Echis ocellatus Venom-Induced Reproductive Pathologies in Rat Model; Roles of Oxidative Stress and Pro-Inflammatory Cytokines
Abstract
:1. Introduction
2. Results
2.1. Clinical Signs of Toxicity
2.1.1. Epididymal Sperm Parameters
2.1.2. Sperm Abnormalities in Envenomed Rats
2.2. Reproductive Hormone Concentrations
2.3. Oxidative Stress Parameters
2.4. Pro-Inflammatory Cytokines Production
2.5. Histopathology
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals and Kits
5.2. Procurement of Snake Venom
5.3. Experimental Rats
5.3.1. Study Design
5.3.2. Envenoming Procedures
5.3.3. Body Weight Determination
5.3.4. Collection of Blood and Organ Sample
5.4. Epididymal Sperm Parameters
5.5. Hormonal Assays
5.6. Oxidative Stress Parameters in Testes and Epididymis
5.6.1. Measurement of Catalase (CAT) Activity
5.6.2. Measurement of the Reduced Glutathione (GSH) Level
5.6.3. Determination of Lipid Peroxidation
5.7. Cytokines Responses in the Testis and Epididymis
5.7.1. Preparation of Tissues Samples
5.7.2. Measurement of Tumor Necrosis Factor-Alpha (TNF-α) and Interleukin1-Beta (IL-1β) Production
5.8. Histological Evaluation
5.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sun, H.; Gong, T.; Jiang, Y.; Zhang, S.; Zhao, Y.; Wu, Q. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: Results from a global burden of disease study, 2017. Aging 2019, 11, 10952–10991. [Google Scholar] [CrossRef] [PubMed]
- WHO. Sexual and Reproductive Health: Infertility Is a Global Public Health Issue; World Health Organization: Geneva, Switzerland, 2014. Available online: http://www.who.int/reproductivehealth/topics/infertility/perspective/en/ (accessed on 22 June 2016).
- Chena, L.; Shib, G.; Huangc, D.; Lid, Y.; Mae, C.; Shia, M.; Suf, B.; Shi, G. Male sexual dysfunction: A review of literature on its pathological mechanisms, potential risk factors, and herbal drug intervention. Biomed. Pharmacother. 2019, 112, 108585. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Leisegang, K.; Sengupta, P. Oxidative stress in pathologies of male reproductive disorders. In Pathology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–27. [Google Scholar]
- Leisegang, K.; Dutta, S. Do lifestyle practices impede male fertility? Andrologia 2021, 53, e13595. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Shao, W.; Zuo, L.; Zhao, W.; Qin, H.; Hua, Y.; Lu, D.; Mi, C.; Zeng, S.; Zu, L. Mechanism of cadmium poisoning on testicular injury in mice. Oncol. Lett. 2019, 18, 1035–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberto-Silva, C.; Gilio, J.M.; Portaro, F.C.V.; Querobino, S.M.; Camargo, A.C.M. Angiotensin-converting enzyme inhibitors of Bothrops jararaca snake venom affect the structure of mice seminiferous epithelium. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 27. [Google Scholar] [CrossRef] [Green Version]
- Regeai, S.O.; Abusrer, S.A.; Shibani, N.S. Low semen quality and adverse histological changes in testes of adult male mice treated with bee venom (Apis mellifera). Open Vet. J. 2021, 11, 70–79. [Google Scholar] [CrossRef]
- Fernandes, F.H.; Bustos-Obregon, E.; Matias, R.; Dourado, D.M. Crotalus durissus sp. rattlesnake venom induces toxic injury in mouse sperm. Toxicon 2018, 153, 17–18. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.R.; Basavarajappa, B.S.; Arancio, O.; Aranha, I.; Gangadhara, N.S.; Yajurvedi, H.N.; Gowda, T.V. Isolation and characterization of “Reprotoxin”, a novel protein complex from Daboia russelii snake venom. Biochimie 2008, 90, 1545–1559. [Google Scholar] [CrossRef]
- Alberto-Silva, C.; Franzin, C.S.; Gilio, J.M.; Bonfim, R.S.; Querobino, S.M. Toxicological effects of bioactive peptide fractions obtained from Bothrops jararaca snake venom on the structure and function of mouse seminiferous epithelium. J. Venom. Anim. Toxins Incl. Trop. Dis. 2020, 26, e20200007. [Google Scholar] [CrossRef]
- Mbegbu, E.C.; Odo, R.I.; Ozioko, P.T.; Awachie, M.E.; Nwobi, L.G.; Obidike, I.R. Aqueous Allium sativum (garlic) extract ameliorated CdCl2-induced alterations in blood formation and spermatogenesis in albino rats. Trop. J. Pharm. Res. 2021, 20, 309–331. [Google Scholar] [CrossRef]
- Sabeti, P.; Pourmasumi, S.; Rahiminia, T.; Akyash, F.; Talebi, A.R. Etiologies of sperm oxidative stress. Int. J. Reprod. Biomed. 2016, 14, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, S.; Sengupta, P.; Slama, P.; Roychoudhury, S. Oxidative Stress, Testicular Inflammatory Pathways, and Male Reproduction. Int. J. Mol. Sci. 2021, 22, 10043. [Google Scholar] [CrossRef]
- Gruschwitz, M.S.; Brezinschek, R.; Brezinschek, H.P. Cytokine levels in the seminal plasma of infertile males. J. Androl. 1996, 17, 158–163. [Google Scholar] [PubMed]
- Laing, G.D.; Lee, L.; Smith, D.C.; Landon, J.; Theakston, R.D.G. Experimental Assessment of a New, Low-cost Antivenom for Treatment of Carpet viper (Echis ocellatus) envenoming. Toxicon 1995, 33, 307–313. [Google Scholar] [CrossRef]
- Chippaux, J.P. The Treatment of Snake Bites: Analysis of the Requirements and Assessment of Therapeutic Efficacy in Tropical Africa. In Perspectives in Molecular Toxinology; Menez, A., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002; pp. 457–472. [Google Scholar]
- Chippaux, J.P. Estimate of the burden of snakebites in sub-Saharan Africa: A meta-analytic approach. Toxicon 2011, 64, 34–48. [Google Scholar] [CrossRef]
- Stock, R.P.; Massoughbodji, A.; Alagón, A.; Chippaux, J.P. Bringing antivenoms to Sub-Saharan Africa. Nat. Biotechnol. 2007, 25, 173–177. [Google Scholar] [CrossRef]
- World Health Organisation. Snakebite Envenoming: A Strategy for Prevention and Control; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2019.
- Gomes, A.; Bhattacharjee, P.; Mishra, R. Anticancer potential of animal venoms and toxins. Indian J. Exp. Biol. 2010, 48, 93–103. [Google Scholar]
- Sunitha, K.; Hemshekhar, M.; Thushara, R.M.; Santhosh, M.S.; Sundaram, M.S.; Kemparaju, K.; Girish, K.S. Inflammation and oxidative stress in viper bite: An insight within and beyond. Toxicon 2015, 98, 89–97. [Google Scholar] [CrossRef]
- Ferreira, F.B.; Gomes, M.S.R.; de Souza, D.L.N.; Gimenes, S.N.C.; Castanheira, L.E.; Borges, M.H.; Rodrigues, R.S.; Yoneyama, K.A.G.; Brandeburgo, M.I.H.; Rodrigues, V.M. Molecular Cloning and Pharmacological Properties of an Acidic PLA2 from Bothrops pauloensis Snake Venom. Toxins 2013, 5, 2403–2419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, F.; Sun, Z.; Yan, X.; Zhou, B.; Wang, J. Effect of pubertal nano-TiO2 exposure on testosterone synthesis and spermatogenesis in mice. Arch. of Toxicol. 2014, 88, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Agarwal, A.; du Plessis, S.S. Physiological Role of Reactive Oxygen Species in Sperm Function: A Review. In Antioxidants in Male Infertility: A Guide for Clinicians and Researchers; Springer Science and Business Media: New York, NY, USA, 2014; pp. 69–89. [Google Scholar]
- Pasqualotto, F.F.; Sobreiro, B.P.; Hallak, J.; Pasqualotto, E.B.; Lucon, A.M. Sperm concentration and normal sperm morphology decrease and follicle-stimulating hormone level increases with age. BJU Int. 2005, 96, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Baumber, J.; Ball, B.A.; Gravance, C.G.; Medina, V.; Davies-Morel, M.C. The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J. Androl. 2000, 21, 895–902. [Google Scholar]
- Agarwal, A.; Prabakaran, S.A. Oxidative stress and antioxidants in male infertility: A difficult balance. Int. J. Reprod. Med. 2005, 3, 1–8. [Google Scholar]
- Agarwal, A.; Allamaneni, S. Oxidants and antioxidants in human fertility. Middle East Fertil. Soc. J. 2004, 9, 187–193. [Google Scholar]
- Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Adeyi, A.O.; Adeyemi, S.O.; Effiong, E.O.P.; Ajisebiola, B.S.; Adeyi, O.E.; James, A.S. Moringa oleifera extract extenuates Echis ocellatus venom-induced toxicities, histopathological impairments and Inflammation via enhancement of Nrf2 expression in rats. Pathophysiology 2021, 28, 98–115. [Google Scholar] [CrossRef]
- Giri, S.; Prasad, S.B.; Giri, A.; Sharma, G.D. Genotoxic effects of malathion: An organophosphorus insecticide, using three mammalian bioassays in vivo. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2002, 514, 223–231. [Google Scholar] [CrossRef]
- Dutta, S.; Majzoub, A.; Agarwal, A. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab. J. Urol. 2019, 17, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Selvam, M.K.P.; Sengupta, P.; Agarwal, A. Sperm DNA fragmentation and male infertility. In Genetics of Male Infertility; Springer: Berlin/Heidelberg, Germany, 2020; pp. 155–172. [Google Scholar]
- Shukla, K.K.; Mahdi, A.A.; Rajender, S. Apoptosis, spermatogenesis and male infertility. Front. Biosci. 2012, 4, 746–754. [Google Scholar] [CrossRef]
- Latchoumycandane, C.; Vaithinathan, S.; D’Cruz, S.; Mathur, P.P. Apoptosis and male infertility. In Male Infertility; Springer: Berlin/Heidelberg, Germany, 2020; pp. 479–486. [Google Scholar]
- Li, W.; Wang, F.; Liu, Z.; Wang, Y.; Wang, J.; Sun, F. Gold nanoparticles elevate plasma testosterone levels in male mice without affecting fertility. Small 2012, 9, 1708–1714. [Google Scholar] [CrossRef] [PubMed]
- Ono, N.; Oshio, S.; Niwata, Y.; Yoshida, S.; Tsukue, N.; Sugawara, I.; Takeda, K. Prenatal exposure to diesel exhaust impairs mouse spermatogenesis. Inhal. Toxicol. 2007, 19, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Merino, G.; Martinez-Chequer, J.C.; Chan, R.G.; Cuevas, M.L.; Carranza-Lira, S. Relationship between hormone levels and testicular biopsies of azoospermic men. Arch. of Androl. 1999, 42, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Babu, S.R.; Sadhnani, M.D.; Swarna, M.; Padmavathi, P.; Reddy, P.P. Evaluation of FSH, LH, and Testosterone levels in different subgroups of infertile males. Indian J. of Clin. Biochem. 2004, 19, 45–49. [Google Scholar] [CrossRef] [Green Version]
- O’Bryan, M.K.; Hedger, M.P. Inflammatory networks in the control of spermatogenesis. Chronic inflammation in an immunologically privileged tissue? Adv. Exp. Med. Biol. 2008, 636, 92–114. [Google Scholar] [CrossRef]
- Hedger, M.P. Toll-like receptors and signalling in spermatogenesis and testicular responses to inflammation—A perspective. J. Reprod. Immunol. 2011, 88, 130–141. [Google Scholar] [CrossRef]
- Allen, J.D.; Gow, A.J. Nitrite, NO and hypoxic vasodilation. Br. J. Pharmacol. 2009, 158, 1653–1654. [Google Scholar] [CrossRef] [Green Version]
- Sultana, T.; Svechnikov, K.; Weber, G.; Söder, O. Molecular cloning and expression of a functionally different alternative splice variant of prointerleukin-1alpha from the rat testis. Endocrinology 2000, 141, 4413–4418. [Google Scholar] [CrossRef]
- Loveland, K.L.; Klein, B.; Pueschl, D.; Indumathy., S.; Bergmann, M.; Loveland, B.E.; Hedger, M.P.; Schuppe, H.C. Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond. Front. Endocrinol. 2017, 8, 307. [Google Scholar] [CrossRef]
- Klein, B.; Haggeney, T.; Fietz, D.; Indumathy, S.; Loveland, K.L.; Hedger, M.; Kliesch, S.; Weidner, W.; Bergmann, M.; Schuppe, H. Specific immune cell and cytokine characteristics of human testicular germ cell neoplasia. Hum. Reprod. 2016, 31, 2192–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munzer, A.; Sack, U.; Mergl, R.; Schönherr, J.; Petersein, C.; Bartsch, S.; Kirkby, K.C.; Bauer, K.; Himmerich, H. Impact of Antidepressants on Cytokine Production of Depressed Patients in Vitro. Toxins 2013, 5, 2227–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alahmar, A.T.; Calogero, A.E.; Sengupta, P.; Dutta, S. Coenzyme Q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J. Mens. Health 2021, 39, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Adler, I. Comparison of the duration of spermatogenesis between male rodents and humans. Mutat. Res. 1996, 352, 169–172. [Google Scholar] [CrossRef]
- Rowett, H.G.O. Dissecting Guides of Rats with Notes on Mouse; Bulter and tanner LTD: London, UK, 1977; Volume 111, pp. 5–23. [Google Scholar]
- World Health Organisation. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organisation: Geneva, Switzerland, 2010. Available online: http://www.who.int/iris/handle/10665/44261 (accessed on 15 May 2014).
- Wyrobek, A.J.; Gordon, L.A.; Burkhart, J.G.; Francis, M.W.; Kapp, R.W.; Letz, G.; Whorton, M.D. An evaluation of the mouse sperm morphology test and other sperm tests in non-human mammals. A report of the United States Environmental Protection Agency Gene-Tox Program. Mutat. Res./Rev. Genet. Toxicol. 1983, 115, 1–72. [Google Scholar] [CrossRef]
- Aebi, H. Catalase. Methods Enzymol. 1984, 1059, 121–125. [Google Scholar]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohnishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Yacoub, T.; Rima, M.; Sadek, R.; Hleihel, W.; Fajloun, Z.; Karam, M. Montivipera bornmuelleri venom has immunomodulatory effects mainly up-regulating pro-inflammatory cytokines in the spleens of mice. Toxicol. Rep. 2018, 5, 318–323. [Google Scholar] [CrossRef]
Groups. | Envenomation | Day 1 | Day 19 | Day 50 | Mortality (%) |
---|---|---|---|---|---|
Control | - | - | - | - | 0.00 |
Envenomed | - | - | 1 | - | 10.00 |
Groups | Body Weight Gain (g) | Testicular Weight (g) | Testiculo Somatic Index (%) |
---|---|---|---|
Control | 6.87 ± 0.83 b | 1.49 ± 0.06 b | 3.60 ± 0.56 b |
Envenomed | 4.74 ± 0.77 a | 1.24 ± 0.04 a | 2.62 ± 0.57 a |
Sperm Motility (%) | Sperm Volume (mL) | Sperm Count (106/mL) | ||
---|---|---|---|---|
Groups | Motile | Immotile | ||
Control | 76.89 ± 1.50 b | 23.11 ± 1.34 a | 11.00 ± 1.52 b | 16.64 ± 0.74 b |
Envenomed | 18.47 ± 0.57 a | 81.53 ± 0.57 b | 6.81 ± 0.75 a | 7.91 ± 0.41 a |
Sperm Parameters | Control | Envenomed |
---|---|---|
Amorphous head (AM) | 4.58 ± 0.47 a | 25.32 ± 1.09 b |
Banana shape (BS) | 4.22 ± 0.80 a | 55.93 ± 1.16 b |
Double tails (DT) | 0.00 ± 0.00 a | 29.10 ± 1.14 b |
Folded Sperm (FS) | 4.21 ± 0.40 a | 45.80 ± 1.20 b |
Abnormal mid-piece (AMP) | 0.00 ± 00.00 a | 27.47 ± 1.00 b |
Long and sickled hook (LSH) | 2.67 ± 0.31 a | 28.38 ± 0.39 a |
Double head (DH) | 0.00 ± 0.00 a | 21.61 ± 0.42 b |
Short hook (SH) | 4.31 ± 0.24 a | 26.51 ± 1.57 b |
Wrong tail attachment (WTA) | 2.08 ± 0.44 a | 39.39 ± 1.01 b |
Pin head (PH) | 1.04 ± 0.22 a | 22.82 ± 0.62 b |
No hook (NH) | 3.39 ± 0.68 a | 45.12 ± 1.21 b |
Wrong-angled hook (WAH) | 5.94 ± 1.11 a | 40.10 ± 1.77 b |
Total abnormal cells | 32.44 ± 0.79 a | 407.55 ± 2.65 b |
Percentage abnormalities | 3.24 ± 0.77 a | 40.76 ± 2.50 b |
Groups | FSH (ng/mL) | TEST (ng/mL) | LH (ng/mL) |
---|---|---|---|
Control | 437.00 ± 28.43 a | 2.02 ± 0.26 a | 48.00 ± 1.16 a |
Envenomed | 498.67 ± 13.86 b | 2.40 ± 0.09 b | 55.67 ± 2.02 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajisebiola, B.S.; Alamu, P.I.; James, A.S.; Adeyi, A.O. Echis ocellatus Venom-Induced Reproductive Pathologies in Rat Model; Roles of Oxidative Stress and Pro-Inflammatory Cytokines. Toxins 2022, 14, 378. https://doi.org/10.3390/toxins14060378
Ajisebiola BS, Alamu PI, James AS, Adeyi AO. Echis ocellatus Venom-Induced Reproductive Pathologies in Rat Model; Roles of Oxidative Stress and Pro-Inflammatory Cytokines. Toxins. 2022; 14(6):378. https://doi.org/10.3390/toxins14060378
Chicago/Turabian StyleAjisebiola, Babafemi Siji, Priscilla Ifeoluwa Alamu, Adewale Segun James, and Akindele Oluwatosin Adeyi. 2022. "Echis ocellatus Venom-Induced Reproductive Pathologies in Rat Model; Roles of Oxidative Stress and Pro-Inflammatory Cytokines" Toxins 14, no. 6: 378. https://doi.org/10.3390/toxins14060378
APA StyleAjisebiola, B. S., Alamu, P. I., James, A. S., & Adeyi, A. O. (2022). Echis ocellatus Venom-Induced Reproductive Pathologies in Rat Model; Roles of Oxidative Stress and Pro-Inflammatory Cytokines. Toxins, 14(6), 378. https://doi.org/10.3390/toxins14060378