Anticancer Activity of Bee Venom Components against Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. Analysis of Experimental Methods
2.2. Analysis of Experimental Results
3. Discussion
3.1. Cytotoxic Activity
3.2. Apoptosis Activity
3.3. Cell Targeting
3.4. Regulating Gene Expression
3.5. Cell Lysis
4. Conclusions
5. Materials and Methods
5.1. Data Sources and Searches
5.2. Study Selection
5.3. Data Extraction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berek, J.S. Berek & Novak’s Gynecology, 16th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2019; p. 2796. [Google Scholar]
- Ahmad, A. Breast Cancer Metastasis and Drug Resistance, 2nd ed.; Springer Nature: New York, NY, USA, 2019. [Google Scholar]
- Sung, H.A.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–449. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- The American Cancer Society Medical and Editorial Content Team. Understanding a Breast Cancer Diagnosis; American Cancer Society Inc: Marietta, GA, USA, 2021; Available online: https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis.html (accessed on 13 May 2002).
- Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Ridner, S.H. Pathophysiology of lymphedema. Semin. Oncol. Nurs. 2013, 29, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Ducic, I.; Zakaria, H.M.; Felder, J.M.; Fantus, S. Nerve injuries in aesthetic breast surgery: Systematic review and treatment options. Aesthet. Surg. J. 2014, 34, 841–856. [Google Scholar] [CrossRef] [Green Version]
- Lyons, J.A.; Sherertz, T. Postmastectomy radiation therapy. Curr. Oncol. Rep. 2014, 16, 361. [Google Scholar] [CrossRef]
- Mignot, F.; Quero, L.; Guillerm, S.; Benadon, B.; Labidi, M.; Cuvier, C.; Giacchetti, S.; Lorphelin, H.; Cahen-Doidy, L.; Teixeira, L.; et al. Ten-year outcomes of hypofractionated postmastectomy radiation therapy of 26 Gy in 6 fractions. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 1105–1114. [Google Scholar] [CrossRef]
- Gajski, G.; Madunic, J.; Madunic, I.V.; Zovko, T.C.; Rak, S.; Breljak, D.; Osmak, M.; Vrhovac, V.G. Anticancer effects of natural products from animal and plant origin. Biomed. Res. Ther. 2017, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Shapira, A.; Benhar, I. Toxin-based therapeutic approaches. Toxins 2010, 2, 2519–2583. [Google Scholar] [CrossRef] [Green Version]
- Grenda, T.; Grenda, A.; Krawczyk, P.; Kwiatek, K. Botulinum toxin in cancer therapy-current perspectives and limitations. Appl. Microbiol. Biotechnol. 2022, 106, 485–495. [Google Scholar] [CrossRef]
- Wehbe, R.; Frangieh, J.; Rima, M.; El Obeid, D.; Sabatier, J.M.; Fajloun, Z. Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules 2019, 24, 2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Guan, S.M.; Sun, W.; Fu, H. Melittin, the major pain-producing substance of bee venom. Neurosci. Bull. 2016, 32, 265–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moga, M.A.; Dimienescu, O.G.; Arvătescu, C.A.; Ifteni, P.; Pleş, L. Anticancer activity of toxins from bee and snake venom-an overview on ovarian cancer. Molecules 2018, 23, 692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badawi, J.K. Bee venom components as therapeutic tools against prostate cancer. Toxins 2021, 13, 337. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Gu, W.; Zhang, C.; Huang, X.Q.; Han, K.Q.; Ling, C.Q. Growth arrest and apoptosis of the human hepatocellular carcinoma cell line BEL-7402 induced by melittin. Onkologie 2006, 29, 367–371. [Google Scholar] [CrossRef]
- Kamran, M.R.; Zargan, J.; Keshavarzalikhani, H.; Hajinoormohamadi, A. The comparative cytotoxic effects of Apis mellifera crude venom on MCF-7 breast cancer cell line in 2D and 3D cell culture. Int. J. Pept. Res. Ther. 2020, 26, 1819–1828. [Google Scholar] [CrossRef]
- Sharkawi, F.Z.; Saleh, S.S.; Sayed, A.F.M. Potential anticancer activity of snake venom, bee venom and their components in liver and breast carcinoma. Int. J. Pharm. Sci. Res. 2015, 6, 3224–3235. [Google Scholar]
- Cho, H.J.; Jeong, Y.J.; Park, K.K.; Park, Y.Y.; Chung, I.K.; Lee, K.G.; Yeo, J.H.; Han, S.M.; Bae, Y.S.; Chang, Y.C. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms. J. Ethnopharmacol. 2010, 127, 662–668. [Google Scholar] [CrossRef]
- Duffy, C.; Sorolla, A.; Wang, E.; Golden, E.; Woodward, E.; Davern, K.; Ho, D.; Johnstone, E.; Pfleger, K.; Redfern, A.; et al. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precis. Oncol. 2020, 4, 24. [Google Scholar] [CrossRef]
- Jung, G.B.; Huh, J.E.; Lee, H.J.; Kim, D.; Lee, G.J.; Park, H.K.; Lee, J.D. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. Biomed. Opt. Express 2018, 9, 5703–5718. [Google Scholar] [CrossRef]
- Yeo, S.W.; Seo, J.C.; Choi, Y.H.; Jang, K.J. Induction of the growth inhibition and apoptosis by beevenom in human breast carcinoma MCF-7 Cells. J. Korean Acupunct. Mox. Med. Sci. 2003, 20, 45–62. [Google Scholar]
- Hematyar, M.; Soleimani, M.; Es-Haghi, A.; Rezaei Mokarram, A. Synergistic co-delivery of doxorubicin and melittin using functionalized magnetic nanoparticles for cancer treatment: Loading and in vitro release study by LC-MS/MS. Artif. Cells Nanomed. Biotechnol. 2018, 46, S1226–S1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghaddam, F.D.; Akbarzadeh, I.; Marzbankia, E.; Farid, M.; Khaledi, L.; Reihani, A.H.; Javidfar, M.; Mortazavi, P. Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol. 2021, 12, 14. [Google Scholar] [CrossRef]
- LeBeau, A.M.; Brennen, W.N.; Aggarwal, S.; Denmeade, S.R. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol. Cancer Ther. 2009, 8, 1378–1386. [Google Scholar] [CrossRef] [Green Version]
- Shaw, P.; Kumar, N.; Hammerschmid, D.; Privat-Maldonado, A.; Dewilde, S.; Bogaerts, A. Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy. Cancers 2019, 11, 1109. [Google Scholar] [CrossRef] [Green Version]
- Putz, T.; Ramoner, R.; Gander, H.; Rahm, A.; Bartsch, G.; Thurnher, M. Antitumor action and immune activation through cooperation of bee venom secretory phospholipase A2 and phosphatidylinositol-(3,4)-bisphosphate. Cancer Immunol. Immunother. 2006, 55, 1374–1383. [Google Scholar] [CrossRef]
- Kanaani, L.; Javadi, I.; Ebrahimifar, M.; Shahmabadi, H.E.; Khiyavi, A.A.; Mehrdiba, T. Effects of cisplatin-loaded niosomal nanoparticles on BT-20 human breast carcinoma cells. Asian Pac. J. Cancer Prev. 2017, 18, 365–368. [Google Scholar]
- Kumar, G.P.; Rajeshwarrao, P. Nonionic surfactant vesicular systems for effective drug delivery—An overview. Acta Pharm. Sin. B 2011, 1, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 2014, 12, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Chitcholtan, K.; Sykes, P.H.; Evans, J.J. The resistance of intracellular mediators to doxorubicin and cisplatin are distinct in 3D and 2D endometrial cancer. J. Transl. Med. 2012, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Nath, S.; Devi, G.R. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol. Ther. 2016, 163, 94–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, V.G. Multiple pathways to apoptosis. Cell. Biol. Int. 1993, 17, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Nishioka, W.K.; Th’ng, J.; Bradbury, E.M.; Litchfield, D.W.; Greenberg, A.H. Premature p34cdc2 activation required for apoptosis. Science 1994, 263, 1143–1145. [Google Scholar] [CrossRef] [PubMed]
- Ghilardi, C.; Chiorino, G.; Dossi, R.; Nagy, Z.; Giavazzi, R.; Bani, M. Identification of novel vascular markers through gene expression profiling of tumor-derived endothelium. BMC Genom. 2008, 9, 201. [Google Scholar] [CrossRef] [Green Version]
- Xia, Q.; Zhang, F.F.; Geng, F.; Liu, C.L.; Xu, P.; Lu, Z.Z.; Yu, B.; Wu, H.; Wu, J.X.; Zhang, H.H.; et al. Anti-tumor effects of DNA vaccine targeting human fibroblast activation protein α by producing specific immune responses and altering tumor microenvironment in the 4T1 murine breast cancer model. Cancer Immunol. Immunother. 2016, 65, 613–624. [Google Scholar] [CrossRef]
- Rahman, K.M.; Sarkar, F.H.; Banerjee, S.; Wang, Z.; Liao, D.J.; Hong, X.; Sarkar, N.H. Therapeutic intervention of experimental breast cancer bone metastasis by indole-3-carbinol in SCID-human mouse model. Mol. Cancer Ther. 2006, 5, 2747–2756. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020, 194, 112260. [Google Scholar] [CrossRef]
- de Melo Gagliato, D.; Jardim, D.L.; Marchesi, M.S.; Hortobagyi, G.N. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget 2016, 7, 64431–64446. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.P.; Roth, A.; Goya, R.; Oloumi, A.; Ha, G.; Zhao, Y.; Turashvili, G.; Ding, J.; Tse, K.; Haffari, G.; et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 2012, 486, 395–399. [Google Scholar] [CrossRef]
- Den Brok, M.H.; Nierkens, S.; Figdor, C.G.; Ruers, T.J.; Adema, G.J. Dendritic cells: Tools and targets for antitumor vaccination. Expert Rev. Vaccines 2005, 4, 699–710. [Google Scholar] [CrossRef]
- Perrin-Cocon, L.; Agaugué, S.; Coutant, F.; Masurel, A.; Bezzine, S.; Lambeau, G.; André, P.; Lotteau, V. Secretory phospholipase A2 induces dendritic cell maturation. Eur. J. Immunol. 2004, 34, 2293–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
First Author (Publication Year) | Anticancer Agent | Cancer Cell | Dose | Duration of Experiment |
---|---|---|---|---|
Kamran et al., (2019) [19] | BV | MCF-7 | 2.5, 5.0, 7.5, 10, 12.5 (μg/mL) | 24 h |
Sharkawi et al., (2015) [20] | BV MEL Combination of L-amino acid oxidase from snake venom and MEL | MCF-7 | 20, 100 (μg/mL) | 24 h |
Hematyar et al., (2018) [25] | MEL and doxorubicin loaded onto citric acid-functionalized Fe3O4 magnetic nanoparticles | MCF-7 | 0.01–250 (μg/mL−1) | 48 h |
Moghaddam et al., (2021) [26] | MEL MLN Empty niosome | SK-BR-3 | 8, 16, 32, 64, 128, 256 (μg/mL) | 48, 72 h |
LeBeau et al., (2009) [27] | Modified promelittin | MCF-7 | - | 72 h |
Cho et al., (2010) [21] | BV MEL | PMA-induced MCF-7 | 0.5, 1, 2, 3, 4, 5 (μg/mL) | 24 h |
Putz et al., (2006) [29] | Phospholipase A2 from bv Phosphatidylinositol-(3,4)-bisphosphate | T47D | 10 (μg/mL)/10 (μM) | 32 h |
Duffy et al., (2020) [22] | BV MEL | TNBC (SUM159, SUM149) HER2-enriched breast cancer cell lines (MDA-MB-453, SK-BR-3) Luminal breast cancer cells (MCF7, T47D) | BV: 4, 5, 6, 7 μg/mL MEL: 2, 3, 4, 5 μg/mL | Caspase-3: 18, 24 h Flow cytometry analysis, cell viability, live-cell confocal microscopy, scanning electron microscopy: 1 h |
Jung et al., (2018) [23] | BV | MDA-MB-231 | Cytotoxicity: 2.5, 5.0, 7.5, 10, 12.5, 15 μg/mL Apoptotic cell death, Raman spectroscopic analysis, morphological changes: 0.7, 1.5, 3 μg/mL | Cytotoxicity: 12, 24, 48, 72 h Apoptotic cell death, Raman spectroscopic analysis, morphological changes: 12, 24, 48 h |
Shaw et al., (2019) [28] | MEL PT-PBS Combination of PT-PBS and MEL | MCF-7 | 0.6, 1.2, 2.5, 5, 10 μg/mL | 24 h |
Yeo et al., (2003) [24] | BV | MCF-7 | 0.001, 0.01, 0.1, 1 μg/mL | 24 h |
First Author (Publication Year) | Mechanism | Method | Main Results |
---|---|---|---|
Kamran et al. [19] | Cytotoxic and apoptotic effects | Cell viability Neutral red uptake Reactive nitrogen intermediates Reduced glutathione Catalase enzyme activity Alkaline comet assay Caspase-3 activity | CBV (in dose-dependent manner) NO production↑, caspase-3activation↑ MCF-7 viability↓, catalase activity↓, glutathione content↓ In assessing DNA damage, the cytotoxicity of CBV in MCF-7 cells was shown in a dose-dependent manner |
Sharkawi et al. [20] | Cytotoxic and apoptotic effects | Cytotoxicity assays Apoptotic evaluation Cell cycle analysis | Cytotoxic activity of BV: MCF-7 cells > Normal cells Cytotoxic activity in MCF-7 cells: MEL > CBV MEL: Expression of p53↑, Bcl-2↑ BV: Expression of p53↑, Bcl-2↑, Bax↑ MEL increased the activity of phospholipase A2 from snake venom, exhibiting cooperative activity on the expression of p53 and Bax in MCF-7 cells |
Hematyar et al. [25] | Cytotoxic effect | Cytotoxicity assays | Cell growth was reduced by all drug formulations in a concentration-dependent manner Cytotoxicity: DOX/MEL-loaded CA-MNPs > free DOX/MEL (1:4) > free DOX, free MEL |
Moghaddam et al. [26] | Cytotoxic and apoptotic effects Prevention of cell migration required for cancer cell proliferation and metastasis | Cell proliferation Wound healing assay Soft agar colony assay Flow cytometry analysis Real-time PCR for gene expression | Inhibitory impact of SK-BR-3 (in dose- and time-dependent manner): niosomal formulation > free drug solution Cell migration of SK-BR-3: MEL > MLN Scratch width of SK-BR-3: Empty noisome, MEL, MLN > Control/MLN > MEL Decrease of colony number of BC cells: Empty noisome, MEL, MLN > Control/MLN > MEL Percentage of apoptosis: MLN > MEL > Control Expression of caspase-3, caspase-9, Bax: MLN, MEL, Empty noisome > Control/MLN > MEL Expression of bcl-2, MMP-2, MMP-9: MLN, MEL, Empty noisome < Control/MLN < MEL |
LeBeau et al. [27] | Targeting FAP | FAP promelittin protoxins destroy human breast cancer cell lines that express FAP | Toxicity of MEL: No selectivity, FAP(−)↑, FAP(+)↑ Toxicity of modified promelittin: FAP(−)↓, FAP(+)↑ Ac-FAP6, FAP2 with DPP4 resistance by adding an NH2-terminal glycine acetylated to the FAP2 peptide, had the highest selectivity and efficiency |
Cho et al. [21] | Regulation of MMP-9 expression during breast cancer cell invasion and metastasis | Cytotoxicity Matrigel invasion Wound healing assay Zymography Western blot analysis RT-PCR | MEL in BV ingredient suppressed cell invasion and migration in a dose-dependent manner by inhibiting PMA-induced MMP-9 gene activation via pathways such as JNK, p38, MAPK, and NF-KB |
Putz et al. [29] | Massive cell lysis that reduces the number of cells with proliferative capacity | Inhibition of [3H] thymidine incorporation | Single treatment with PtdIns (3,4) P2 or bv-sPLA2 was effective in T-47D cells by inhibiting their proliferation Bv-sPLA2 and PtdIns (3,4) P2 had a comparable synergistic effect of inhibiting T-47D by affecting [3H] thymidine incorporation |
Duffy et al. [22] | Induction of cell death and suppression of EGFR and HER2 activation by interfering with the phosphorylation of these receptors in the plasma membrane of breast cancer cells | Anticancer efficacy and selectivity | BV, MEL diminished the viability of BC cells and eliminated BC cells in a dose-dependent manner by enhancing the specificity for aggressive murine tumor cell lines RGD enhanced the breast cancer targeting of melittin BV and MEL impaired the RTK-associated signaling pathways by preventing the ligand-dependent activation of EGFR and HER2 in BC cells on SK-BR-3, SUM159 |
Jung et al. [23] | Apoptosis | Cytotoxicity Apoptotic cell death Morphological changes Raman spectra | BV: Proliferation of MDA-MB-231 cells↓, protein levels of caspase-8↓, caspase-9↓, caspase-3↓, morphological deformation↑, averaged Raman spectra↑in MDA-MB-231 cells in a time- and dose-dependent manner |
Shaw et al. [28] | Combination of oxidative stress-medicated pathways and cytotoxicity | Cell viability Cell death Flow cytometry analysis Lipid peroxidation by MDA assay and fluorescent probe Mass spectrometry analysis | MEL: Cytotoxic effect↑, apoptosis/necrosis↑, lipid peroxidation↑ in MCF-7 cells Combination of MEL and PT-PBS: Synergistic effect of those effects and generated covalent alteration of proteins and nucleic acids inducing oxidative stress-mediated cell death There were no variations in MEL oxidation levels between control and plasma treatments, and there was no evidence of an increase in the number of oxidations with time |
Yeo et al. [24] | Apoptosis | Cell growth and viability Morphological changes Induction of apoptosis and degradation of β-catenin in bee venom-treated MCF-7 cells Inhibition of Bcl-XS/L and induction of Bax expression Levels of cell-cycle regulatory gene products and tumor suppressors | BV: MCF-7 cell viability↓(in a dose-dependent manner), β-catenin↓(in a dose-dependent manner), Bcl-XS/L↓, cyclin B1↓, cyclin C↓, morphological deformation↑(in a dose-dependent manner), BV cell death↑, Bax expression↑(in a dose-dependent manner), p53 expression↑, Cdk inhibitor p31↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, N.-Y.; Sung, S.-H.; Sung, H.-K.; Park, J.-K. Anticancer Activity of Bee Venom Components against Breast Cancer. Toxins 2022, 14, 460. https://doi.org/10.3390/toxins14070460
Kwon N-Y, Sung S-H, Sung H-K, Park J-K. Anticancer Activity of Bee Venom Components against Breast Cancer. Toxins. 2022; 14(7):460. https://doi.org/10.3390/toxins14070460
Chicago/Turabian StyleKwon, Na-Yoen, Soo-Hyun Sung, Hyun-Kyung Sung, and Jang-Kyung Park. 2022. "Anticancer Activity of Bee Venom Components against Breast Cancer" Toxins 14, no. 7: 460. https://doi.org/10.3390/toxins14070460
APA StyleKwon, N. -Y., Sung, S. -H., Sung, H. -K., & Park, J. -K. (2022). Anticancer Activity of Bee Venom Components against Breast Cancer. Toxins, 14(7), 460. https://doi.org/10.3390/toxins14070460