Comparative Pharmacodynamics of Three Different Botulinum Toxin Type A Preparations following Repeated Intramuscular Administration in Mice
Abstract
:1. Introduction
2. Results
2.1. Paretic Effects following Repeated IM Injections of BoNT/A
2.1.1. Comparison of Local Paresis among the Three BoNT/A Formulations
2.1.2. Course of Paretic Effects following Repeated IM Injections of Each BoNT/A
2.2. Chemodenervation on the Ipsilateral Hind Limb following Repeated IM Injections of BoNT/A
2.2.1. Comparison of Chemodenervation among the Three BoNT/A Formulations
2.2.2. Course of Chemodenervation following Repeated IM Injections of Each BoNT/A
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Preparation of Botulinum Toxin Type A Formulations
5.2. Repeated Intramuscular Injection of BoNT/A Formulations
5.3. Digit Abduction Score (DAS)
5.4. Compound Muscle Action Potential (CMAP) Assay
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poulain, B.; Popoff, M.R. Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic? Toxins 2019, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Ayyar, B.V.; Aoki, K.R.; Atassi, M.Z. The C-terminal heavy-chain domain of botulinum neurotoxin a is not the only site that binds neurons, as the N-terminal heavy-chain domain also plays a very active role in toxin-cell binding and interactions. Infect. Immun. 2015, 83, 1465–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunger, A.T.; Breidenbach, M.A.; Jin, R.; Fischer, A.; Santos, J.S.; Montal, M. Botulinum neurotoxin heavy chain belt as an intramolecular chaperone for the light chain. PLoS Pathog. 2007, 3, 1191–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montal, M. Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel. Toxicon 2009, 54, 565–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azarnia Tehran, D.; Pirazzini, M.; Leka, O.; Mattarei, A.; Lista, F.; Binz, T.; Rossetto, O.; Montecucco, C. Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. Cell Microbiol. 2017, 19, e12647. [Google Scholar] [CrossRef] [Green Version]
- Pirazzini, M.; Azarnia Tehran, D.; Zanetti, G.; Megighian, A.; Scorzeto, M.; Fillo, S.; Shone, C.C.; Binz, T.; Rossetto, O.; Lista, F.; et al. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins. Cell Rep. 2014, 8, 1870–1878. [Google Scholar] [CrossRef]
- Pirazzini, M.; Azarnia Tehran, D.; Zanetti, G.; Rossetto, O.; Montecucco, C. Hsp90 and Thioredoxin-Thioredoxin Reductase enable the catalytic activity of Clostridial neurotoxins inside nerve terminals. Toxicon 2018, 147, 32–37. [Google Scholar] [CrossRef]
- Binz, T.; Sikorra, S.; Mahrhold, S. Clostridial neurotoxins: Mechanism of SNARE cleavage and outlook on potential substrate specificity reengineering. Toxins 2010, 2, 665–682. [Google Scholar] [CrossRef] [Green Version]
- Lu, B. The destructive effect of botulinum neurotoxins on the SNARE protein: SNAP-25 and synaptic membrane fusion. PeerJ 2015, 3, e1065. [Google Scholar] [CrossRef] [Green Version]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef]
- Franciosa, G.; Pourshaban, M.; De Luca, A.; Buccino, A.; Dallapiccola, B.; Aureli, P. Identification of type A, B, E, and F botulinum neurotoxin genes and of botulinum neurotoxigenic clostridia by denaturing high-performance liquid chromatography. Appl. Environ. Microbiol. 2004, 70, 4170–4176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitemarsh, R.C.; Tepp, W.H.; Bradshaw, M.; Lin, G.; Pier, C.L.; Scherf, J.M.; Johnson, E.A.; Pellett, S. Characterization of botulinum neurotoxin A subtypes 1 through 5 by investigation of activities in mice, in neuronal cell cultures, and in vitro. Infect. Immun. 2013, 81, 3894–3902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Meng, J.; Lawrence, G.W.; Zurawski, T.H.; Sasse, A.; Bodeker, M.O.; Gilmore, M.A.; Fernandez-Salas, E.; Francis, J.; Steward, L.E.; et al. Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J. Biol. Chem. 2008, 283, 16993–17002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslanka, S.E.; Luquez, C.; Dykes, J.K.; Tepp, W.H.; Pier, C.L.; Pellett, S.; Raphael, B.H.; Kalb, S.R.; Barr, J.R.; Rao, A.; et al. A Novel Botulinum Neurotoxin, Previously Reported as Serotype H, Has a Hybrid-Like Structure With Regions of Similarity to the Structures of Serotypes A and F and Is Neutralized With Serotype A Antitoxin. J. Infect. Dis. 2016, 213, 379–385. [Google Scholar] [CrossRef]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.I.; Martinez-Carranza, M.; Dong, M.; Stenmark, P. Identification and characterization of a novel botulinum neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef]
- Zhang, Y.; Buchko, G.W.; Qin, L.; Robinson, H.; Varnum, S.M. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions. Biochem. Biophys. Res. Commun. 2011, 404, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Tehran, D.A.; Pirazzini, M. Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. Toxins 2018, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Zornetta, I.; Azarnia Tehran, D.; Arrigoni, G.; Anniballi, F.; Bano, L.; Leka, O.; Zanotti, G.; Binz, T.; Montecucco, C. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci. Rep. 2016, 6, 30257. [Google Scholar] [CrossRef]
- Scott, A.B. Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmology 1980, 87, 1044–1049. [Google Scholar] [CrossRef]
- Jankovic, J. Botulinum toxin in clinical practice. J. Neurol. Neurosurg. Psychiatry 2004, 75, 951–957. [Google Scholar] [CrossRef]
- Tsui, J.K. Botulinum toxin as a therapeutic agent. Pharmacol. Ther. 1996, 72, 13–24. [Google Scholar] [CrossRef]
- Takeuchi, T.; Okuno, T.; Miyashiro, A.; Kohda, T.; Miyamoto, R.; Izumi, Y.; Kozaki, S.; Kaji, R. Clinical Safety and Tolerability of A2NTX, a Novel Low-Molecular-Weight Neurotoxin Derived from Botulinum Neurotoxin Subtype A2, in Comparison with Subtype A1 Toxins. Toxins 2021, 13, 824. [Google Scholar] [CrossRef] [PubMed]
- Lowe, K.; Novak, I.; Cusick, A. Repeat injection of botulinum toxin A is safe and effective for upper limb movement and function in children with cerebral palsy. Dev. Med. Child Neurol. 2007, 49, 823–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naumann, M.; Albanese, A.; Heinen, F.; Molenaers, G.; Relja, M. Safety and efficacy of botulinum toxin type A following long-term use. Eur. J. Neurol. 2006, 13 (Suppl. 4), 35–40. [Google Scholar] [CrossRef]
- Benecke, R. Clinical relevance of botulinum toxin immunogenicity. BioDrugs 2012, 26, e1–e9. [Google Scholar] [CrossRef] [Green Version]
- Gordon, M.F.; Brashear, A.; Elovic, E.; Kassicieh, D.; Marciniak, C.; Liu, J.; Turkel, C.; Group, B.P.S.S. Repeated dosing of botulinum toxin type A for upper limb spasticity following stroke. Neurology 2004, 63, 1971–1973. [Google Scholar] [CrossRef]
- Rzany, B.; Dill-Muller, D.; Grablowitz, D.; Heckmann, M.; Caird, D.; German-Austrian Retrospective Study, G. Repeated botulinum toxin A injections for the treatment of lines in the upper face: A retrospective study of 4,103 treatments in 945 patients. Dermatol. Surg. 2007, 33, S18–S25. [Google Scholar] [CrossRef]
- Wanitphakdeedecha, R.; Kantaviro, W.; Suphatsathienkul, P.; Tantrapornpong, P.; Yan, C.; Apinumtham, C.; Srinoulprasert, Y. Association Between Secondary Botulinum Toxin A Treatment Failure in Cosmetic Indication and Anti-Complexing Protein Antibody Production. Dermatol. Ther. 2020, 10, 707–720. [Google Scholar] [CrossRef]
- Field, M.; Splevins, A.; Picaut, P.; van der Schans, M.; Langenberg, J.; Noort, D.; Snyder, D.; Foster, K. AbobotulinumtoxinA (Dysport®), OnabotulinumtoxinA (Botox®), and IncobotulinumtoxinA (Xeomin®) Neurotoxin Content and Potential Implications for Duration of Response in Patients. Toxins 2018, 10, 535. [Google Scholar] [CrossRef] [Green Version]
- Fortuna, R.; Vaz, M.A.; Youssef, A.R.; Longino, D.; Herzog, W. Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox). J. Biomech. 2011, 44, 39–44. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, S.B.; Yang, G.H.; Rhee, C.H. Mouse compound muscle action potential assay: An alternative method to conduct the LD50 botulinum toxin type A potency test. Toxicon 2012, 60, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.; Kang, W.H.; Rhee, C.H.; Yang, G.H.; Cruz, D.J.M. Comparative Pharmacodynamics Study of 3 Different Botulinum Toxin Type A Preparations in Mice. Dermatol. Surg. 2020, 46, e132–e138. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Stracenski, I.; Lackovic, Z. Comparison of analgesic effects of single versus repeated injection of botulinum toxin in orofacial formalin test in rats. J. Neural. Transm. 2013, 120, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogozhin, A.A.; Pang, K.K.; Bukharaeva, E.; Young, C.; Slater, C.R. Recovery of mouse neuromuscular junctions from single and repeated injections of botulinum neurotoxin A. J. Physiol. 2008, 586, 3163–3182. [Google Scholar] [CrossRef] [PubMed]
- Frevert, J. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products. Drugs R&D 2015, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Samizadeh, S.; De Boulle, K. Botulinum neurotoxin formulations: Overcoming the confusion. Clin. Cosmet. Investig. Dermatol. 2018, 11, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Aoki, K.R. A comparison of the safety margins of botulinum neurotoxin serotypes A, B, and F in mice. Toxicon 2001, 39, 1815–1820. [Google Scholar] [CrossRef]
- Bach, K.; Simman, R. The Multispecialty Toxin: A Literature Review of Botulinum Toxin. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4228. [Google Scholar] [CrossRef]
- Naumann, M.; Jost, W. Botulinum toxin treatment of secretory disorders. Mov. Disord. 2004, 19 (Suppl. 8), S137–S141. [Google Scholar] [CrossRef]
- Jankovic, J.; Esquenazi, A.; Fehlings, D.; Freitag, F.; Lang, A.M.; Naumann, M. Evidence-based review of patient-reported outcomes with botulinum toxin type A. Clin. Neuropharmacol. 2004, 27, 234–244. [Google Scholar] [CrossRef]
- Wissel, J. Towards flexible and tailored botulinum neurotoxin dosing regimens for focal dystonia and spasticity-Insights from recent studies. Toxicon 2018, 147, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Hefter, H.; Nickels, W.; Rosenthal, D.; Samadzadeh, S.; Albrecht, P. Continuous Increase of Efficacy under Repetitive Injections of Botulinum Toxin Type/A beyond the First Treatment for Adult Spastic Foot Drop. Toxins 2021, 13, 466. [Google Scholar] [CrossRef] [PubMed]
- Bellows, S.; Jankovic, J. Immunogenicity Associated with Botulinum Toxin Treatment. Toxins 2019, 11, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naumann, M.; Boo, L.M.; Ackerman, A.H.; Gallagher, C.J. Immunogenicity of botulinum toxins. J. Neural. Transm. 2013, 120, 275–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, W.W.; Jain, N.; Sublett, J.W. Immunogenicity of Botulinum Toxin Formulations: Potential Therapeutic Implications. Adv. Ther. 2021, 38, 5046–5064. [Google Scholar] [CrossRef] [PubMed]
Dosing Cycle | Parameter | Coretox® | Xeomin® | Botox® |
---|---|---|---|---|
First IM Injection | DASmax | 3.1 ± 0.4 a | 2.8 ± 0.5 a | 3.0 ± 0.0 a |
(Day 0) | Duration (days) | 42.0 ± 8.4 a | 35.0 ± 8.4 a | 45.4 ± 11.0 a |
DASAUC (DAS·day) | 59.4 ± 11.5 b | 40.4 ± 16.4 a | 55.1 ± 13.8 a,b | |
Second IM Injection | DASmax | 3.0 ± 0.0 b | 2.5 ± 0.5 a | 2.9 ± 0.4 a,b |
(Day 84) | Duration (days) | 52.5 ± 11.2 b | 33.1 ± 14.3 a | 41.8 ± 11.0 a,b |
DASAUC (DAS·day) | 75.6 ± 27.6 b | 34.7 ± 17.2 a | 51.0 ± 17.1 a,b | |
Third IM Injection | DASmax | 3.0 ± 0.0 b | 2.0 ± 0.5 a | 2.6 ± 0.5 b |
(Day 168) | Duration (days) | 68.3 ± 13.4 b | 32.4 ± 11.8 a | 44.6 ± 10.5 a |
DASAUC (DAS·day) | 103.4 ± 27.4 b | 29.9 ± 16.0 a | 57.1 ± 23.2 a |
Dosing Cycle | Parameter | Coretox® | Xeomin® | Botox® |
---|---|---|---|---|
First IM Injection | CMAPbaseline (mV) | 47.92 ± 0.59 a | 47.66 ± 0.83 a | 48.05 ± 0.53 a |
(Day 0) | CMAPmin (mV) | 1.45 ± 0.29 a | 3.49 ± 1.21 b | 1.43 ± 0.35 a |
CMAPAAC (mV·day) | 2045 ± 169 b | 1611 ± 264 a | 1918 ± 109 b | |
Second IM Injection | CMAPbaseline (mV) | 46.40 ± 0.84 a | 47.00 ± 0.74 a | 46.60 ± 0.92 a |
(Day 84) | CMAPmin (mV) | 1.61 ± 0.86 a | 3.05 ± 0.65 b | 1.46 ± 0.43 a |
CMAPAAC (mV·day) | 2271 ± 156 b | 1839 ± 216 a | 2198 ± 214 b | |
Third IM Injection | CMAPbaseline (mV) | 41.12 ± 2.87 a | 43.14 ± 3.37 a | 40.59 ± 3.94 a |
(Day 168) | CMAPmin (mV) | 0.58 ± 0.12 a | 3.19 ± 1.60 b | 1.11 ± 0.57 a |
CMAPAAC (mV·day) | 2752 ± 108 c | 2009 ± 298 a | 2377 ± 263 b |
Product | Batch (Expiry Date) | BoNT/A Form | Dosage Per Vial a | Preparation | Excipients b |
---|---|---|---|---|---|
Botox® | C5394C3 (Sept. 2021) | 900 kDa complex | 100 U | Vacuum-dried | 0.5 mg HSA 0.9 mg NaCl |
Xeomin® | 925559 (Sept. 2023) | 150 kDa NAP-free | 100 U | Lyophilized | 1.0 mg HSA 4.7 mg sucrose |
Coretox® | NSA20011 (May 2023) | 150 kDa NAP-free | 100 U | Lyophilized | L-methionine (q.s.) Polysorbate 20 (q.s.) 3.0 mg sucrose 0.9 mg NaCl |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byun, J.; Kwak, S.; Kwon, J.-H.; Shin, M.; Lee, D.-K.; Rhee, C.-H.; Kang, W.-h.; Oh, J.-W.; Cruz, D.J.M. Comparative Pharmacodynamics of Three Different Botulinum Toxin Type A Preparations following Repeated Intramuscular Administration in Mice. Toxins 2022, 14, 365. https://doi.org/10.3390/toxins14060365
Byun J, Kwak S, Kwon J-H, Shin M, Lee D-K, Rhee C-H, Kang W-h, Oh J-W, Cruz DJM. Comparative Pharmacodynamics of Three Different Botulinum Toxin Type A Preparations following Repeated Intramuscular Administration in Mice. Toxins. 2022; 14(6):365. https://doi.org/10.3390/toxins14060365
Chicago/Turabian StyleByun, Jaeyoon, Seongsung Kwak, Jin-Hee Kwon, Minhee Shin, Dong-Kyu Lee, Chang-Hoon Rhee, Won-ho Kang, Jae-Wook Oh, and Deu John M. Cruz. 2022. "Comparative Pharmacodynamics of Three Different Botulinum Toxin Type A Preparations following Repeated Intramuscular Administration in Mice" Toxins 14, no. 6: 365. https://doi.org/10.3390/toxins14060365
APA StyleByun, J., Kwak, S., Kwon, J. -H., Shin, M., Lee, D. -K., Rhee, C. -H., Kang, W. -h., Oh, J. -W., & Cruz, D. J. M. (2022). Comparative Pharmacodynamics of Three Different Botulinum Toxin Type A Preparations following Repeated Intramuscular Administration in Mice. Toxins, 14(6), 365. https://doi.org/10.3390/toxins14060365