Evaluating Antivenom Efficacy against Echis carinatus Venoms—Screening for In Vitro Alternatives
Abstract
:1. Introduction
2. Methodology
2.1. Venoms and Antivenoms
2.2. Evaluating Antivenom–Venom Complexes Using SE-HPLC
2.3. Preclinical Assays for Testing the Efficacy of Antivenom
2.3.1. In Vitro Coagulation Assay
2.3.2. Proteolytic Activity Using Azocasein as a Substrate
2.3.3. Phospholipase A2 Activity Using EnzChek™ PLA2 Assay Kit
2.4. Estimating the Efficacy of Antivenom
2.5. Statistical Analyses
3. Results
3.1. Evaluation of Antivenom–Venom Complexes Using SEC-HPLC
3.2. Preclinical Assays
3.2.1. Coagulant Activity
3.2.2. Proteolytic Activity
3.2.3. Phospholipase A2 Activity
3.2.4. Estimating the Antivenom Efficacy Score (ESav)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez, J.M.; Vargas, M.; Segura, A.; Herrera, M.; Villalta, M.; Solano, G.; Sánchez, A.; Herrera, C.; León, G. In Vitro Tests for Assessing the Neutralizing Ability of Snake Antivenoms: Toward the 3Rs Principles. Front. Immunol. 2021, 11, 617429. [Google Scholar] [CrossRef]
- WHO. Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins; Replacement of Annex 2 of WHO Technical Report Series, No. 964; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Sells, P.G. Animal experimentation in snake venom research and in vitro alternatives. Toxicon 2003, 42, 115–133. [Google Scholar] [CrossRef]
- Chacón, F.; Oviedo, A.; Escalante, T.; Solano, G.; Rucavado, A.; Gutiérrez, J.M. The lethality test used for estimating the potency of antivenoms against Bothrops asper snake venom: Pathophysiological mechanisms, prophylactic analgesia, and a surrogate in vitro assay. Toxicon 2015, 93, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Lopes-De-Souza, L.; Costal-Oliveira, F.; Stransky, S.; de Freitas, C.F.; Guerra-Duarte, C.; Braga, V.M.; Chávez-Olórtegui, C. Development of a cell-based in vitro assay as a possible alternative for determining bothropic antivenom potency. Toxicon 2019, 170, 68–76. [Google Scholar] [CrossRef]
- Barbosa, C.F.; Rodrigues, R.J.; Olortegui, C.C.; Sanchez, E.F.; Heneine, L.G. Determination of the neutralizing potency of horse antivenom against bothropic and crotalic venoms by indirect enzyme immunoassay. Braz. J. Med. Biol. Res. 1995, 28, 1077–1080. [Google Scholar] [PubMed]
- Maria, W.S.; Cambuy, M.O.; Costa, J.O.; Velarde, D.T.; Chávez-Olórtegui, C. Neutralizing potency of horse antibothropic antivenom. Correlation between in vivo and in vitro methods. Toxicon 1998, 36, 1433–1439. [Google Scholar] [CrossRef]
- Rial, A.; Morais, V.; Rossi, S.; Massaldi, H. A new ELISA for determination of potency in snake antivenoms. Toxicon 2006, 48, 462–466. [Google Scholar] [CrossRef]
- Rungsiwongse, J.; Ratanabanangkoon, K. Development of an ELISA to assess the potency of horse therapeutic antivenom against Thai cobra venom. J. Immunol. Methods 1991, 136, 37–43. [Google Scholar] [CrossRef]
- Theakston, R.; Lloyd-Jones, M.J.; Reid, H. Micro-Elisa for Detecting and Assaying Snake Venom and Venom-Antibody. Lancet 1977, 310, 639–641. [Google Scholar] [CrossRef]
- Pla, D.; Rodríguez, Y.; Calvete, J.J. Third Generation Antivenomics: Pushing the Limits of the In Vitro Preclinical Assessment of Antivenoms. Toxins 2017, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Sanny, C.G. Antibody–antigen binding study using size-exclusion liquid chromatography. J. Chromatogr. B 2002, 768, 75–80. [Google Scholar] [CrossRef]
- Senji Laxme, R.R.S.; Khochare, S.; Attarde, S.; Suranse, V.; Iyer, A.; Casewell, N.R.; Whitaker, R.; Martin, G.; Sunagar, K. Biogeographic venom variation in Russell’s viper (Daboia russelii) and the preclinical inefficacy of antivenom therapy in snakebite hotspots. PLoS Negl. Trop. Dis. 2021, 15, e0009247. [Google Scholar] [CrossRef] [PubMed]
- Senji Laxme, R.R.; Khochare, S.; De Souza, H.F.; Ahuja, B.; Suranse, V.; Martin, G.; Whitaker, R.; Sunagar, K. Beyond the ‘big four’: Venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLoS Negl. Trop. Dis. 2019, 13, e0007899. [Google Scholar] [CrossRef]
- Bhatia, S.; Blotra, A.; Vasudevan, K. Immunorecognition capacity of Indian polyvalent antivenom against venom toxins from two populations of Echis carinatus. Toxicon 2021, 201, 148–154. [Google Scholar] [CrossRef]
- Bawaskar, H.; Bawaskar, P. Profile of snakebite envenoming in western Maharashtra, India. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 79–84. [Google Scholar] [CrossRef]
- Punde, D.P. Management of snake-bite in rural Maharashtra: A 10-year experience. Natl. Med. J. India 2005, 18, 71–75. [Google Scholar]
- Patra, A.; Kalita, B.; Chanda, A.; Mukherjee, A.K. Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological properties and pathophysiology of envenomation. Sci. Rep. 2017, 7, 17119. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.; Vasudevan, K. Comparative proteomics of geographically distinct saw-scaled viper (Echis carinatus) venoms from India. Toxicon X 2020, 7, 100048. [Google Scholar] [CrossRef]
- Kini, R.M. Excitement ahead: Structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 2003, 42, 827–840. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Escalante, T.; Rucavado, A.; Herrera, C. Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding. Toxins 2016, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- White, J. Snake venoms and coagulopathy. Toxicon 2005, 45, 951–967. [Google Scholar] [CrossRef] [PubMed]
- Sanny, C.G. In vitro evaluation of total venom–antivenin immune complex formation and binding parameters relevant to antivenin protection against venom toxicity and lethality based on size-exclusion high-performance liquid chromatography. Toxicon 2011, 57, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Theakston, R.D.; A Reid, H. Development of simple standard assay procedures for the characterization of snake venom. Bull. World Health Organ. 1983, 61, 949–956. [Google Scholar]
- Pornmuttakun, D.; Ratanabanangkoon, K. Development of an in vitro potency assay for antivenom against Malayan pit viper (Calloselasma rhodostoma). Toxicon 2014, 77, 1–5. [Google Scholar] [CrossRef]
- Caldas, C.; Cherqui, A.; Pereira, A.; Simões, N. Purification and Characterization of an Extracellular Protease from Xenorhabdus nematophila Involved in Insect Immunosuppression. Appl. Environ. Microbiol. 2002, 68, 1297–1304. [Google Scholar] [CrossRef] [Green Version]
- Fonteh, A.N.; Chiang, J.; Cipolla, M.; Hale, J.; Diallo, F.; Chirino, A.; Arakaki, X.; Harrington, M.G. Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer’s disease. J. Lipid Res. 2013, 54, 2884–2897. [Google Scholar] [CrossRef] [Green Version]
- Alape-Girón, A.; Miranda-Arrieta, K.; Cortes-Bratti, X.; Stiles, B.G.; Gutiérrez, J. A comparison of in vitro methods for assessing the potency of therapeutic antisera against the venom of the coral snake Micrurus nigrocinctus. Toxicon 1997, 35, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.S.; Jiang, B.R.; Hu, K.C.; Liu, C.H.; Hsieh, W.C.; Lin, M.H.; Sung, W.C. Development of a Broad-Spectrum Antiserum against Cobra Venoms Using Recombinant Three-Finger Toxins. Toxins 2021, 13, 556. [Google Scholar] [CrossRef]
- Khaing, E.M.; Hurtado, P.R.; Hurtado, E.; Zaw, A.; White, J.; Warrell, D.A.; Alfred, S.; Mahmood, M.A.; Peh, C.A. Development of an ELISA assay to determine neutralising capacity of horse serum following immunisation with Daboia siamensis venom in Myanmar. Toxicon 2018, 151, 163–168. [Google Scholar] [CrossRef]
- Calvete, J.J.; Sanz, L.; Pla, D.; Lomonte, B.; Gutiérrez, J.M. Omics Meets Biology: Application to the Design and Preclinical Assessment of Antivenoms. Toxins 2014, 6, 3388–3405. [Google Scholar] [CrossRef] [Green Version]
- Sapsutthipas, S.; Leong, P.K.; Akesowan, S.; Pratanaphon, R.; Tan, N.H.; Ratanabanangkoon, K. Effective Equine Immunization Protocol for Production of Potent Poly-specific Antisera against Calloselasma rhodostoma, Cryptelytrops albolabris and Daboia siamensis. PLoS Negl. Trop. Dis. 2015, 9, e0003609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laustsen, A.H.; Maria Gutiérrez, J.; Knudsen, C.; Johansen, K.H.; Bermúdez-Méndez, E.; Cerni, F.A.; Jürgensen, J.A.; Ledsgaard, L.; Martos-Esteban, A.; Øhlenschlæger, M.; et al. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon 2018, 146, 151–175. [Google Scholar] [CrossRef]
- Berling, I.; Isbister, G. Hematologic Effects and Complications of Snake Envenoming. Transfus. Med. Rev. 2015, 29, 82–89. [Google Scholar] [CrossRef]
- Maduwage, K.; Isbister, G.K. Current Treatment for Venom-Induced Consumption Coagulopathy Resulting from Snakebite. PLoS Negl. Trop. Dis. 2014, 8, e3220. [Google Scholar] [CrossRef] [Green Version]
- Guerranti, R.; Cortelazzo, A.; Hope-Onyekwere, N.S.; Furlani, E.; Cerutti, H.; Puglia, M.; Bini, L.; Leoncini, R. In vitro effects of Echis carinatus venom on the human plasma proteome. Proteomics 2010, 10, 3712–3722. [Google Scholar] [CrossRef]
In Vitro Assays | Formula | ECVTN | ECVGO | ECVRAJ |
---|---|---|---|---|
Evaluating antivenom–venom complexes | 5.06 ± 1.05 | 2.94 ± 1.36 | 2.63 ± 0.25 | |
Clotting assay | 2.37 ± 0.29 | 3.45 ± 0.06 | 4.16 ± 0.19 | |
Proteolytic assay | 2.03 ± 0.49 | 1.50 ± 0.70 | 2.32 ± 1.48 | |
PLA2 assay | 6.62 ± 0.56 | 4.74 ± 1.80 | 0 | |
Efficacy score (ESav) | 4.0 ± 0.66 | 3.16 ± 1.18 | 2.28 ± 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatia, S.; Blotra, A.; Vasudevan, K. Evaluating Antivenom Efficacy against Echis carinatus Venoms—Screening for In Vitro Alternatives. Toxins 2022, 14, 481. https://doi.org/10.3390/toxins14070481
Bhatia S, Blotra A, Vasudevan K. Evaluating Antivenom Efficacy against Echis carinatus Venoms—Screening for In Vitro Alternatives. Toxins. 2022; 14(7):481. https://doi.org/10.3390/toxins14070481
Chicago/Turabian StyleBhatia, Siddharth, Avni Blotra, and Karthikeyan Vasudevan. 2022. "Evaluating Antivenom Efficacy against Echis carinatus Venoms—Screening for In Vitro Alternatives" Toxins 14, no. 7: 481. https://doi.org/10.3390/toxins14070481
APA StyleBhatia, S., Blotra, A., & Vasudevan, K. (2022). Evaluating Antivenom Efficacy against Echis carinatus Venoms—Screening for In Vitro Alternatives. Toxins, 14(7), 481. https://doi.org/10.3390/toxins14070481