An Interlaboratory Comparison Study of Regulated and Emerging Mycotoxins Using Liquid Chromatography Mass Spectrometry: Challenges and Future Directions of Routine Multi-Mycotoxin Analysis including Emerging Mycotoxins
Abstract
:1. Introduction
2. Results
2.1. Homogeneity of the Sample Material
2.2. Summary of Reported Data
2.3. Contamination Patterns and Concentration Range
2.4. Overview of Total z-Score Performance
2.5. Overview of Individual Laboratory Performance
2.5.1. Soy Matrix
2.5.2. Corn Gluten Matrix
2.5.3. Chicken Feed Matrix
2.5.4. Swine Feed Matrix
3. Discussion
3.1. Contamination Pattern
3.2. Matrix-Dependent Deviations
3.3. Matrix-Independent Deviations
3.4. Internal Standard vs. Recovery Correction
4. Conclusions
- An overall value of 70% for satisfactory z-score results within ±2 proves that all participating laboratories delivered accurate data which are fit for purpose for official control of regulated toxins as well as emerging mycotoxins, even in complex matrix material. The applied methods also proved their applicability in a broad concentration range, from high to trace contaminations [3].
- There is broad consensus in terms of sample preparation strategies as the majority of participants used an acetonitrile-based water mixture under acidic conditions. Therefore, this sample preparation protocol can be seen as the most suitable compromise for multi-mycotoxin methods.
- Diverse and broad contamination patterns for both regulated and emerging mycotoxins, such as BEA and ENNs, provide a relevant basis for future combined risk assessment. We learned that, from a technical perspective, routine laboratories can accommodate the demands of expanding scopes, as they have successfully incorporated methods to detect emerging mycotoxins into their routine portfolio.
- The study also underscores the demand of certified matrix reference materials for a broad range of mycotoxins, which can be used as internal quality control materials. The availability of such materials is currently restricted, but the study proves that the production of such materials can be stimulated by future proficiency tests especially designed for this purpose.
- The development and production of [13C]-labeled standards will become essential for emerging mycotoxins and for the most prevalent compounds, such as BEA, ENNs and MON in particular. The data demonstrated significant benefits for laboratories that applied internal standards for regulated mycotoxins, suggesting this as the most effective way to compensate for matrix effects.
5. Materials and Methods
5.1. Interlaboratory Comparison: Responsibilities and Coordination
5.2. Analytes of Interest
5.3. Samples
Conduct of Measurements for Homogeneity Study
5.4. Comparison of Methods for Extraction and Determination
5.5. Data Analysis
5.5.1. Calculation of Assigned Value (X)
5.5.2. Target Standard Deviation (σp)
σp = | 0.22c | if c < 1.2 × 10−7 | |
0.02c 0.8495 | if 1.2 × 10−7 ≤ c ≤ 0.138 | ||
0.01c 0.5 | if c > 0.138 |
5.5.3. z-Scores
|z| ≤ 2 | result is acceptable |
2 < |z| ≤ 3 | result is questionable |
|z| > 3 | result is unacceptable |
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eskola, M.; Elliott, C.T.; Hajšlová, J.; Steiner, D.; Krska, R. Towards a dietary-exposome assessment of chemicals in food: An update on the chronic health risks for the European consumer. Crit. Rev. Food Sci. Nutr. 2020, 60, 1890–1911. [Google Scholar] [CrossRef] [PubMed]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- De Girolamo, A.; Ciasca, B.; Stroka, J.; Bratinova, S.; Pascale, M.; Visconti, A.; Lattanzio, V.M.T. Performance evaluation of LC–MS/MS methods for multi-mycotoxin determination in maize and wheat by means of international Proficiency Testing. TrAC Trends Anal. Chem. 2017, 86, 222–234. [Google Scholar] [CrossRef]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krska, R.; Schubert-Ullrich, P.; Molinelli, A.; Sulyok, M.; Macdonald, S.; Crews, C. Mycotoxin analysis: An update. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 152–163. [Google Scholar] [CrossRef]
- FAO. Climate Change: Unpacking the Burden on Food Safety; FAO: Rome, Italy, 2020. [Google Scholar]
- Steiner, D.; Malachová, A.; Sulyok, M.; Krska, R. Challenges and future directions in LC-MS-based multiclass method development for the quantification of food contaminants. Anal. Bioanal. Chem. 2021, 413, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Steiner, D.; Sulyok, M.; Malachová, A.; Mueller, A.; Krska, R. Realizing the simultaneous liquid chromatography-tandem mass spectrometry based quantification of >1200 biotoxins, pesticides and veterinary drugs in complex feed. J. Chromatogr. A 2020, 1629, 461502. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Cramer, B.; Dall’Asta, C.; DeRosa, M.C.; Lattanzio, V.M.T.; Malone, R.; Maragos, C.; Stranska, M.; Sumarah, M. Developments in mycotoxin analysis: An update for 2020–2021. World Mycotoxin J. 2022, 15, 3–25. [Google Scholar] [CrossRef]
- Steiner, D.; Krska, R.; Malachová, A.; Taschl, I.; Sulyok, M. Evaluation of Matrix Effects and Extraction Efficiencies of LC-MS/MS Methods as the Essential Part for Proper Validation of Multiclass Contaminants in Complex Feed. J. Agric. Food Chem. 2020, 68, 3868–3880. [Google Scholar] [CrossRef]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef] [Green Version]
- ISO/IEC 17025:2005; General Requirements for the Competence of Testing and Calibration Laboratories. International Standard Organization: Geneva, Switzerland, 2005; 2005.
- Sibanda, L.; McCallum, K.; Plotan, M.; Webb, S.; Snodgras, B.; Muenks, Q.; Porter, J.; Fitzgerald, P. Interlaboratory collaboration to determine the performance of the Randox food diagnostics biochip array technology for the simultaneous quantitative detection of seven mycotoxins in feed. World Mycotoxin J. 2022, 15, 241–250. [Google Scholar] [CrossRef]
- ISO 13528:2015; Statistical methods for use in proficiency testing by interlaboratory comparison. International Standard Organization: Geneva, Switzerland, 2015; p. 207.
- Commission of the European Union. COMMISSION REGULATION (EC) No 1881/2006. Off. J. Eur. Union 2006, 364, 15–24.
- Thompson, M.; Ellison, S.L.R.; Wood, R. The International Harmonized Protocol for the proficiency testing of analytical chemistry laboratories (IUPAC Technical Report). Pure Appl. Chem. 2006, 78, 145–196. [Google Scholar] [CrossRef]
- Asuero, A.G.; Sayago, A.; Gonzalez, A.G. The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Häggblom, P.; Nordkvist, E. Deoxynivalenol, zearalenone, and Fusarium graminearum contamination of cereal straw; field distribution; and sampling of big bales. Mycotoxin Res. 2015, 31, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Rheeder, J.P.; Marasas, W.F.O.; Vismer, H.F. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 2002, 68, 2101–2105. [Google Scholar] [CrossRef] [Green Version]
- Jestoi, M. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef]
- Ropejko, K.; Twarużek, M. Zearalenone and Its Metabolites-General Overview, Occurrence, and Toxicity. Toxins 2021, 13, 35. [Google Scholar] [CrossRef]
- Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Krska, R.; Schatzmayr, G. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 2013, 5, 504–523. [Google Scholar] [CrossRef] [Green Version]
- Gruber-Dorninger, C.; Novak, B.; Nagl, V.; Berthiller, F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem. 2017, 65, 7052–7070. [Google Scholar] [CrossRef]
- Martínez-Domínguez, G.; Romero-González, R.; Arrebola, F.J.; Garrido Frenich, A. Multi-class determination of pesticides and mycotoxins in isoflavones supplements obtained from soy by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Food Control 2016, 59, 218–224. [Google Scholar] [CrossRef]
- Habinshuti, I.; Chen, X.; Yu, J.; Mukeshimana, O.; Duhoranimana, E.; Karangwa, E.; Muhoza, B.; Zhang, M.; Xia, S.; Zhang, X. Antimicrobial, antioxidant and sensory properties of Maillard reaction products (MRPs) derived from sunflower, soybean and corn meal hydrolysates. LWT 2019, 101, 694–702. [Google Scholar] [CrossRef]
- Patil, U.S.; King, S.; Holleran, S.; White, K.; Stephenson, C.; Reuther, J. Identifying challenges and risks associated with the analysis of major mycotoxins in feed and botanicals. J. AOAC Int. 2019, 102, 1689–1694. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.-X.; Tokach, M.D.; Woodworth, J.C.; DeRouchey, J.M.; Goodband, R.D.; Calderón, H.I.; Dritz, S.S. Effects of fumonisin-contaminated corn on growth performance of 9 to 28 kg nursery pigs. Toxins 2020, 12, 604. [Google Scholar] [CrossRef] [PubMed]
- Kovalsky, P.; Kos, G.; Nährer, K.; Schwab, C.; Jenkins, T.; Schatzmayr, G.; Sulyok, M.; Krska, R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize–An extensive survey. Toxins 2016, 8, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vohra, M.; Manwar, J.; Manmode, R.; Padgilwar, S.; Patil, S. Bioethanol production: Feedstock and current technologies. J. Environ. Chem. Eng. 2014, 2, 573–584. [Google Scholar] [CrossRef]
- Saunders, D.S.; Meredith, F.I.; Voss, K.A. Control of Fumonisin: Effects of Processing. Environ. Health Perspect. 2001, 109, 333–336. [Google Scholar] [CrossRef]
- Prettl, Z.S.; Lepossa, A.; Tóth, É.; Kelemen-Horváth, I.; Németh, Á.S.; Nagy, E. Effects and changes of zearalenone and fumonisin contamination in corn-based bioethanol process. Hung. J. Ind. Chem. 2011, 39, 427–431. [Google Scholar]
- Berwanger, E.; Nunes, R.V.; Pasquetti, T.J.; Murakami, A.E.; De Oliveira, T.M.M.; Bayerle, D.F.; Frank, R. Sunflower cake with or without enzymatic complex for broiler chickens feeding. Asian-Australasian J. Anim. Sci. 2017, 30, 410–416. [Google Scholar] [CrossRef]
- Varga, E.; Glauner, T.; Köppen, R.; Mayer, K.; Sulyok, M.; Schuhmacher, R.; Krska, R.; Berthiller, F. Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS. Anal. Bioanal. Chem. 2012, 402, 2675–2686. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cheung, W. Determination of pesticides in soy-based infant formula using liquid chromatography with electrospray ionization tandem mass spectrometry. J. AOAC Int. 2006, 89, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Meneely, J.P.; Ricci, F.; Van Egmond, H.P.; Elliott, C.T. Current methods of analysis for the determination of trichothecene mycotoxins in food. TrAC Trends Anal. Chem. 2011, 30, 192–203. [Google Scholar] [CrossRef]
- Guide 35—Reference Materials—Guidance for Characterization and Assessment of Homogeneity and Stability; International Standard Organization: Geneva, Switzerland, 2017; Volume 8, p. 114.
- Linsinger, T.P.J.; Pauwels, J.; Van Der Veen, A.M.H.; Schimmel, H.; Lamberty, A. Homogeneity and stability of reference materials. Accredit. Qual. Assur. 2001, 6, 20–25. [Google Scholar] [CrossRef]
- Sante/11312/2021; Analytical Quality Control and Method Validation for Pesticide Residues Analysis in Food and Feed. European Commission: Brussels, Belgium, 2021.
- Bao, L.; Bao, Z.; Zhang, Y.; Liang, C.; Lu, N.; Liu, X.; Jin, Y.; Pei, J.Z.; Ge, M.; Tian, L. Aflatoxin Testing in Peanuts: A Proficiency Assessment Scheme for Chinese Analytic Laboratories. Food Chem. Contam. 2009, 92, 481–486. [Google Scholar] [CrossRef]
- Thompson, M. Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing. Anal. Commun. 2000, 125, 385–386. [Google Scholar] [CrossRef]
Matrix | Compound | Average [µg/kg] | swu [µg/kg] | sbu [µg/kg] | σp [µg/kg] | ubu [%] |
---|---|---|---|---|---|---|
Chicken feed | 15-acetyldeoxynivalenol | 114 | 6.32 | 4.04 | 25.0 | 4 |
alternariol | 25.3 | 1.11 | 1.19 | 5.57 | 5 | |
beauvericin | 4.46 | 1.37 | 0.00 | 0.98 | 8 | |
deoxynivalenol-3-glucoside | 78.2 | 3.45 | 4.74 | 17.2 | 6 | |
deoxynivalenol | 413 | 37.0 | 0.00 | 75.5 | 2 | |
enniatin B | 15.3 | 2.00 | 0.00 | 3.37 | 4 | |
enniatin B1 | 10.7 | 1.93 | 0.00 | 2.36 | 5 | |
fumonisin B1 | 182 | 5.74 | 8.20 | 37.6 | 5 | |
fumonisin B2 | 45.9 | 3.19 | 0.00 | 10.1 | 2 | |
fumonisin B3 | 15.8 | 1.50 | 0.37 | 3.47 | 3 | |
HT-2 toxin | 53.8 | 20.3 | 1.28 | 11.8 | 10 | |
moniliformin | 38.9 | 0.94 | 2.23 | 8.56 | 6 | |
ochratoxin A | 0.38 | 0.10 | 0.02 | 0.08 | 7 | |
T-2 toxin | 39.8 | 2.86 | 0.35 | 8.76 | 2 | |
zearalenone | 45.0 | 3.06 | 1.60 | 9.89 | 4 | |
Swine feed | enniatin B | 2.77 | 0.62 | 0.00 | 0.61 | 6 |
fumonisin B1 | 163 | 7.79 | 8.05 | 34.2 | 5 | |
fumonisin B2 | 36.6 | 2.02 | 0.90 | 8.04 | 2 | |
fumonisin B3 | 12.4 | 1.27 | 0.72 | 2.73 | 6 | |
moniliformin | 53.2 | 2.37 | 2.40 | 11.7 | 5 | |
ochratoxin A | 16.6 | 0.72 | 0.92 | 3.65 | 6 | |
T-2 toxin | 5.93 | 0.65 | 0.22 | 1.30 | 4 | |
zearalenone | 4.65 | 0.16 | 0.29 | 1.02 | 6 | |
Soy | enniatin A | 0.95 | 0.02 | 0.00 | 0.21 | 0.4 |
enniatin B | 1.46 | 0.09 | 0.07 | 0.32 | 5 | |
enniatin B1 | 1.40 | 0.05 | 0.02 | 0.31 | 2 | |
fumonisin B1 | 5.41 | 0.66 | 0.00 | 1.19 | 3 | |
fumonisin B2 | 4.94 | 0.52 | 0.23 | 1.09 | 5 | |
zearalenone | 1.63 | 0.12 | 0.04 | 0.36 | 2 | |
Corn Gluten | 15-acetyldeoxynivalenol | 203 | 9.42 | 5.67 | 41.3 | 3 |
alternariol | 19.7 | 0.92 | 0.70 | 4.34 | 4 | |
beauvericin | 56.2 | 3.40 | 2.64 | 12.4 | 5 | |
deoxynivalenol | 311 | 12.0 | 0.00 | 59.3 | 1 | |
enniatin A | 0.33 | 0.05 | 0.01 | 0.07 | 4 | |
enniatin A1 | 2.01 | 0.37 | 0.00 | 0.44 | 5 | |
enniatin B | 13.3 | 0.56 | 0.71 | 2.92 | 5 | |
enniatin B1 | 7.50 | 0.40 | 0.36 | 1.65 | 5 | |
fumonisin B1 | 1041 | 58.5 | 14.4 | 166 | 2 | |
fumonisin B2 | 552 | 16.9 | 0.00 | 96.5 | 1 | |
fumonisin B3 | 174 | 7.35 | 2.95 | 36.2 | 2 | |
HT-2 toxin | 75.7 | 19.3 | 0.00 | 16.7 | 7 | |
moniliformin | 8.03 | 0.47 | 0.00 | 1.77 | 2 | |
ochratoxin A | 2.13 | 0.22 | 0.00 | 0.47 | 3 | |
T-2 toxin | 35.5 | 3.54 | 0.00 | 7.81 | 3 | |
zearalenone | 620 | 20.1 | 15.8 | 107 | 3 |
15-Ac-DON | 3-Ac-DON | AFB1 | AFB2 | AFG1 | AFG2 | AOH | BEA | D3G | DON | ENN-A | ENN-A1 | ENN-B | ENN-B1 | FB1 | FB2 | FB3 | HT-2 | MON | NIV | OTA | OTB | T-2 | ZEN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of participants | 6 | 6 | 10 | 10 | 10 | 10 | 7 | 7 | 5 | 10 | 7 | 7 | 5 | 7 | 10 | 10 | 5 | 10 | 5 | 7 | 10 | 7 | 10 | 10 |
Chicken Feed | ||||||||||||||||||||||||
No. of quantitative results | 66 | 26 | 43 | 1 | 10 | 1 | 89 | 160 | 47 | 157 | 54 | 99 | 140 | 153 | 170 | 146 | 29 | 62 | 65 | 14 | 88 | 19 | 114 | 187 |
No. of statistical data points | 60 | 6 | 7 | - | - | - | 89 | 160 | 39 | 157 | 30 | 99 | 140 | 153 | 164 | 146 | 19 | 42 | 61 | - | 76 | 14 | 110 | 187 |
Max assigned value (µg/kg) | 81.1 | 19.6 | 1.51 | - | - | - | 16.2 | 41.2 | 80.3 | 725 | 0.83 | 5.09 | 91.3 | 21.3 | 340 | 97.3 | 40.1 | 34.7 | 116 | - | 4.71 | 3.51 | 25.6 | 66.3 |
Med assigned value (µg/kg) | 42.6 | 19.6 | 1.51 | - | - | - | 3.97 | 15.4 | 68.1 | 250 | 0.58 | 2.23 | 18.5 | 6.21 | 127 | 44.7 | 26.0 | 15.6 | 63.3 | - | 2.06 | 3.51 | 4.53 | 29.0 |
Min assigned value (µg/kg) | 28.7 | 19.6 | 1.51 | - | - | - | 1.11 | 7.32 | 54.3 | 17.8 | 0.40 | 1.37 | 4.79 | 3.54 | 29.2 | 15.4 | 15.9 | 9.71 | 11.6 | - | 0.50 | 3.51 | 1.69 | 7.01 |
Acceptable z-scores in % | 87 | 33 | 57 | - | - | - | 47 | 61 | 69 | 69 | 93 | 61 | 61 | 66 | 65 | 54 | 95 | 76 | 95 | - | 47 | 50 | 76 | 83 |
Questionable z-scores in % | 8 | - | - | - | - | - | 21 | 21 | 15 | 18 | 7 | 14 | 16 | 17 | 16 | 16 | 5 | 17 | 5 | - | 17 | - | 11 | 11 |
Unacceptable z-scores in % | 5 | 67 | 43 | - | - | - | 31 | 19 | 15 | 13 | - | 25 | 22 | 17 | 19 | 30 | - | 7 | - | - | 36 | 50 | 13 | 6 |
Swine Feed | ||||||||||||||||||||||||
No. of quantitative results | 72 | 44 | 21 | 2 | 10 | 4 | 81 | 150 | 73 | 179 | 78 | 121 | 151 | 142 | 124 | 100 | 20 | 50 | 80 | 45 | 72 | 9 | 72 | 159 |
No. of statistical data points | 62 | 30 | 15 | - | 10 | - | 73 | 150 | 59 | 179 | 74 | 121 | 151 | 142 | 114 | 89 | 12 | 38 | 80 | 41 | 60 | - | 60 | 159 |
Max assigned value (µg/kg) | 100 | 30.6 | 2.67 | - | 0.83 | - | 19.1 | 25.3 | 156 | 1185 | 3.51 | 17.1 | 77.0 | 51.7 | 673 | 174 | 83.1 | 14.0 | 120 | 85.3 | 16.7 | - | 5.32 | 69.0 |
Med assigned value (µg/kg) | 44.9 | 26.7 | 2.67 | - | 0.83 | - | 4.11 | 7.04 | 125 | 365 | 2.60 | 9.21 | 47.5 | 24.0 | 76.5 | 13.4 | 83.1 | 9.69 | 43.3 | 51.9 | 5.81 | - | 3.00 | 13.2 |
Min assigned value (µg/kg) | 18.8 | 9.43 | 2.67 | - | 0.83 | - | 1.30 | 2.47 | 62.2 | 36.5 | 0.67 | 0.69 | 3.94 | 2.17 | 22.6 | 7.40 | 83.1 | 3.66 | 13.4 | 25.6 | 1.97 | - | 1.43 | 3.14 |
Acceptable z-scores in % | 55 | 57 | 93 | - | 90 | - | 58 | 75 | 90 | 72 | 85 | 74 | 67 | 72 | 71 | 63 | 100 | 82 | 69 | 76 | 62 | - | 70 | 81 |
Questionable z-scores in % | 15 | 23 | 7 | - | 0 | - | 18 | 12 | 7 | 12 | 8 | 14 | 18 | 15 | 11 | 9 | - | 8 | 21 | 24 | 15 | - | 18 | 9 |
Unacceptable z-scores in % | 31 | 20 | - | - | 10 | - | 25 | 13 | 3 | 16 | 7 | 12 | 15 | 13 | 18 | 28 | - | 11 | 10 | - | 23 | - | 12 | 10 |
15-Ac-DON | 3-Ac-DON | AFB1 | AFB2 | AFG1 | AFG2 | AOH | BEA | D3G | DON | ENN-A | ENN-A1 | ENN-B | ENN-B1 | FB1 | FB2 | FB3 | HT-2 | MON | NIV | OTA | OTB | T-2 | ZEN | |
No. of participants | 6 | 6 | 10 | 10 | 10 | 10 | 7 | 7 | 5 | 10 | 7 | 7 | 5 | 7 | 10 | 10 | 5 | 10 | 5 | 7 | 10 | 7 | 10 | 10 |
Corn Gluten | ||||||||||||||||||||||||
No. of quantitative results | 77 | 39 | 37 | 2 | 18 | - | 127 | 140 | 14 | 138 | 36 | 70 | 117 | 103 | 198 | 192 | 113 | 141 | 65 | 4 | 95 | 8 | 163 | 184 |
No. of statistical data points | 73 | 24 | 26 | - | 6 | - | 127 | 140 | 8 | 138 | 14 | 68 | 113 | 95 | 198 | 192 | 113 | 139 | 65 | - | 80 | - | 160 | 184 |
Max assigned value (µg/kg) | 257 | 81.2 | 1.89 | - | 1.74 | - | 22.0 | 445 | 121 | 837 | 0.72 | 4.98 | 20.1 | 12.3 | 1481 | 706 | 286 | 61.7 | 193 | - | 8.93 | - | 43.1 | 825 |
Med assigned value (µg/kg) | 124 | 58.9 | 1.82 | - | 1.74 | - | 15.7 | 287 | 121 | 216 | 0.69 | 1.39 | 9.51 | 3.31 | 787 | 391 | 137 | 47.1 | 12.5 | - | 6.47 | - | 34.8 | 135 |
Min assigned value (µg/kg) | 72.3 | 52.7 | 0.85 | - | 1.74 | - | 1.77 | 23.3 | 121 | 98.9 | 0.65 | 1.28 | 3.24 | 2.47 | 315 | 88.7 | 30.6 | 13.3 | 5.10 | - | 4.29 | - | 5.68 | 2.86 |
Acceptable z-scores in % | 52 | 58 | 88 | - | 50 | - | 68 | 62 | 63 | 55 | 100 | 69 | 59 | 85 | 69 | 74 | 85 | 67 | 74 | - | 70 | - | 88 | 79 |
Questionable z-scores in % | 29 | 13 | 8 | - | 17 | - | 20 | 7 | 38 | 17 | - | 19 | 15 | 15 | 9 | 17 | 13 | 17 | 18 | - | 18 | - | 5 | 11 |
Unacceptable z-scores in % | 19 | 29 | 4 | - | 33 | - | 12 | 31 | - | 28 | - | 12 | 26 | - | 23 | 9 | 2 | 16 | 8 | - | 13 | - | 8 | 10 |
Soy | ||||||||||||||||||||||||
No. of quantitative results | 11 | 17 | 23 | 6 | 8 | - | 40 | 106 | - | 39 | 22 | 45 | 93 | 85 | 27 | 42 | - | 63 | 12 | - | 36 | 6 | 52 | 99 |
No. of statistical data points | - | - | 23 | - | 8 | - | 27 | 106 | - | 7 | 20 | 34 | 92 | 85 | - | - | - | 35 | 6 | - | 16 | - | 33 | 85 |
Max assigned value (µg/kg) | - | - | 2.60 | - | 1.18 | - | 27.1 | 23.3 | - | 36.4 | 5.78 | 17.8 | 236 | 65.1 | - | - | - | 107 | 4.45 | - | 1.54 | - | 20.3 | 366 |
Med assigned value (µg/kg) | - | - | 1.79 | - | 1.18 | - | 16.7 | 2.50 | - | 36.4 | 3.13 | 2.06 | 2.54 | 0.88 | - | - | - | 82.5 | 4.45 | - | 1.50 | - | 11.7 | 3.23 |
Min assigned value (µg/kg) | - | - | 0.97 | - | 1.18 | - | 6.35 | 0.89 | - | 36.4 | 0.49 | 0.66 | 0.66 | 0.32 | - | - | - | 57.8 | 4.45 | - | 1.45 | - | 3.16 | 1.42 |
Acceptable z-scores in % | - | - | 70 | - | 50 | - | 74 | 63 | - | 57 | 75 | 88 | 72 | 84 | - | - | - | 83 | 33 | - | 25 | - | 82 | 76 |
Questionable z-scores in % | - | - | 13 | - | 50 | - | 7 | 10 | - | - | 20 | 3 | 14 | 5 | - | - | - | 6 | 33 | - | 50 | - | - | 11 |
Unacceptable z-scores in % | - | - | 17 | - | - | - | 19 | 26 | - | 43 | 5 | 9 | 14 | 12 | - | - | - | 11 | 33 | - | 25 | - | 18 | 13 |
HPLC System | Detection System | Weight (g) | Extraction Solvent | Volume (mL) | Chromatographic Column | Mobile Phase A | Mobile Phase B | Run Time (min) | Quant |
---|---|---|---|---|---|---|---|---|---|
Thermo Scientific UltiMate 3000 | Thermo Scientific TSQ Vantage | 5 | 79:20:1 ACN:H2O:HAc | 20 | Waters Acquity UPLC HSS T3 1.8 µm, 2.1 × 100 mm | H2O (0.1% HAc 5 mM CH3COONH4) | MeOH | 19.0 | ENS |
Agilent 1290 series | Agilent 6470 | 5 | 79:20.9:0.1 ACN:H2O:HFo | 20 | RRHD-Zorbax Eclipse Plus C18 1.8 µm 2.1 × 100 mm | H2O (0.1% HAc 5 mM NH4OOCH) | MeOH (0.1% HAc 5 mM NH4OOCH) | 11.5 | ENS + ISTD |
Agilent 1290 series | AB Sciex QTrap 5500 | 5 | 79:20:1 ACN:H2O:HAc | 20 | Phenomenex Gemini C18 5 µm, 4.6 × 150 mm | 89:10:1 H2O:MeOH:HAc (5 mM CH3COONH4) | 2:97:1 H2O:MeOH:HAc (5 mM CH3COONH4) | 21.5 | ENS |
AB Sciex ExionLC AD | AB Sciex QTrap 5500 | 1 | 79:20:1 ACN:H2O:HAc | 4 | Phenomenex Gemini C18 5 µm, 4.6 × 100 mm | 89:10:1 H2O:MeOH:HAc (5 mM CH3COONH4) | 2:97:1 H2O:MeOH:HAc (5 mM CH3COONH4) | 13.5 | ENS |
Waters Acquity | AB Sciex QTrap 5500 | 2 | 50:50 ACN:H2O (0.2% HFo) | 20 | Waters Acquity UPLC HSS T3 1.8 µm, 2.1 × 100 mm | H2O (0.2% HFo 5 mM NH4OOCH) | MeOH (0.2% HFo 5 mM NH4OOCH) | 12.0 | ENS |
Shimadzu | AB Sciex 5500+ | 5 | 79:20:1 ACN:H2O:HAc | 20 | Phenomenex Gemini C18 5 µm, 4.6 × 150 mm | 89:10:1 H2O:MeOH:HAc (5 mM CH3COONH4) | 2:97:1 H2O:MeOH:HAc (5 mM CH3COONH4) | 20.6 | ENS + ISTD |
Thermo Scientific UltiMate 3000 | Thermo Scientific Q-Exactive Plus | 2 | 50:50 ACN:H2O (0.2% HFo) | 20 | Waters Acquity UPLC HSS T3 1.8 µm, 2.1 × 100 mm | H2O (0.2% HFo 5 mM NH4OOCH) | MeOH (0.2% HFo 5 mM NH4OOCH) | 12.0 | MMC |
Agilent 1290 series | AB Sciex QTrap 5500 | 10 | 69.5:29.5:1 ACN:H2O:HFo | 30 | Phenomenex Gemini C18 3 µm, 4.3 × 100 mm | 89:10:1 H2O:MeOH:HAc (5 mM CH3COONH4) | 2:97:1 H2O:MeOH:HAc (5 mM CH3COONH4) | 19.5 | ENS + ISTD |
Agilent 1260 series | AB Sciex QTrap 6500+ | 10 | 69.5:29.5:1 ACN:H2O:HFo | 30 | Phenomenex Gemini C18 3 µm, 4.3 × 100 mm | 89:10:1 H2O:MeOH:HAc (5 mM CH3COONH4) | 2:97:1 H2O:MeOH:HAc (5 mM CH3COONH4) | 19.5 | ENS + ISTD |
Shimadzu Nexera X2 | Shimadzu 8050 | 1 | 79:20:1 ACN:H2O:Hfo | 4 | Phenomenex Kinetex BiPhenyl 2.1 µm, 100 × 2.1 mm | 95:5 H2O:MeOH (0.1% HAc 0.01 M CH3COONH4) | 5:95 H2O:MeOH (0.1% HAc 0.01 M CH3COONH4) | 16.0 | MMC + ISTD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner, D.; Humpel, A.; Stamminger, E.; Schoeberl, A.; Pachschwoell, G.; Sloboda, A.; Swoboda, C.; Rigg, J.; Zhang, D.; Wang, Y.; et al. An Interlaboratory Comparison Study of Regulated and Emerging Mycotoxins Using Liquid Chromatography Mass Spectrometry: Challenges and Future Directions of Routine Multi-Mycotoxin Analysis including Emerging Mycotoxins. Toxins 2022, 14, 405. https://doi.org/10.3390/toxins14060405
Steiner D, Humpel A, Stamminger E, Schoeberl A, Pachschwoell G, Sloboda A, Swoboda C, Rigg J, Zhang D, Wang Y, et al. An Interlaboratory Comparison Study of Regulated and Emerging Mycotoxins Using Liquid Chromatography Mass Spectrometry: Challenges and Future Directions of Routine Multi-Mycotoxin Analysis including Emerging Mycotoxins. Toxins. 2022; 14(6):405. https://doi.org/10.3390/toxins14060405
Chicago/Turabian StyleSteiner, David, Armin Humpel, Eleonore Stamminger, Anna Schoeberl, Gerlinde Pachschwoell, Anita Sloboda, Christy Swoboda, Jolene Rigg, Dawei Zhang, Yahong Wang, and et al. 2022. "An Interlaboratory Comparison Study of Regulated and Emerging Mycotoxins Using Liquid Chromatography Mass Spectrometry: Challenges and Future Directions of Routine Multi-Mycotoxin Analysis including Emerging Mycotoxins" Toxins 14, no. 6: 405. https://doi.org/10.3390/toxins14060405
APA StyleSteiner, D., Humpel, A., Stamminger, E., Schoeberl, A., Pachschwoell, G., Sloboda, A., Swoboda, C., Rigg, J., Zhang, D., Wang, Y., Davis, J., Sulyok, M., Krska, R., Quinn, B., Greer, B., Elliott, C. T., Dzuman, Z., Hajslova, J., Gschaider, A., ... Malachová, A. (2022). An Interlaboratory Comparison Study of Regulated and Emerging Mycotoxins Using Liquid Chromatography Mass Spectrometry: Challenges and Future Directions of Routine Multi-Mycotoxin Analysis including Emerging Mycotoxins. Toxins, 14(6), 405. https://doi.org/10.3390/toxins14060405