Analysis of Total-Forms of Cyanotoxins Microcystins in Biological Matrices: A Methodological Review
Abstract
:1. Introduction
2. Quantification of Total MC by the MMPB Method
2.1. Pre-Treatment of Matrices
2.2. Lemieux Oxidation Step
2.2.1. Cyanobacterial Matrices
2.2.2. Sediment Matrices
2.2.3. Animal Matrices
2.3. Extraction and Purification of the MMPB Product
2.4. Analysis of the MMPB Product
2.5. Limitations and Difficulties Faced during the MMPB Method
2.5.1. Sample Turnaround Time
2.5.2. Variability of the Overall Conversion Process
2.5.3. Matrix Effects
2.5.4. Quantification Strategy (Internal vs. External Calibration)
References | Matrix | Quantity of Matrices | Pre-Treatment Step | Oxidation Length (Hour) | [KMnO4] | [NaIO3] or [NaIO4] | pH | End of Reaction | Purification Method | Detection Limits | Instrumental Analysis | Yield | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sano et al. [65] | MC fraction from waterblooms (Microcystis viridis) | 0.2–1 mg (dw) | - | 4 | 0.024 M | 0.02 M | n.s. | 0.04 mL of 20% NaHSO₃ + 0.01 mL of 1OM H2SO4 | 5 mL of ethyl acetate | pmol | GC-FID/HPLC | 84–98% | |
Williams et al. [60] | Salmon Liver (Salmo salar) | 220–1366 mg | - | overnight | 36.1 µM | 1.3852 mM | 9 (120.8 µM of K2CO3) | NaHSO₃ + 10% H2SO4 (pH~2) | Diethyl ether | 15 µg/g | GC/MS | 85–95% | |
Dungeness Crab Larvae (Cancer magister) | 5.2–5.4 g | n.s. | |||||||||||
Williams et al. [71] | Saltwater mussels, (Mytilus edulis) | 5.5–8.3 g | - | n.s. | 334.2 µM | 12.3 mM | 9 | NaHSO₃ + 10% H2SO4 (pH ≈ 1–2 | Diethyl ether | 15 µg/g | GC/MS | n.s. | |
Pires et al. [93] | Zebra mussels (Dreissena polymorpha) | Pooled mussel material | - | overnight | 0.1 M | 0.4 M | 9 | H2SO4 (1 M), pH < 3 | C18 (Supelco) | n.s. | LC/MS | n.s. | |
Ott and Carmichael [72] | Rat or chicken livers (species n.s.) | 0.5–1 g | - | 3 | 0.02 M | 0.02 M | 9 (KHCO3) | 0.5–1.5 g of NaHSO₃ + 10% H2SO4 (pH ≈ 2) | 3 M Empore SDB-XC 7 mm/3 mL (Fischer Scientific, Hampton, NH, USA) | 5 µg/g | LC/MS | 33.5% | |
Soares et al. [74] | Human sera | 0.4–1 mL | - | 3 | 0.02 M | 0.02 M | 9 (KHCO3) | 0.5–1.5 g of NaHSO₃ + 10% H2SO4 (pH ≈ 2) | 3 M Empore SDB-XC 7 mm/3 mL (Fischer Scientific) | n.s | LC/MS | n.s. | |
Yuan et al. [75] | Human Liver/sera | n.s. | - | 3 | 0.02 M | 0.02 M | 9 (KHCO3) | 0.5–1.5 g of NaHSO₃ + 10% H2SO4 (pH ≈ 2) | 3 M Empore SDB-XC 7 mm/3 mL (Fischer Scientific) | n.s. | GC/MS | n.s. | |
Hilborn et al. [73] | Human blood | n.s. | - | 3 | 0.02 M | 0.02 M | 9 (KHCO3) | 0.5–1.5 g of NaHSO₃ + 10% H2SO4 (pH ≈ 2) | 3M Empore SDB-XC 7 mm/3 mL (Fischer Scientific) | n.s | LC/MS | n.s. | |
Nasri et al. [76] | Terrapin (E. orbicularis; M. leprosa) | 100 mg (dw) | - | 3 | 0.02 M | 0.02 M | 9 (KHCO3) | 0.5–1.5 g of NaHSO₃ + 10% H2SO4 (pH ≈ 2) | Conversion of MMPB to methyl ester using 12% trifluoroborate in MeOH | n.s. | GC/MS | n.s. | |
Wu et al. [90] | Aqueous solution spiked with MC-LR | - | - | hours | 50 mg/L | 20 mg/L | 1.6 | NaHSO₃ | - | n.s. | HPLC/DAD | ~90% | |
Wu et al. [67] | Cyanobacterial samples (Microcystis spp.) | 10; 20; 40; 60; 80; 100 mg (dw) | - | 1–4 | ≥0.05 M | 0.2 M | 9 (KHCO3) | Saturated NaHSO₃ sol. | - | n.s | LC/DAD | 86.7% | |
Lance et al. [28], Neffling et al. [49] | Tissues of snails (Lymnaea stagnalis) | 10 mg (freeze-dried) | Trypsin in Sörensen’s phosphate buffer (0.5 mg/mL, pH 7.5, 37 °C) | 3 | 0.1 M | 0.1 M | 9 | 40% NaHSO₃ + 10% H2SO4 | Oasis HLB 30 mg | n.s. | LC/MS | 16–37% | |
Suchy and Berry [61] | Rainbow Trout (Oncorhynchus mykiss) liver slurry (7 g in 5 mL of deionized water) | 1 mL of liver slurry | - | 3 | 0.0035 M | 0.09 M | 9 | 0.5–1.5 g of NaHSO₃ + 10% H2SO4 (pH ≈ 2) | Solid phase microextraction (PDMS-DVB fibre) | 0.04 µg/g | GC/MS | n.s. | |
Wu et al. [69] | Lake sediment | 2 g (freeze dried) | - | 1–4 | 0.05 M | 0.1 M | 9 | Saturated NaHSO₃ sol. | Sep-pak C18 500 mg (Waters) | n.s. | HPLC/DAD | 33-45% | |
Bieczynski et al. [81] | Supernatants of liver and intestines from fish (Odontesthes hatcheri) | 1 g | - | overnight | 0.002 M | 0.007 M | 9 | 20% NaHSO₃ + drops of 10% H2SO4 | Diethyl ether | 0.2 ng | GC/MS | 67.25 ± 26% | |
Cadel-Six et al. [29] | Rainbow trout (Oncorhynchus mykiss) | Liver Intestines Gill Filet | 60 mg 100 mg 100 mg 100 mg (dw) | Trypsin in Sörensen’s phosphate buffer (0.5 mg/mL, pH 7.5, 37 °C) | 4 | 0.1 M | 0.1 M | 9 | 40% NaHSO₃ + 10% H2SO4 (pH ≈ 1.5) | SampliQ OPT 150 mg (Agilent) | 2.59 ng/g 4.76 ng/g 2.86 ng/g 2.88 ng/g | LC/MS | 17% 6% 12% 5% |
Roy-Lachapelle et al. [66] | River water | n.s. | - | 1 | 0.05 M | 0.05 M | 9 (K2CO3) | 40% NaHSO₃ + 10% H2SO4 (pH ≈ 2) | Ethyl acetate | 0.2 µg/L | LDTD/APCI/MS | 91% | |
Roy-Lachapelle et al. [79] | Frozen homogenized fish tissue ((Osmerus mordax); (Mugil cephalus); (Salvelinus fontinalis); (Perca flavescens); (Sander vitreus); (Ameiurus nebulosus); (Coregonus clupeaformis)) | 1 g | 3 freeze-thaw lysis cycles + 2 h in NaOH (50 mM) | 2 | 0.05 M | 0.05 M | 9 (HCl, 50 mM) | Saturated NaHSO₃ sol. + 10% H2SO4 (pH ≈ 2) | Filter the supernatants with 0.2 µM nylon filter (Whatman) + Strata SDB-L 500 mg (Phenomenex) | 2.7 ng/g | LDTD/APCI/HRMS | 54–72% | |
Foss and Aubel [63] | Raw and trated water from Ohio water sources | n.s. | 3 freeze-thaw cycles + 10/100x concentration (SPE) | 0.5 | 0.015 M | 0.015 M | n.s. | 40% NaHSO₃ + phosphate buffer to raise pH < 5 | Strata X 100 mg (Phenomenex) | 0.05 µg/L | LC/MS | n.s. | |
Wang et al. [68] | Water Sediment | 0.1 mL 1 g | - | 1 | 4 g/L | 20 mg/L | n.s. | 40% NaHSO₃ (50 µL: water/0.5 mL: sediment) | Sep-Pak cartridge (500 mg, 6 cm3) | 125 ng/L 100 ng/g | HPLC/FLD | 98–109% | |
Greer et al. [77] | Tilapia (O. niloticus) filets, livers and eggs | 50 mg (dw) | - | 2 | 0.1 M | 0.1 M | n.s. | 40% NaHSO₃ + 10% H2SO4 (pH ≈ 2) | Oasis PRiME 60 mg (Waters) | n.s. | UPLC/MS | 55% | |
Munoz et al. [64] | Surface Water | 10 mL | 3 freeze-thaw cycles + filtration (0.22 µM nylon filters) | 1 | 0.35 M | 0.4 M | 9 (K2CO3, 1 M) | NaHSO₃ (4 M) | Filtration (0.22 µM nylon filters) + on-line SPE | 0.5 ng/L | LC/MS | 65% | |
Roy-Lachapelle et al. [80] | Algary dietary supplements | 0.3 g | - | 2 | 0.05 M | 0.05 M | 9 (K2CO3) | Saturated NaHSO₃ sol. + 10% H2SO4 (pH ≈ 2) | Filtration (0.2 µM nylon filter, Whatman) + Strata SDB-L 500 mg (Phenomenex) | 0.2 µg/g | LDTD/APCI/HRMS | 67–74% | |
Vudathala et al. [94] | Liver and plasma from channel catfish (Ictalurus punctatus) | <0.5 g/0.08–0.18 g | - | 3 | 0.002 M | 0.002 M | 9 (Na2CO3, 1 M) | NaHSO₃ + 0.5 mL of concentrated H2SO4 (pH ≤ 2) | Filtration (0.2 µM nylon filter, Whatman) + Oasis HLB 60 mg (Waters) | 5.2–6.2 ng/g | LC/MS | 31%/21% | |
Brown et al. [78] | Bottlenose dolphins liver (T. truncatus) | n.s. | - | 2.5 | 0.1 M | 0.1 M | n.s. (K2CO3, 0.2 M) | 40% NaHSO₃ | Strata-X 200 mg (Phenomenex) | 1.3 µg/g (dw) | LC/MS | 39% | |
Duncan et al. [88] | Aqueous samples/Algal reference material suspensions | n.s./25 mg (dw) in 200 mL of water | - | 1.5 | 0.025 M | 0.009 M | 9 (KHCO3, 0.5 M) | 40% NaHSO₃ + HCl (6 M, pH ≈ 3) | Semi-permeable hydrophobic membrane (PDMS) | 1 µg/L | CP/MIMS | n.s. | |
Foss et al. [59] | Mallard duck (Anas platyrhynchos) liver | 100 mg (dw) | - | 2 | 0.25 M | 0.25 M | KHCO3 (1 M) | 40% NaHSO₃ + 50% H2SO4 (pH < 2) | Ethyl acetate + Strata-X 200 mg (Phenomenex) | n.s. | LC/MS | n.s. | |
Greer et al. [95] | Porcine tissue | 50 mg (dw) | - | 2 | 0.1 M | 0.2 M | n.s. | 40% NaHSO3 + 10% H2SO4 | Oasis PRiME HLB (Waters) | n.s. | UPLC/MS | 83% | |
Foss et al. [86] | Dogs (Canis lupus familiaris) | Liver Kidney Hair Blood Bile Urine Vomit | 100 mg 100 mg 50 mg (dw) 0.5–1.5 mL 0.2–500 µL 0.2–500 µL 10 mg | - | 2 | 0.1 M | 0.1 M | (K2CO3, 0.2 M) | 40% NaHSO₃ | Strata-X 200 mg (Phenomenex) + filtration (PVDF; 0.2 µM; Sigma) | 4 ng/g 4 ng/g 20 ng/g 0.2 ng/mL 50 ng/mL 0.2 ng/mL n.s. | LC/MS | 21% 12% 4% 28% 72% 42% 114% |
Mohamed et al. [5] | Nile tilapia (Oreochromis niloticus) filet | n.s. | As described in Neffling et al. [49] | n-hexane | n.s. | LC/DAD | n.s. | ||||||
Anaraki et al. [87] | Rainbow Trout (O. mykiss) liver and filet | 100 mg (dw) | - | 2 | 0.3 mM | 0.02 M | 8.5 | NaHSO₃ + 10% H2SO4 (pH = 3) | Oasis HLB 400 mg (Waters) + Pall GHP filters | 7.28 ng/g | LC/MS | 30% | |
Bolotaolo et al. [70] | Sediments/clams | 1/0.1 g (dw) | - | 3 | 0.1 M | 0.1 M | 9 | NaHSO₃ (1–1.5 g) + 10% H2SO4 (pH = 2) | ENV-Bond Elut 100 mg (Agilent) + esterification | 10/15 ng/g (dw) | GC/MS | 50%/46% | |
Lepoutre et al. [83] | Mussels (A. anantina and D. polymorpha) | Freeze-dried tissues | Trypsin in Sörensen’s phosphate buffer (pH 7.5, 37 °C) | 3 | 0.025 M | 0.025 M | 9 | NaHSO₃ + 10% H2SO4 (pH < 3) | SPE 60 mg (Waters) | n.s. | LC-MS/MS | 32.9–58.8/36.5–57% |
3. Quantitation of Total MC after Ozonolysis
4. Quantification of Total MC after Base-Catalyzed Deconjugation
4.1. Zemskov’s Approach of Based-Catalyzed Deconjugation
4.2. Miles’ Approach of Based-Catalyzed Deconjugation
4.2.1. Based-Catalyzed Deconjugation of Thiol-Conjugated MCs
4.2.2. Sulfone/Sulfoxide Mediated Deconjugation
4.2.3. Application to Natural Samples
4.2.4. Discussion on the Deconjugation at Basic pH
5. Quantification of Total MC after Laser Irradiation Desorption
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schopf, J.W. The Fossil Record: Tracing the Roots of the Cyanobacterial Lineage. In The Ecology of Cyanobacteria; Springer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Chorus, I.; Welker, M. Cyanobacterial toxins. In Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; CRC Press: London, UK, 2021; p. 150. [Google Scholar]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environ. Sci. Pollut. Res. Int. 2003, 10, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Fulton, R.S.; Moisander, P.H.; Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 2001, 1, 76–113. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.; Ahmed, Z.; Bakr, A.; Hashem, M.; Alamri, S. Detection of free and bound microcystins in tilapia fish from Egyptian fishpond farms and its related public health risk assessment. J. Consum. Prot. Food Saf. 2019, 15, 37–47. [Google Scholar] [CrossRef]
- Chorus, I.; Welker, M. (Eds.) Toxic Cyanobacteria in Water—A Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; World Health Organization: London, UK, 2021; 859p. [Google Scholar]
- ANSES. Évaluation des Risques Liés Aux Cyanobactéries et Leurs Toxines Dans les Eaux Douces; ANSES: Maisons-Alfort, France, 2020; 495p.
- Singh, S.; Srivastava, A.; Oh, H.M.; Ahn, C.Y.; Choi, G.G.; Asthana, R.K. Recent trends in development of biosensors for detection of microcystin. Toxicon 2012, 60, 878–894. [Google Scholar] [CrossRef] [PubMed]
- Bouaïcha, N.; Miles, C.O.; Beach, D.G.; Labidi, Z.; Djabri, A.; Benayache, N.Y.; Nguyen-Quang, T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins 2019, 11, 714. [Google Scholar] [CrossRef]
- Zhang, D.; Xie, P.; Liu, Y.; Qiu, T. Transfer, distribution and bioaccumulation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health. Sci. Total Environ. 2009, 407, 2191–2199. [Google Scholar] [CrossRef]
- Lance, E.; Brient, L.; Carpentier, A.; Acou, A.; Marion, L.; Bormans, M.; Gerard, C. Impact of toxic cyanobacteria on gastropods and microcystin accumulation in a eutrophic lake (Grand-Lieu, France) with special reference to Physa (=Physella) acuta. Sci. Total Environ. 2010, 408, 3560–3568. [Google Scholar] [CrossRef]
- Lance, E.; Petit, A.; Sanchez, W.; Paty, C.; Gerard, C.; Bormans, M. Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. Harmful Algae 2014, 31, 9–17. [Google Scholar] [CrossRef]
- Rezaitabar, S.; Sari, A.E.; Bahramifar, N.; Ramezanpour, Z. Transfer, tissue distribution and bioaccumulation of microcystin LR in the phytoplanktivorous and carnivorous fish in Anzali wetland, with potential health risks to humans. Sci. Total Environ. 2017, 575, 1130–1138. [Google Scholar] [CrossRef]
- Kondo, F.; Ikai, Y.; Oka, H.; Okumura, M.; Ishikawa, N.; Harada, K.; Matsuura, K.; Murata, H.; Suzuki, M. Formation, characterization, and toxicity of the glutathione and cysteine conjugates of toxic heptapeptide microcystins. Chem. Res. Toxicol. 1992, 5, 591–596. [Google Scholar] [CrossRef]
- Hastie, C.J.; Borthwick, E.B.; Morrison, L.F.; Codd, G.A.; Cohen, P.T. Inhibition of several protein phosphatases by a non-covalently interacting microcystin and a novel cyanobacterial peptide, nostocyclin. Biochim. Biophys. Acta 2005, 1726, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Maynes, J.T.; Luu, H.A.; Cherney, M.M.; Andersen, R.J.; Williams, D.; Holmes, C.F.; James, M.N. Crystal structures of protein phosphatase-1 bound to motuporin and dihydromicrocystin-LA: Elucidation of the mechanism of enzyme inhibition by cyanobacterial toxins. J. Mol. Biol. 2006, 356, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.; Vasconcelos, V. Molecular mechanisms of microcystin toxicity in animal cells. Int. J. Mol. Sci. 2010, 11, 268–287. [Google Scholar] [CrossRef] [PubMed]
- Craig, M.; Luu, H.A.; McCready, T.L.; Williams, D.; Andersen, R.J.; Holmes, C.F. Molecular mechanisms underlying he interaction of motuporin and microcystins with type-1 and type-2A protein phosphatases. Biochem. Cell Biol. 1996, 74, 569–578. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y. The role of PP2A-associated proteins and signal pathways in microcystin-LR toxicity. Toxicol. Lett. 2015, 236, 1–7. [Google Scholar] [CrossRef]
- McLellan, N.L.; Manderville, R.A. Toxic mechanisms of microcystins in mammals. Toxicol. Res. 2017, 6, 391–405. [Google Scholar] [CrossRef]
- Vichi, S.; Buratti, F.M.; Testai, E. Microcystins: Toxicological Profile. In Marine and Freshwater Toxins; Gopalakrishnakone, P., Haddad, V., Jr., Tubaro, A., Kim, E., Kem, W.R., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 219–238. [Google Scholar]
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef]
- Kim, R.B. Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. Eur. J. Clin. Investig. 2003, 33 (Suppl. 2), 1–5. [Google Scholar] [CrossRef]
- Wood, R. Acute animal and human poisonings from cyanotoxin exposure—A review of the literature. Environ. Int. 2016, 91, 276–282. [Google Scholar] [CrossRef]
- Svirčev, Z.; Lalić, D.; Savić, G.B.; Tokodi, N.; Backović, D.D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
- Massey, I.Y.; Wu, P.; Wei, J.; Luo, J.; Ding, P.; Wei, H.; Yang, F. A Mini-Review on Detection Methods of Microcystins. Toxins 2020, 12, 641. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, W.W.; Li, R. Cyanobacteria toxins in the Salton Sea. Saline Syst. 2006, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Lance, E.; Neffling, M.R.; Gerard, C.; Meriluoto, J.; Bormans, M. Accumulation of free and covalently bound microcystins in tissues of Lymnaea stagnalis (Gastropoda) following toxic cyanobacteria or dissolved microcystin-LR exposure. Environ. Pollut. 2010, 158, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Cadel-Six, S.; Moyenga, D.; Magny, S.; Trotereau, S.; Edery, M.; Krys, S. Detection of free and covalently bound microcystins in different tissues (liver, intestines, gills, and muscles) of rainbow trout (Oncorhynchus mykiss) by liquid chromatography-tandem mass spectrometry: Method characterization. Environ. Pollut. 2014, 185, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Manubolu, M.; Lee, J.; Riedl, K.M.; Kua, Z.X.; Collart, L.P.; Ludsin, S.A. Optimization of extraction methods for quantification of microcystin-LR and microcystin-RR in fish, vegetable, and soil matrices using UPLC-MS/MS. Harmful Algae 2018, 76, 47–57. [Google Scholar] [CrossRef]
- Kondo, F.; Matsumoto, H.; Yamada, S.; Tsuji, K.; Ueno, Y.; Harada, K. Immunoaffinity purification method for detection and quantification of microcystins in lake water. Toxicon 2000, 38, 813–823. [Google Scholar] [CrossRef]
- Kondo, F.; Ito, Y.; Oka, H.; Yamada, S.; Tsuji, K.; Imokawa, M.; Niimi, Y.; Harada, K.-I.; Ueno, Y.; Miyazaki, Y. Determination of microcystins in lake water using reusable immunoaffinity column. Toxicon 2002, 40, 893–899. [Google Scholar] [CrossRef]
- Lawrence, J.F.; Menard, C. Determination of microcystins in blue-green algae, fish and water using liquid chromatography with ultraviolet detection after sample clean-up employing immunoaffinity chromatography. J. Chromatogr. A 2001, 922, 111–117. [Google Scholar] [CrossRef]
- Neumann, A.C.; Melnik, S.; Niessner, R.; Stoeger, E.; Knopp, D. Microcystin-LR Enrichment from Freshwater by a Recombinant Plant-derived Antibody Using Sol-Gel-Glass Immunoextraction. Anal. Sci. 2019, 35, 207–214. [Google Scholar] [CrossRef]
- Lawton, L.A.; Chambers, H.; Edwards, C.; Nwaopara, A.A.; Healy, M. Rapid detection of microcystins in cells and water. Toxicon 2010, 55, 973–978. [Google Scholar] [CrossRef]
- Ai, Y.; Lee, S.; Lee, J. Drinking water treatment residuals from cyanobacteria bloom-affected areas: Investigation of potential impact on agricultural land application. Sci. Total Environ. 2020, 706, 135756. [Google Scholar] [CrossRef] [PubMed]
- Bostan, H.B.; Taghdisi, S.M.; Bowen, J.L.; Demertzis, N.; Rezaee, R.; Panahi, Y.; Tsatsakis, A.M.; Karimi, G. Determination of microcystin-LR, employing aptasensors. Biosens. Bioelectron. 2018, 119, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Cunha, I.; Biltes, R.; Sales, M.; Vasconcelos, V. Aptamer-Based Biosensors to Detect Aquatic Phycotoxins and Cyanotoxins. Sensors 2018, 18, 2367. [Google Scholar] [CrossRef]
- Lin, Z.; Huang, H.; Xu, Y.; Gao, X.; Qiu, B.; Chen, X.; Chen, G. Determination of microcystin-LR in water by a label-free aptamer based electrochemical impedance biosensor. Talanta 2013, 103, 371–374. [Google Scholar] [CrossRef]
- Liu, M.; Sun, C.; Wang, G.; Wang, Y.; Lu, H.; Shi, H.; Zhao, G. A simple, supersensitive and highly selective electrochemical aptasensor for Microcystin-LR based on synergistic signal amplification strategy with graphene, DNase I enzyme and Au nanoparticles. Electrochim. Acta 2019, 293, 220–229. [Google Scholar] [CrossRef]
- Lawton, L.A.; Edwards, C.; Codd, G.A. Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 1994, 119, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- ISO 20179:2005; Water Quality–Determination of Microcystins–Method Using Solid Phase Extraction (SPE) and High Performance Liquid Chromatography (HPLC) with Ultraviolet (UV) Detection. ISO: Geneva, Switzerland, 2005.
- Meriluoto, J.; Spoof, L.; Codd, G.A. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bateman, K.P.; Thibault, P.; Douglas, D.J.; White, R.L. Mass spectral analyses of microcystins from toxic cyanobacteria using on-line chromatographic and electrophoretic separations. J. Chromatogr. A 1995, 712, 253–268. [Google Scholar] [CrossRef]
- Li, P.C.H.; Hu, S.; Lam, P.K.S. Development of a Capillary Zone Electrophoretic Method for the Rapid Separation and Detection of Hepatotoxic Microcystins. Mar. Pollut. Bull. 1999, 39, 250–254. [Google Scholar] [CrossRef]
- Vasas, G.; Gaspar, A.; Pager, C.; Suranyi, G.; Mathe, C.; Hamvas, M.M.; Borbely, G. Analysis of cyanobacterial toxins (anatoxin-a, cylindrospermopsin, microcystin-LR) by capillary electrophoresis. Electrophoresis 2004, 25, 108–115. [Google Scholar] [CrossRef]
- Vasas, G.; Szydlowska, D.; Gaspar, A.; Welker, M.; Trojanowicz, M.; Borbely, G. Determination of microcystins in environmental samples using capillary electrophoresis. J. Biochem. Biophys. Methods 2006, 66, 87–97. [Google Scholar] [CrossRef]
- Birungi, G.; Li, S.F. Determination of cyanobacterial cyclic peptide hepatotoxins in drinking water using CE. Electrophoresis 2009, 30, 2737–2742. [Google Scholar] [CrossRef] [PubMed]
- Neffling, M.R.; Lance, E.; Meriluoto, J. Detection of free and covalently bound microcystins in animal tissues by liquid chromatography-tandem mass spectrometry. Environ Pollut 2010, 158, 948–952. [Google Scholar] [CrossRef]
- Falconer, I.R.; Smith, J.V.; Jackson, A.R.; Jones, A.; Runnegar, M.T. Oral toxicity of a bloom of the Cyanobacterium microcystis Aeruginosa administered to mice over periods up to 1 year. J. Toxicol. Environ. Health 1988, 24, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Babica, P.; Blaha, L.; Marsalek, B. Exploring the Natural Role of Microcystins-a Review of Effects on Photoautotrophic Organisms1. J. Phycol. 2006, 42, 9–20. [Google Scholar] [CrossRef]
- Vasas, G.; Gaspar, A.; Suranyi, G.; Batta, G.; Gyemant, G.; Márta, M.H.; Mathe, C.; Grigorszky, I.; Molnar, E.; Borbely, G. Capillary electrophoretic assay and purification of cylindrospermopsin, a cyanobacterial toxin from Aphanizomenon ovalisporum, by plant test (blue-green Sinapis test). Anal. Biochem. 2002, 302, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Perron, M.C.; Qiu, B.; Boucher, N.; Bellemare, F.; Juneau, P. Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae. Toxicon 2012, 59, 567–577. [Google Scholar] [CrossRef]
- Metcalf, J.S.; Lindsay, J.; Beattie, K.A.; Birmingham, S.; Saker, M.L.; Torokne, A.K.; Codd, G.A. Toxicity of cylindrospermopsin to the brine shrimp Artemia salina: Comparisons with protein synthesis inhibitors and microcystins. Toxicon 2002, 40, 1115–1120. [Google Scholar] [CrossRef]
- Torokne, A.; Vasdinnyei, R.; Asztalos, B.M. A rapid microbiotest for the detection of cyanobacterial toxins. Environ. Toxicol. 2007, 22, 64–68. [Google Scholar] [CrossRef]
- Buryskova, B.; Hilscherova, K.; Babica, P.; Vrskova, D.; Marsalek, B.; Blaha, L. Toxicity of complex cyanobacterial samples and their fractions in Xenopus laevis embryos and the role of microcystins. Aquat. Toxicol. 2006, 80, 346–354. [Google Scholar] [CrossRef]
- Campbell, D.L.; Lawton, L.A.; Beattie, K.A.; Codd, G.A. Comparative assessment of the specificity of the brine shrimp and microtox assays to hepatotoxic (microcystin-LR-containing) cyanobacteria. Environ. Toxicol. Water Qual. 1994, 9, 71–77. [Google Scholar] [CrossRef]
- Moore, C.E.; Juan, J.; Lin, Y.; Gaskill, C.L.; Puschner, B. Comparison of Protein Phosphatase Inhibition Assay with LC-MS/MS for Diagnosis of Microcystin Toxicosis in Veterinary Cases. Mar. Drugs 2016, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Foss, A.J.; Miles, C.O.; Samdal, I.A.; Lovberg, K.E.; Wilkins, A.L.; Rise, F.; Jaabaek, J.A.H.; McGowan, P.C.; Aubel, M.T. Analysis of free and metabolized microcystins in samples following a bird mortality event. Harmful Algae 2018, 80, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E.; Craig, M.; McCready, T.L.; Dawe, S.C.; Kent, M.L.; Holmes, C.F.; Andersen, R.J. Evidence for a covalently bound form of microcystin-LR in salmon liver and Dungeness crab larvae. Chem. Res. Toxicol. 1997, 10, 463–469. [Google Scholar] [CrossRef]
- Suchy, P.; Berry, J. Detection of total microcystin in fish tissues based on lemieux oxidation, and recovery of 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB) by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS). Int. J. Environ. Anal. Chem. 2012, 92, 1443–1456. [Google Scholar] [CrossRef] [PubMed]
- Roy-Lachapelle, A. Nouvelles Stratégies Pour L’analyse des Cyanotoxines par Spectrométrie de Masse. Ph.D. Thesis, Université de Montréal, Montreal, QC, Canada, 2015. [Google Scholar]
- Foss, A.J.; Aubel, M.T. Using the MMPB technique to confirm microcystin concentrations in water measured by ELISA and HPLC (UV, MS, MS/MS). Toxicon 2015, 104, 91–101. [Google Scholar] [CrossRef]
- Munoz, G.; Vo Duy, S.; Roy-Lachapelle, A.; Husk, B.; Sauve, S. Analysis of individual and total microcystins in surface water by on-line preconcentration and desalting coupled to liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2017, 1516, 9–20. [Google Scholar] [CrossRef]
- Sano, T.; Nohara, K.; Shiraishi, F.; Kaya, K. A method for micro-determination of total microcystin content in waterblooms of cyanobacteria (blue-green algea). Intern. J. Environ. Anal. Chem 1992, 49, 163–170. [Google Scholar] [CrossRef]
- Roy-Lachapelle, A.; Fayad, P.B.; Sinotte, M.; Deblois, C.; Sauve, S. Total microcystins analysis in water using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry. Anal. Chim. Acta 2014, 820, 76–83. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, B.; Li, R.; Wang, Z.; Chen, X.; Chen, X. Rapid quantification of total microcystins in cyanobacterial samples by periodate-permanganate oxidation and reversed-phase liquid chromatography. Anal. Chim. Acta 2009, 651, 241–247. [Google Scholar] [CrossRef]
- Wang, C.; Tian, C.; Tian, Y.; Feng, B.; We, S.; Li, Y.; Wu, X.; Xiao, B. A sensitive method for the determination of total microcystins in water and sediment samples by liquid chromatography with fluorescence detection. Anal. Methods 2015, 7, 759–765. [Google Scholar] [CrossRef]
- Wu, X.; Wang, C.; Xiao, B.; Wang, Y.; Zheng, N.; Liu, J. Optimal strategies for determination of free/extractable and total microcystins in lake sediment. Anal. Chim. Acta 2012, 709, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Bolotaolo, M.; Kurobe, T.; Puschner, B.; Hammock, B.G.; Hengel, M.J.; Lesmeister, S.; Teh, S.J. Analysis of Covalently Bound Microcystins in Sediments and Clam Tissue in the Sacramento–San Joaquin River Delta, California, USA. Toxins 2020, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E.; Dawe, S.C.; Kent, M.L.; Andersen, R.J.; Craig, M.; Holmes, C.F. Bioaccumulation and clearance of microcystins from salt water mussels, Mytilus edulis, and in vivo evidence for covalently bound microcystins in mussel tissues. Toxicon 1997, 35, 1617–1625. [Google Scholar] [CrossRef]
- Ott, J.L.; Carmichael, W.W. LC/ESI/MS method development for the analysis of hepatotoxic cyclic peptide microcystins in animal tissues. Toxicon 2006, 47, 734–741. [Google Scholar] [CrossRef]
- Hilborn, E.D.; Carmichael, W.W.; Soares, R.M.; Yuan, M.; Servaites, J.C.; Barton, H.A.; Azevedo, S.M. Serologic evaluation of human microcystin exposure. Environ. Toxicol. 2007, 22, 459–463. [Google Scholar] [CrossRef]
- Soares, R.M.; Yuan, M.; Servaites, J.C.; Delgado, A.; Magalhaes, V.F.; Hilborn, E.D.; Carmichael, W.W.; Azevedo, S.M. Sublethal exposure from microcystins to renal insufficiency patients in Rio de Janeiro, Brazil. Environ. Toxicol. 2006, 21, 95–103. [Google Scholar] [CrossRef]
- Yuan, M.; Carmichael, W.W.; Hilborn, E.D. Microcystin analysis in human sera and liver from human fatalities in Caruaru, Brazil 1996. Toxicon 2006, 48, 627–640. [Google Scholar] [CrossRef]
- Nasri, H.; El Herry, S.; Bouaicha, N. First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicol. Environ. Saf. 2008, 71, 535–544. [Google Scholar] [CrossRef]
- Greer, B.; Maul, R.; Campbell, K.; Elliott, C.T. Detection of freshwater cyanotoxins and measurement of masked microcystins in tilapia from Southeast Asian aquaculture farms. Anal. Bioanal. Chem. 2017, 409, 4057–4069. [Google Scholar] [CrossRef]
- Brown, A.; Foss, A.; Miller, M.A.; Gibson, Q. Detection of cyanotoxins (microcystins/nodularins) in livers from estuarine and coastal bottlenose dolphins (Tursiops truncatus) from Northeast Florida. Harmful Algae 2018, 76, 22–34. [Google Scholar] [CrossRef]
- Roy-Lachapelle, A.; Solliec, M.; Sinotte, M.; Deblois, C.; Sauve, S. Total Analysis of Microcystins in Fish Tissue Using Laser Thermal Desorption-Atmospheric Pressure Chemical Ionization-High-Resolution Mass Spectrometry (LDTD-APCI-HRMS). J. Agric. Food Chem. 2015, 63, 7440–7449. [Google Scholar] [CrossRef]
- Roy-Lachapelle, A.; Solliec, M.; Bouchard, M.F.; Sauve, S. Detection of Cyanotoxins in Algae Dietary Supplements. Toxins 2017, 9, 76. [Google Scholar] [CrossRef]
- Bieczynski, F.; Bianchi, V.A.; Luquet, C.M. Accumulation and biochemical effects of microcystin-LR on the Patagonian pejerrey (Odontesthes hatcheri) fed with the toxic cyanobacteria Microcystis aeruginosa. Fish Physiol. Biochem. 2013, 39, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Risticevic, S.; Niri, V.H.; Vuckovic, D.; Pawliszyn, J. Recent developments in solid-phase microextraction. Anal. Bioanal. Chem. 2009, 393, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Lepoutre, A.; Grilot, T.; Jean, S.; Geffard, A.; Lance, E. Free or Protein-Bound Microcystin Accumulation by Freshwater Bivalves as a Tool to Evaluate Water Contamination by Microcystin-Producing Cyanobacteria? Appl. Sci. 2020, 10, 3426. [Google Scholar] [CrossRef]
- Kaya, K.; Sano, T. Total microcystin determination using erythro-2-methyl-3-(methoxy-d3)-4-phenylbutyric acid (MMPB-d3) as the internal standard. Anal. Chim. Acta 1999, 386, 107–112. [Google Scholar] [CrossRef]
- Foss, A.J.; Butt, J.; Fuller, S.; Cieslik, K.; Aubel, M.T.; Wertz, T. Nodularin from benthic freshwater periphyton and implications for trophic transfer. Toxicon 2017, 140, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Foss, A.J.; Aubel, M.T.; Gallagher, B.; Mettee, N.; Miller, A.; Fogelson, S.B. Diagnosing Microcystin Intoxication of Canines: Clinicopathological Indications, Pathological Characteristics, and Analytical Detection in Postmortem and Antemortem Samples. Toxins 2019, 11, 456. [Google Scholar] [CrossRef]
- Anaraki, M.T.; Shahmohamadloo, R.S.; Sibley, P.K.; MacPherson, K.; Bhavsar, S.P.; Simpson, A.J.; Almirall, X.O. Optimization of an MMPB Lemieux Oxidation method for the quantitative analysis of microcystins in fish tissue by LC-QTOF MS. Sci. Total Environ. 2020, 737, 140209. [Google Scholar] [CrossRef]
- Duncan, K.D.; Beach, D.G.; Wright, E.J.; Barsby, T.; Gill, C.G.; Krogh, E.T. Direct online quantitation of 2-methyl-3-methoxy-4-phenyl butanoic acid for total microcystin analysis by condensed phase membrane introduction tandem mass spectrometry. Anal. Methods 2018, 10, 3310–3316. [Google Scholar] [CrossRef]
- Rodriguez, E.; Majado, M.E.; Meriluoto, J.; Acero, J.L. Oxidation of microcystins by permanganate: Reaction kinetics and implications for water treatment. Water Res. 2007, 41, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xiao, B.; Gong, Y.; Wang, Z.; Chen, X.; Li, R. Kinetic study of the 2-methyl-3-methoxy-4-phenylbutanoic acid produced by oxidation of microcystin in aqueous solutions. Environ. Toxicol. Chem. 2008, 27, 2019–2026. [Google Scholar] [CrossRef] [PubMed]
- González, O.; Blanco, M.E.; Iriarte, G.; Bartolomé, L.; Maguregui, M.I.; Alonso, R.M. Bioanalytical chromatographic method validation according to current regulations, with a special focus on the non-well defined parameters limit of quantification, robustness and matrix effect. J. Chromatogr. A 2014, 1353, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Mejia-Avendaño, S.; Munoz, G.; Sauvé, S.; Liu, J. Assessment of the Influence of Soil Characteristics and Hydrocarbon Fuel Cocontamination on the Solvent Extraction of Perfluoroalkyl and Polyfluoroalkyl Substances. Anal. Chem. 2017, 89, 2539–2546. [Google Scholar] [CrossRef]
- Pires, L.M.; Karlsson, K.M.; Meriluoto, J.A.; Kardinaal, E.; Visser, P.M.; Siewertsen, K.; Donk, E.V.; Ibelings, B.W. Assimilation and depuration of microcystin-LR by the zebra mussel, Dreissena polymorpha. Aquat. Toxicol. 2004, 69, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Vudathala, D.; Smith, S.; Khoo, L.; Kuhn, D.D.; Mainous, M.E.; Steadman, J.; Murphy, L. Analysis of microcystin-LR and nodularin using triple quad liquid chromatography-tandem mass spectrometry and histopathology in experimental fish. Toxicon 2017, 138, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Greer, B.; Meneely, J.P.; Elliott, C.T. Uptake and accumulation of Microcystin-LR based on exposure through drinking water: An animal model assessing the human health risk. Sci. Rep. 2018, 8, 4913. [Google Scholar] [CrossRef]
- Harada, K.; Murata, H.; Qiang, Z.; Suzuki, M.; Kondo, F. Mass spectrometric screening method for microcystins in cyanobacteria. Toxicon 1996, 34, 701–710. [Google Scholar] [CrossRef]
- Tsuji, K.; Masui, H.; Uemura, H.; Mori, Y.; Harada, K.-I. Analysis of microcystins in sediments using MMPB method. Toxicon 2001, 39, 687–692. [Google Scholar] [CrossRef]
- Rapala, J.; Lahti, K.; Sivonen, K.; Niemela, S.I. Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a. Lett. Appl. Microbiol. 1994, 19, 423–428. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yu, R.P.; Wang, L.P.; Wu, S.F.; Song, Q.J. Transformation of microcystins to 2-methyl-3-methoxy-4-phenylbutyric acid by room temperature ozone oxidation for rapid quantification of total microcystins. Environ. Sci. Process. Impacts 2016, 18, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Rositano, J.; Nicholson, B.C.; Pieronne, P. Destruction of Cyanobacterial Toxins by Ozone. Ozone Sci. Eng. 1998, 20, 223–238. [Google Scholar] [CrossRef]
- Lawton, L.A.; Robertson, P.K.J. Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chem. Soc. Rev. 1999, 28, 217–224. [Google Scholar] [CrossRef]
- Schmidt, W.; Willmitzer, H.; Bornmann, K.; Pietsch, J. Production of drinking water from raw water containing cyanobacteria?pilot plant studies for assessing the risk of microcystin breakthrough. Environ. Toxicol. 2002, 17, 375–385. [Google Scholar] [CrossRef]
- Hoeger, S.J.; Dietrich, D.R.; Hitzfeld, B.C. Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment. Environ. Health Perspect. 2002, 110, 1127–1132. [Google Scholar] [CrossRef]
- Hoeger, S.J.; Hitzfeld, B.C.; Dietrich, D.R. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicol. Appl Pharmacol. 2005, 203, 231–242. [Google Scholar] [CrossRef]
- Onstad, G.D.; Strauch, S.; Meriluoto, J.; Codd, G.A.; Von Gunten, U. Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation. Environ. Sci. Technol. 2007, 41, 4397–4404. [Google Scholar] [CrossRef]
- Kondo, F.; Matsumoto, H.; Yamada, S.; Ishikawa, N.; Ito, E.; Nagata, S.; Ueno, Y.; Suzuki, M.; Harada, K.-i. Detection and Identification of Metabolites of Microcystins Formed in Vivo in Mouse and Rat Livers. Chem. Res. Toxicol. 1996, 9, 1355–1359. [Google Scholar] [CrossRef]
- Williams, D.E.; Craig, M.; Dawe, S.C.; Kent, M.L.; Andersen, R.J.; Holmes, C.F.B. 14C-labelled microcystin-LR administered to Atlantic salmon via intraperitoneal injection provides in vivo evidence for covalent binding of microcystin-LR in salmon livers. Toxicon 1997, 35, 985–989. [Google Scholar] [CrossRef]
- Pflugmacher, S.; Wiegand, C.; Oberemm, A.; Beattie, K.A.; Krause, E.; Codd, G.A.; Steinberg, C.E.W. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: The first step of detoxication. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1998, 1425, 527–533. [Google Scholar] [CrossRef]
- Meissner, S.; Fastner, J.; Dittmann, E. Microcystin production revisited: Conjugate formation makes a major contribution. Environ. Microbiol. 2013, 15, 1810–1820. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.O.; Sandvik, M.; Nonga, H.E.; Rundberget, T.; Wilkins, A.L.; Rise, F.; Ballot, A. Thiol Derivatization for LC-MS Identification of Microcystins in Complex Matrices. Environ. Sci. Technol. 2012, 46, 8937–8944. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.O.; Sandvik, M.; Haande, S.; Nonga, H.; Ballot, A. LC-MS Analysis with Thiol Derivatization to Differentiate [Dhb7]- from [Mdha7]-Microcystins: Analysis of Cyanobacterial Blooms, Planktothrix Cultures and European Crayfish from Lake Steinsfjorden, Norway. Environ. Sci. Technol. 2013, 47, 4080–4087. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, J.; Xie, P.; He, J.; Guo, X.; Tuo, X.; Zhang, W.; Wu, L. Rapid conversion and reversible conjugation of glutathione detoxification of microcystins in bighead carp (Aristichthys nobilis). Aquat. Toxicol. 2014, 147, 18–25. [Google Scholar] [CrossRef]
- Miles, C.O. Rapid and Convenient Oxidative Release of Thiol-Conjugated Forms of Microcystins for Chemical Analysis. Chem. Res. Toxicol. 2017, 30, 1599–1608. [Google Scholar] [CrossRef]
- Miles, C.O.; Sandvik, M.; Nonga, H.E.; Ballot, A.; Wilkins, A.L.; Rise, F.; Jaabaek, J.A.H.; Loader, J.I. Conjugation of Microcystins with Thiols Is Reversible: Base-Catalyzed Deconjugation for Chemical Analysis. Chem. Res. Toxicol. 2016, 29, 860–870. [Google Scholar] [CrossRef]
- Zemskov, I.; Kropp, H.M.; Wittmann, V. Regioselective Cleavage of Thioether Linkages in Microcystin Conjugates. Chem.—Eur. J. 2016, 22, 10990–10997. [Google Scholar] [CrossRef]
- Bernardes, G.J.L.; Chalker, J.M.; Errey, J.C.; Davis, B.G. Facile Conversion of Cysteine and Alkyl Cysteines to Dehydroalanine on Protein Surfaces: Versatile and Switchable Access to Functionalized Proteins. J. Am. Chem. Soc. 2008, 130, 5052–5053. [Google Scholar] [CrossRef]
- Whitham, G.H. Organosulfur Chemistry; Oxford University Press: Oxford, UK; New York, NY, USA, 1995. [Google Scholar]
- Zoller, U. Syntheses of sulfinic esters. In Sulphinic Acids, Esters and Derivatives (1990); John Wiley & Sons Ltd.: Chichester, UK, 1990; pp. 217–237. [Google Scholar]
- Miles, C.O.; Melanson, J.E.; Ballot, A. Sulfide Oxidations for LC-MS Analysis of Methionine-Containing Microcystins in Dolichospermum flos-aquae NIVA-CYA 656. Environ. Sci. Technol. 2014, 48, 13307–13315. [Google Scholar] [CrossRef]
- Shen, Q.; Feng, J.; Wang, J.; Li, S.; Wang, Y.; Ma, J.; Wang, H. Laser irradiation desorption of microcystins from protein complex in fish tissue and liquid chromatography-tandem mass spectrometry analysis. Electrophoresis 2019, 40, 1805–1811. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouteiller, P.; Lance, E.; Guérin, T.; Biré, R. Analysis of Total-Forms of Cyanotoxins Microcystins in Biological Matrices: A Methodological Review. Toxins 2022, 14, 550. https://doi.org/10.3390/toxins14080550
Bouteiller P, Lance E, Guérin T, Biré R. Analysis of Total-Forms of Cyanotoxins Microcystins in Biological Matrices: A Methodological Review. Toxins. 2022; 14(8):550. https://doi.org/10.3390/toxins14080550
Chicago/Turabian StyleBouteiller, Pierre, Emilie Lance, Thierry Guérin, and Ronel Biré. 2022. "Analysis of Total-Forms of Cyanotoxins Microcystins in Biological Matrices: A Methodological Review" Toxins 14, no. 8: 550. https://doi.org/10.3390/toxins14080550
APA StyleBouteiller, P., Lance, E., Guérin, T., & Biré, R. (2022). Analysis of Total-Forms of Cyanotoxins Microcystins in Biological Matrices: A Methodological Review. Toxins, 14(8), 550. https://doi.org/10.3390/toxins14080550