swenson, S.; Costa, F.; Minea, R.; Sherwin, R.P.; Ernst, W.; Fujii, G.; Yang, D.; Markland, F.S., Jr. Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol. Cancer Ther. 2004, 3, 499–511. [Google Scholar]
- Zhou, Q.; Nakada, M.T.; Arnold, C. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits angiogenesis. Angiogenesis 1999, 3, 183–191. [Google Scholar]
- Saldanha-Gama, R.F.; Moraes, J.A.; Mariano-Oliveira, A.; Coelho, A.L.; Walsh, E.M.; Marcinkiewicz, C.; Barja-Fidalgo, C. Alpha(9)beta(1) integrin engagement inhibits neutrophil spontaneous apoptosis: Involvement of Bcl-2 family members. Biochim. Biophys. Acta 2010, 1803, 848–857. [Google Scholar] [CrossRef] [Green Version]
- Schönthal, A.H.; Swenson, S.D.; Chen, T.C.; Markland, F.S. Preclinical studies of a novel snake venom-derived recombinant disintegrin with antitumor activity: A review. Biochem. Pharmacol. 2020, 181, 114149. [Google Scholar] [CrossRef]
- Urra, F.A.; Araya-Maturana, R. Targeting Metastasis with Snake Toxins: Molecular Mechanisms. Toxins. 2017, 9, 390. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, B.; Muhammad, F.; Sharif, A.; Anwar, M.I. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur. J. Pharmacol. 2021, 899, 174022. [Google Scholar] [CrossRef]
- Lucena, S.E.; Jia, Y.; Soto, J.G.; Parral, J.; Cantu, E.; Brannon, J.; Lardner, K.; Ramos, C.J.; Seoane, A.I.; Sánchez, E.E. Anti-invasive and anti-adhesive activities of a recombinant disintegrin, r-viridistatin 2, derived from the Prairie rattlesnake (Crotalus viridis viridis). Toxicon 2012, 60, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Lucena, S.; Saáchez, E.E.; Pereza, J.C. Toxicon. Anti-metastatic activity of the recombinant disintegrin, r-mojastin 1, from the Mohave rattlesnake. Toxicon 2011, 57, 794–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swenson, S.; Ramu, S.; Markland, F.S. Anti-angiogenesis and RGD-containing snake venom disintegrins. Curr. Pharm. Des. 2007, 13, 2860–2871. [Google Scholar] [CrossRef] [PubMed]
- Minea, R.; Swenson, S.; Costa, F.; Chen, T.C.; Markland, F.S. Development of a novel recombinant disintegrin, contortrostatin, as an effective anti-tumor and anti-angiogenic agent. Pathophysiol. Haemost. Thrombosis. 2005, 34, 177–183. [Google Scholar] [CrossRef]
- Swenson, S.; Costa, F.; Ernst, W.; Fujii, G.; Markland, F.S. Contortrostatin, a snake venom disintegrin with anti-angiogenic and anti-tumor activity. Pathophysiol. Haemost. Thrombosis 2005, 34, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.H.; Kim, S.H.; Han, K.Y. Inhibitory effect of salmosin, a Korean snake venom-derived disintegrin, on the integrin alphaV-mediated proliferation of SK-Mel-2 human melanoma cells. J. Pharm. Pharmacol. 2013, 55, 1577–1582. [Google Scholar] [CrossRef]
- McQuade, P.; Knight, L.C.; Welch, M.J. Evaluation of 64 Cuand125I-radiolabeled bitistatin as potential agents for targeting alphavbeta3 integrins in tumor angiogenesis. Bioconjug. Chem. 2004, 15, 988–996. [Google Scholar] [CrossRef]
- Della Morte, R.; Squillacioti, C.; Garbi, C. Echistatin inhibits pp125FAK autophosphorylation, paxillin phosphorylation and pp125FAK-paxillin interaction in fibronectin-adherent melanoma cells. Eur. J. Biochem. 2000, 267, 5047–5054. [Google Scholar] [CrossRef] [Green Version]
- You, W.K.; Seo, H.J.; Chung, K.H.; Kim, D.S. A novel metalloprotease from Gloydius halys venom induces endothelial cell apoptosis through its protease and disintegrin-like domains. J. Biochem. 2003, 134, 739–749. [Google Scholar] [CrossRef]
- Olfa, K.Z.; José, L.; Salma, D.; Amine, B.; Najet, S.A.; Nicolas, A.; Maxime, L.; Raoudha, Z.; Kamel, M.; Jaques, M.; et al. Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis. Lab. Investig. 2005, 85, 1507–1516. [Google Scholar] [CrossRef] [Green Version]
- Brazil, O.V.; Franceschi, J.P.; Waisbich, E. Pharmacology of crystalline crotoxin. I. Toxic. Mem. Inst. Butantan 1966, 33, 973–980. [Google Scholar]
- Rübsamen, K.; Breithaupt, H.; Habermann, E. Biochemistry and pharmacology of the crotoxin complex. I. subfractionation and recombination of the crotoxin complex. Naunyn Schmiedebergs Arch. Pharmakol. 1971, 270, 274–288. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.C.C.S.; Gonçalves, L.R.C.; Mariano, M. The venom of South American rattlesnakes inhibits macrophage functions and is endowed with antiinflammatory properties. Mediat. Inflamm. 1996, 5, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Picolo, G.; Giorgi, R.; Cury, Y. delta-opioid receptors and nitric oxide mediate the analgesic effect of Crotalus durissus terrificus snake venom. Eur. J. Pharmacol. 2000, 391, 55–62. [Google Scholar] [CrossRef]
- Rolim-Rosa, R.; Vieira, E.G.J.; Silles-Villarroel, M.; Siracusa, Y.Q.; Tizuka, H. Análise comparativa entre os diferentes esquemas de hiperimunização empregados na produção de soros antiofídicos pelo Instituto Butantan (1957–1979). Mem. Inst. Butantan 1980, 44, 259–268. [Google Scholar]
- Bolaños, R.; Cerdas, L. The production and control of anti-venous sera. Dev. Biol. Stand. 1978, 41, 109–116. [Google Scholar]
- Sant’Anna, M.B.; Lopes, F.S.R.; Kimura, L.F.; Giardini, A.C.; Sant’Anna, O.A.; Picolo, G. Crotoxin conjugated to SBA-15 nanostructured mesoporous silica induces long-last analgesic effect in the neuropathic pain model in mice. Toxins 2019, 11, 679. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, S.C.; Alba-Loureiro, T.C.; Brigatte, P.; Landgraf, R.G.; Dos Santos, E.C.; Curi, R.; Cury, Y. Lipoxygenase-derived eicosanoids are involved in the inhibitory effect of Crotalus durissus terrificus venom or crotoxin on rat macrophage phagocytosis. Toxicon 2006, 47, 313–321. [Google Scholar] [CrossRef]
- de Andrade, C.M.; Rey, F.M.; Cintra, A.; Sampaio, S.V.; Torqueti, M.R. Effects of crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, on human endothelial cells. Int. J. Biol. Macromol. 2019, 134, 613–621. [Google Scholar] [CrossRef]
- Habermann, E.; Breithaupt, H. Mini-review. The crotoxin complex—An example of biochemical and pharmacological protein complementation. Toxicon 1978, 16, 19–30. [Google Scholar] [CrossRef]
- Costa, L.A.; Miles, H.; Araujo, C.E.; Gonzalez, S.; Villarrubia, V.G. Cardiotoxin in therapy: Immunopharmacology. Immunotoxicology 1998, 20, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Shoibonov, B.B.; Osipov, A.V.; Kryukova, E.V.; Zinchenko, A.A.; Lakhtin, V.M.; Tsetlin, V.I.; Utkin, Y.N. Oxiagin from the Naja oxiana cobra venom is the first reprolysin inhibiting the classical pathway of complement. Mol. Immunol. 2005, 42, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
Animal (Venom From) | Description (Reference) | Possible Applications |
---|---|---|
Androctonus australis hector | Polarization from macrophages to the M1 subpopulation [39]. | Study of macrophage dynamics |
Elevation of pro-inflammatory cytokines such as IL-4, IL-6, IL-12, TNF-α and IL-1β [66]. | Study of forms of induction of cytokine release | |
Apis mellifera | Inhibition of phagocytosis [40]. Reduction of TNF-α, IL-1β levels, and the enzymatic activities of myeloperoxidase (MPO) and iNOS synthetase [85]. | Drugs to stop action of phagocytes. Ex. Hemophagocytic síndrome Anticytokine therapies |
Promotes a differentiation of naive CD4+ T-lymphocytes and mature thymocytes in the IL-10-producing Treg subpopulation [115]. Decrease of the production of Th2 and Th1 profile cytokines [118] | Immunosuppressive therapy | |
Bothrops asper | Production of eicosanoids such as PGE2 and LTB4 [18]. | Prostaglandin activation study |
Bothrops atrox | Modulation in cell migration [25]. Increase IL-1β IL-1B, IL-10, IL-6, TNF- α and eicosanoids release [25,54]. | Anti-inflammatory therapy |
Generation of C3a and C5a anaphylatoxins [57]. | Study of complement system | |
Genotoxic potential on peripheral blood lymphocytes [110]. | Human genome damage study | |
Bothrops bilineata | Elevation of pro-inflammatory cytokines such as IL-4, IL-6, IL-12, TNF-α and IL-1β [69]. | Study of forms of induction of cytokine release |
Stimulate the gene expression of IL-8 by neutrophils [75]. | Neutrophil chemotaxis study | |
Bothrops jararacussu | Alteration of the classical, alternative and lectin pathways of the complement system [62]. | Study of complement system |
Genotoxic potential on peripheral blood lymphocytes [110]. | Human genome damage study | |
Bothrops leucurus | Elevation of pro-inflammatory cytokines such as IL-4, IL-6, IL- 12, TNF-α and IL-1β [68]. | Study of forms of induction of cytokine release |
Bothrops pirajai | Alteration of the classical, alternative and lectin pathways of the complement system [61]. | Study of complement system |
Californiconus californicus | It decreases IL-17A production and shuts down NF-kB signaling [120]. | Immunosuppressive therapy |
Calloselasmarhodostoma | Reactive oxygen species and myeloperoxidase release [43]. Stimulate the gene expression of IL-8 by neutrophils [44]. | Neutrophil activation and neutrophil chemotaxis studies |
Centruroides margaritatus | Suppression of T-lymphocytes expansion, protein synthesis and IL-2 production [122]. | Immunosuppressive therapy |
Centruroides noxius | Secretion of TNF, IL-6 and IFN-γ. Subsequent elevation of IL -10 [35]. | Study of cytokine dynamics |
Crotalus durissus | Stimulation of formylated peptide receptor involved in chemotaxis [26]. | Study of chemotaxis |
Crotalus durissus cascavella | Mast cell activation and degranulation [57]. | Study of mast cell dynamics |
Crotalus durissus collilineatus | Mast cell activation and degranulation [57]. | Study of mast cell dynamics |
Anti-inflammatory response by IL-10 elevation [70]. | Immunosuppressive therapy | |
Crotalus durissus terrificus | Inhibition of leucocyte migration, dendritic cells maturation, and their IL-6, TNF-α and, IL-12, IL-2, IL-4 and IFN-γ production [12]. Decrease of the expression of MCH II, CD40, CD80, CD86 in dendritic cells [26,28]. Decrease of IgG1 and IgG2a antibodies levels [29]. | Immunosuppressive therapy |
Daboia russelii | Anti- inflammatory response by IL-10 elevation [71]. | Immunosuppressive therapy |
Hypanus americanus | Swelling and leukocyte infiltration in murine models [46]. | Study of inflammation |
Lachesis muta muta | Mast cell activation and degranulation [55]. | Study of mast cell dynamics |
Naja kauthia | Decrease of the excretion of hydroxyproline and glucosamine in the urine, as well as serum levels of acid phosphatase and alkaline phosphatase in arthritic rats [87]. | Anti-inflammatory therapy |
Naja mocambica mocambica | Modulation in cell migration. Increase IL-1B, IL-10, IL-6, TNF- α and eicosanoids release [50]. Activation of the complement system [56]. | Study of inflammation dynamics |
Naja naja atra | Anti-inflammatory response by reducing the levels of TNF-α, IL-1β and the enzymatic activities of myeloperoxidase (MPO) and iNOS synthetase [83,84]. Decrease of the TNF-α, IL-6 and Anti-dsDNA antibodies production [81]. Depletion the number of CD4+ and CD8+ T-lymphocytes [56]. Blocks NF-kB signaling [84]. | Immunosuppressive therapy |
Nasonia vitripennis | Suppression of the inhibitors IkBα and A20 [96]. | Study of inflammation dynamics |
Potamotrygon cf. henlei | Neutrophilia dependent on TLR/TRIF signaling [45] | Study of inflammation dynamics |
Tityus discrepans | TNF, NO production, and morphological alterations in macrophages [38]. | Study of inflammation dynamics |
Tityus serrulatus | Modulation in cell migration [51]. Increase of IL-1B, IL-10, IL-6, TNF- α and eicosanoids release [51]. Stimulate the production of NO and H2O2 [19]. Suppress the expansion of T-lymphocytes, the synthesis protein and IL-2 production [122]. | Study of inflammation dynamics |
Tityus zulianus | Myeloperoxidase and ROS release [42]. | Study of inflammation dynamics |
Trimeresurus flavoviridis | Activation of the complement system [60]. | Study of complement dynamics |
Vipera ammodytes ammodytes | Stimulates the expression of proinflammatory genes such as Il1a, Il1b, Il-8, Ifna2 and Ifnb1 [73]. Downregulation of the production of IL-12 and IL-18. Inhibition of the NF-kB pathway [74]. | Study of inflammation dynamics |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avalo, Z.; Barrera, M.C.; Agudelo-Delgado, M.; Tobón, G.J.; Cañas, C.A. Biological Effects of Animal Venoms on the Human Immune System. Toxins 2022, 14, 344. https://doi.org/10.3390/toxins14050344
Avalo Z, Barrera MC, Agudelo-Delgado M, Tobón GJ, Cañas CA. Biological Effects of Animal Venoms on the Human Immune System. Toxins. 2022; 14(5):344. https://doi.org/10.3390/toxins14050344
Chicago/Turabian StyleAvalo, Zharick, María Claudia Barrera, Manuela Agudelo-Delgado, Gabriel J. Tobón, and Carlos A. Cañas. 2022. "Biological Effects of Animal Venoms on the Human Immune System" Toxins 14, no. 5: 344. https://doi.org/10.3390/toxins14050344
APA StyleAvalo, Z., Barrera, M. C., Agudelo-Delgado, M., Tobón, G. J., & Cañas, C. A. (2022). Biological Effects of Animal Venoms on the Human Immune System. Toxins, 14(5), 344. https://doi.org/10.3390/toxins14050344