Identification of Cyanobacteria and Its Potential Toxins in the Joanes I Reservoir, Bahia, Brazil
Abstract
:1. Introduction
2. Results
2.1. Cell Counts
2.2. Physicochemical and Biochemical Analysis of Water
2.3. PCR Analyses
2.4. Toxin Analysis Using LC-MS/MS
3. Discussion
3.1. Cell Counts
3.2. Physicochemical and Biochemical Analysis of Water
3.3. PCR Analyses
3.4. Toxin Analysis Using LC-MS/MS
4. Conclusions
5. Materials and Methods
5.1. Sampling Sites
5.2. Cell Counts
5.3. Physicochemical and Biochemical Analysis of Water
5.4. PCR Assay for Cyanotoxin Genes
5.4.1. Genomic DNA Extraction
5.4.2. PCR Amplification of Genes
5.4.3. Electrophoresis
5.4.4. Band Extraction and Sequencing
5.5. Analysis of Intracellular Cyanotoxins/Toxin Using LC-MS/MS
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svirčev, Z.; Lalić, D.; Bojadžija Savić, G.; Tokodi, N.; Drobac Backović, D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Giesy, J.P.; Adamovsky, O.; Svirčev, Z.; Meriluoto, J.; Codd, G.A.; Mijovic, B.; Shi, T.; Tuo, X.; Li, S.-C.; et al. Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. Sci. Total Environ. 2020, 10, 142319. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, J.S.; Codd, G.A. Co-Occurrence of Cyanobacteria and Cyanotoxins with Other Environmental Health Hazards: Impacts and Implications. Toxins 2020, 12, 629. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.F.; Van Hassel, W.H.R.; Andjelkovic, M.; Wilmotte, A.; Rajkovic, A. Cyanotoxins and Food Contamination in Developing Countries: Review of Their Types, Toxicity, Analysis, Occurrence and Mitigation Strategies. Toxins 2021, 13, 786. [Google Scholar] [CrossRef]
- Hou, W.; Chen, X.; Ba, M.; Yu, J.; Chen, T.; Zhu, Y.; Bai, J. Characteristics of Harmful Algal Species in the Coastal Waters of China from 1990 to 2017. Toxins 2022, 14, 160. [Google Scholar] [CrossRef]
- Bouvy, M.; Falcão, D.; Marinho, M.; Pagano, M.; Moura, A. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998. Aquat. Microb. Ecol. 2000, 23, 13–27. [Google Scholar] [CrossRef]
- Kaloudis, T.; Hiskia, A.; Triantis, T.M. Cyanotoxins in Bloom: Ever-Increasing Occurrence and Global Distribution of Freshwater Cyanotoxins from Planktic and Benthic Cyanobacteria. Toxins 2022, 14, 264. [Google Scholar] [CrossRef]
- Codd, G.A.; Bell, S.G.; Kaya, K.; Ward, C.J.; Beattie, K.A.; Metcalf, J.S. Cyanobacterial toxins, exposure routes and human health. Eur. J. Phycol. 1999, 34, 405–415. [Google Scholar] [CrossRef]
- Metcalf, J.S.; Barakate, A.; Codd, G.A. Inhibition of plant protein synthesis by the cyanobacterial hepatotoxin, cylindrospermopsin. FEMS Microbiol. Lett. 2004, 235, 125–129. [Google Scholar] [CrossRef]
- Taranu, Z.E.; Gregpry-Eaves, I.; Leavitt, P.R.; Bunting, L.; Buchaca, T.; Catalan, J.; Domaizon, I.; Guilizzoni, P.; Lami, A.; McGowan, S.; et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol. Lett. 2015, 18, 75–384. [Google Scholar] [CrossRef]
- Häggqvist, K.; Akçaalan, R.; Echenique-Subiabre, I.; Fastner, J.; Horecká, M.; Humbert, J.F.; Izydorczyk, K.; Jurczak, T.; Kokociński, M.; Lindholm, T.; et al. Case Stuies of Environmental Sampling, Detection, and Monitoring of Potentially Toxic Cyanobacteria. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 1st ed.; COST—European Cooperation in Science and Technology, Baltic Sea in Northern Europe: Brussels, Belgium, 2017; 576p. [Google Scholar]
- Pearson, L.A.; Neilan, B.A. The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Current Opinion in Biotechnology. Curr. Opin. Biotechnol. 2008, 19, 281. [Google Scholar] [CrossRef] [PubMed]
- Hardy, F.J.; Johnson, A.; Hamel, K.; Preece, E. Cyanotoxin bioaccumulation in freshwater fish, Washington State, USA. Environ. Monit. Assess. 2015, 187, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Palikova, M.; Kopp, R.; Kohoutek, J.; Blaha, L.; Mares, J.; Ondrackova, P.; Papezikova, I.; Minarova, H.; Pojezdal, L.; Adamovsky, O. Cyanobacteria Microcystis aeruginosa Contributes to the Severity of Fish Diseases: A Study on Spring Viraemia of Carp. Toxins 2021, 13, 601. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.U.G.; Wilson, A.E.; Leitão, J.I.R.; Pereira, S.P.; Buley, R.P.; Fernandez-Figueroa, E.G.; Capelo-Neto, J. Environmental factors associated with toxic cyanobacterial blooms across 20 drinking water reservoirs in a semi-arid region of Brazil. Harmful Algae 2019, 86, 128–137. [Google Scholar] [CrossRef]
- Teixeira, M.; Costa, M.; Carvalho, V.; Pereira, M.; Hage, E. Gastroenteritis epidemic in the area of the Itaparica Dam, Bahia, Brazil. Bull. Pan Am. Health Org. 1993, 27, 244–253. [Google Scholar]
- Kurmayer, R.; Christiansen, G. The Genetic Basis of Toxin Production in Cyanobacteria. Freshw. Rev. 2009, 2, 31–50. [Google Scholar] [CrossRef]
- Churro, C.; Valério, E. Multidisciplinary Approach in the Identification and Monitoring of Potentially Toxic Cyanobacteria. Water and Soil Unit. Department of Environmental Health, INSA. 2015. Available online: http://hdl.handle.net/10400.18/2999 (accessed on 10 September 2021).
- Moreira, C.; Azevedo, J.; Antunes, A.; Vasconcelos, V. Cylindrospermopsin: Occurrence, methods of detection and toxicology. J. Appl. Microbiol. 2012, 114, 605–620. [Google Scholar] [CrossRef]
- Medlin, L.K.; Orozco, J. Molecular Techniques for the Detection of Organisms in Aquatic Environments, with Emphasis on Harmful Algal Bloom Species. Sensors 2017, 17, 1184. [Google Scholar] [CrossRef] [Green Version]
- Nübel, U.; Garcia-Pichel, F.; Kühl, M.; Muyzer, G. Quantifying Microbial Diversity: Morphotypes, 16S rRNA Genes, and Carotenoids of Oxygenic Phototrophsin microbial mats. Appl. Environ. Microbiol. 1999, 65, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Van Apeldoorn, M.E.; Van Egmond, H.P.; Speijers, G.J.A.; Bakker, G.J.I. Toxins of cyanobacteria. Mol. Nutr. Food Res. 2007, 51, 7–60. [Google Scholar] [CrossRef]
- Sivonen, K. Emerging High Throughput Analyses of Cyanobacterial Toxins and Toxic Cyanobacteria. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs; Chapter 24; United States Environmental Protection Agency: Lincoln, NE, USA, 2008; Volume 619, pp. 539–557. [Google Scholar]
- Pekar, H.; Westerberg, E.; Bruno, O.; Lääne, A.; Persson, K.M.; Sundström, L.F.; Thim, A.-M. Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water—First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds. J. Chromatogr. A 2016, 1429, 265–276. [Google Scholar] [PubMed]
- Di Pofi, G.; Favero, G.; Nigro Di Gregorio, F.; Ferretti, E.; Viaggiu, E.; Lucentini, L. Multi-residue Ultra Performance Liquid Chromatography-High resolution mass spectrometric method for the analysis of 21 cyanotoxins in surface water for human consumption. Talanta 2020, 211, 120738. [Google Scholar] [CrossRef]
- Salmaso, N.; Bernard, C.; Humbert, J.F.; Akçaalan, R.; Albay, M.; Ballot, A.; Catherine, A.; Fastner, J.; Häggqvist, K.; Horecká, M.; et al. Basic Guide to Detection and Monitoring of Potentially Toxic Cyanobacteria. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 1st ed.; COST—European Cooperation in Science and Technology: Brussels, Belgium, 2017; 576p. [Google Scholar]
- Van de Waal, D.B.; Guillebault, D.; Alfonso, A.; Rodríguez, I.; Botana, L.M.; Bijkerk, R.; Medlin, L.K. Molecular detection of harmful cyanobacteria and expression of their toxin genes in Dutch lakes using multi-probe RNA chips. Harmful Algae 2018, 72, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Coelho, H.D.A.; Topasio, E.F.; Oliveira, G.X.S.; Santos, J.J. Monitoring the water of the Joanes I dam before applying HCM. In Proceedings of the Water Management and Environmental Monitoring-RESAG, 2nd International Congress, Aracaju, Brazil, 25 March 2015. [Google Scholar]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codd, G.A.; Morrison, L.F.; Metcalf, J.S. Cyanobacterial toxins: Risk management for health protection. Toxicol. Appl. Pharmacol. 2005, 203, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide to the Public Health Consequences, Monitoring and Management; E & FN Spon: London, UK, 1999; p. 416. [Google Scholar]
- Sant’anna, C.L.; Azevedo, M.T.P.; Senna, P.A.C.; Komárek, J.; Komárková, J. Planktic Cyanobacteria from São Paulo State, Brazil: Chroococcales. Braz. J. Bot. 2004, 27, 213–227. [Google Scholar] [CrossRef]
- Brazil, CONAMA Resolution No. 357, of 17 March 2005. Official Gazette of the Federative Republic of Brazil, Executive Branch, Brasília, DF, Nr. 53, 2005; Section 1, pp. 58–63. Available online: http://pnqa.ana.gov.br/Publicacao/RESOLUCAO_CONAMA_n_357.pdf (accessed on 25 October 2021).
- INEMA—Institute of the Environment and Water Resources. Technical Report—Campaign 2; Joanes I Dam—Lauro de Freitas: Camaçari, Brazil, 2015. [Google Scholar]
- Carmichael, W.W. The toxins of cyanobacteria. Sci. Am. 1994, 270, 78–86. [Google Scholar] [CrossRef]
- FUNASA—National Health Foundation. Ministry of Health. Toxic cyanobacteria in water for human consumption. In Public Health and Remval Pocesses in Water for Human Consumption; Health Communication and Education Office—Ascom: Brasília, Brazil, 2003; 56p. [Google Scholar]
- Magalhães, A.A.J. Cyanobacteria as an emerging problem in water quality in springs: A study of the Joanes I Dam lake. In Monograph Environmental and Sanitary Engineering; UFBA: Salvador, Brazil, 2016. [Google Scholar]
- Kim, J.S.; Seo, I.W.; Baek, D. Seasonally varying effects of environmental factors on phytoplankton abundance in the regulated rivers. Sci. Rep. 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Codd, G.A.; Meriluoto, J.; Metcalf, J.S. Introduction: Cyanobacteria, Cyanotoxins, Their Human Impact, and Risk Management. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 1st ed.; COST—European Cooperation in Science and Technology: Brussels, Belgium, 2017; 576p. [Google Scholar]
- Bernard, C.; Ballot, A.; Thomazeau, S.; Maloufi, S.; Furey, A.; Mankiewicz-Boczek, J.; Pawlik-Skowrońska, B.; Capelli, C.; Salmaso, N. Cyanobacteria Associated with the production of cyanotoxins. Basic Guide to Detection and Monitoring of Potentially Toxic Cyanobacteria. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 1st ed.; COST—European Cooperation in Science and Technology: Brussels, Belgium, 2017; 576p. [Google Scholar]
- Brazil, Ministry of Health. Consolidation Ordinance No. 5, of October 3; SVS: Brasília, Brazil, 2017. [Google Scholar]
- Brazil, Ministry of Health. Ordinance No. 888, of May 4; SVS: Brasília, Brazil, 2021. [Google Scholar]
- EMBRAPA Tropical Agroindustry. Manual for the Formation and Training of Community Groups in Participatory Methodologies for Monitoring Water Quality—Module III: Physicochemical Assessment/Organizers: Carlos Eduardo Siste, Enio Giuliano Girão; Bryan L. Duncan: Fortaleza, Brazil, 2011; 48p. [Google Scholar]
- Huang, J.; Yin, H.; Chapra, S.; Zhou, Q. Modelling Dissolved Oxygen Depression in an Urban River in China. Water 2017, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, E.C.F.; Almeida, M.C. Water Quality Calculation System: Establishment of the Water Quality Index (WQI) Equations; National Environment Program—PNMA II; Secretary of State for the Environment and Sustainable Development of Minas Gerais—SEMAD: Ananindeua, Brazil, 2005. [Google Scholar]
- Dulić, T.; Svirčev, Z.; Palanački Malešević, T.; Faassen, E.J.; Savela, H.; Hao, Q.; Meriluoto, J. Assessment of Common Cyanotoxins in Cyanobacteria of Biological Loess Crusts. Toxins 2022, 14, 215. [Google Scholar] [CrossRef]
- Edler, L.; Elbrächter, M. Chapter 2. The Utermöhl method for quantitative phytoplankton analysis. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis; Bengt, K., Caroline, C., Eileen, B., Eds.; UNESCO: Paris, France, 2010; Volume 6, pp. 69–74. [Google Scholar]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater; WEF: Washington, DC, USA, 2017. [Google Scholar]
- CETESB. Environmental Company of the State of São Paulo. In Inland Water Quality in the State of São Paulo; CETESB: São Paulo, Brazil, 2022. [Google Scholar]
- Lamparelli, M.C. Degree of Trophy in Water Bodies in the State of São Paulo: Evaluation of Monitoring Methods. Ph.D. Thesis, Department of Ecology, University of São Paulo, Brazil, São Paulo, 2004; 235p. [Google Scholar]
- ANA, Nacional Water Agency (Brazil). Conjuncture of Water Resources: Report 2020; National Water Agency ANA: Brasília, Brazil, 2020. [Google Scholar]
- Jungblut, A.D.; Neilan, B.A. Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin andnodularin, synthetase genes in three orders of cyanobacteria. Arch. Microbiol. 2006, 185, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Falconer, I.R.; Humpage, A.R. Cyanobacterial (blue-green algal) toxins in water supplies: Cylindrospermopsins. Environ. Toxicol. 2006, 21, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Ledreux, A.; Thomazeau, S.; Catherine, A.; Duval, C.; Yéprémian, C.; Marie, A.; Bernard, C. Evidence for saxitoxins production by the cyanobacterium Aphanizomenon gracile in a French recreational water body. Harmful Algae 2010, 10, 88–97. [Google Scholar] [CrossRef]
- Schembri, M.A.; Neilan, B.A.; Saint, C.P. Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environ. Toxicol. 2001, 16, 413–421. [Google Scholar] [CrossRef]
- Fergusson, K.M.; Saint, C.P. Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin-producing cyanobacteria. Environ. Toxicol. 2003, 18, 120–125. [Google Scholar] [CrossRef]
- Mann, S.; Cohen, M.; Chapuis-Hugon, F.; Pichon, V.; Mazmouz, R.; Méjean, A.; Ploux, O. Synthesis, configuration assignment, and simultaneous quantification by liquid chromatography coupled to tandem mass spectrometry, of dihydroanatoxin-a and dihydrohomoanatoxin-a together with the parent toxins, in axenic cyanobacterial strains and in environmental samples. Toxicon 2012, 60, 1404–1414. [Google Scholar]
- Méjean, A.; Dalle, K.; Paci, G.; Bouchonnet, S.; Mann, S.; Pichon, V.; Ploux, O. Dihydroanatoxin-a Is Biosynthesized from Proline in Cylindrospermum stagnale PCC 7417: Isotopic Incorporation Experiments and Mass Spectrometry Analysis. J. Nat. Prod. 2016, 79, 1775–1782. [Google Scholar] [CrossRef]
Cyanobacterial Species | P1 | P2 | P3 | P4 | Cyanotoxins | Reference |
---|---|---|---|---|---|---|
Sphaerocavum brasiliense | 60 | 24 | 476 | 0 | - | |
Cylindrospermopsis cf. acuminato-crispa | 24 | 6 | 952 | 60 | saxitoxins, cylindrospermopsins | [30] |
Cylindrospermopsis raciborskii | 78 | 354 | 12 | 0 | saxitoxins, cylindrospermopsins | [30] |
Phormidium sp.1 | 12 | 6 | 0 | 0 | microcystins, saxitoxins, anatoxin-a, homoanatoxin-a | [31] |
Aphanocapsa delicatissima | 13,209 | 8806 | 16,184 | 20,230 | - | |
Aphanocapsa sp.1 | 476 | 238 | 5236 | 5950 | microcystin | [32] |
Merismopedia glauca | 0 | 0 | 0 | 7735 | - | |
Merismopedia tenuissima | 357 | 6426 | 283,900 | 112,455 | - | |
Pseudanabaena sp.1 | 238 | 238 | 0 | 90 | microcystin, anatoxin-a | [26] |
Romeria heterocellularis | 17,255 | 952 | 96,628 | 114,240 | - | |
Total | 31,709 | 17,050 | 403,388 | 260,759 |
Parameter | CONAMA Resolution 357/05 Freshwater—Class 2 | Unit | P1 | P2 | P3 | P4 |
---|---|---|---|---|---|---|
NUTRIENTS | ||||||
Total nitrogen N | mg L−1 | 3.83 | 1.05 | 3.27 | 3.98 | |
Total phosphorus P | ≤0.03 | mg L−1 | 0.05 * | 0.06 * | 0.15 * | 0.25 * |
Nitrate N-NO3 | ≤10 | mg L−1 | 0.10 | 0.11 | 0.85 | 0.58 |
Nitrite N-NO2 | ≤1.0 | mg L−1 | 0.01 | 0.01 | 0.13 | 0.23 |
Ammonia N-NH4 | ≤3.7 mg L−1 N for pH <7.5 | mg L−1 | 0.35 | 0.33 | 0.45 | 0.98 |
Phosphate P-PO4 | mg L−1 | 0.00 | 0.00 | 0.00 | 0.12 | |
SYSTEM CONSTITUENTS | ||||||
Total solids | mg L−1 | 92.0 | 91.0 | 107 | 129 | |
COD | mg L−1 O2 | 26.80 | 24.50 | 29.82 | 32.47 | |
BOD | ≤5 mg L−1 O2 | mg L−1 O2 | 7.15 * | 5.23 * | 13.93 * | 19.71 * |
True colour | ≤75 mg Pt/L | mg Pt/L | 99 * | 81 * | 170 * | 183 * |
Turbidity | ≤100 NTU | NTU | 2.82 | 2.58 | 5.53 | 7.84 |
Temperature | °C | 26.6 | 27.3 | 28.4 | 27.9 | |
pH | 6.0 to 9.0 | 7.04 | 6.76 | 6.5 | 6.47 | |
Dissolved oxygen DO | ≥5 | mg L−1 O2 | 3.77 * | 2.53 * | 3.22 * | 2.48 * |
Electric conductivity | µs cm−1 | 218 | 319 | 223 | 238 | |
Redox potential | ROP | −42.5 | −54.1 | −38.2 | −36.7 | |
Total dissolved solids | ≤500 mg L−1 | mg L−1 | 109 | 109 | 111 | 119 |
Secchi Disk Transparency | M | 1.03 | 1.12 | 0.98 | 0.72 | |
MICROBIOLOGICAL CONSTITUENTS | ||||||
Chlorophyll a | ≤30 µg L−1 | mg/m3 | 45 * | 42 * | 31 * | 54 * |
Thermotolerant coliforms | ≤1000 | UFC/100 mL | 30 | 19 | 120 | 12,000 * |
Cyanobacterial density | ≤50,000 | cells mL−1 | 31,709 | 17,050 | 403,387 * | 260,759 * |
Samples | Microcystin | Saxitoxin | Cylindrospermopsin |
---|---|---|---|
mcyE (HEPF/HEPR) | sxtA (saxtaF/saxtaR) | cyrB (M13/M14) | |
P1 | (+) | (−) | (−) |
P2 | (+) | (−) | (−) |
P3 | (+) | (−) | (−) |
P4 | (+) | (−) | (−) |
Negative control | (−) | (−) | (−) |
Sampling Points | Anatoxin-A and Homoanatoxin-a | Cylindrospermopsin |
---|---|---|
P1 | (−) | (+) |
P2 | (−) | (+) |
P3 | (−) | (−) |
P4 | (−) | (−) |
Geographic Coordinates | ||
---|---|---|
Code | Latitude (S) | Longitude (W) |
P1 | 12°50′9.37″ | 38°19′29.0″ |
P2 | 12°49′11.73″ | 38°19′34.90″ |
P3 | 12°47′15.01″ | 38°19′56.05″ |
P4 | 12°46′21.68″ | 38°20′19.33″ |
TSI Classification | Weighting |
---|---|
Ultraoligotrophic | TSI ≤ 47 |
Oligotrophic | 47 < TSI ≤ 52 |
Mesotrophic | 52 < TSI ≤ 59 |
Eutrophic | 59 < TSI ≤ 63, |
Supereutrophic | 63 < TSI ≤ 67 |
Hypereutrophic | TSI > 67 |
WQI Classification | |
---|---|
Category | Rating |
Excellent | 79 < WQI ≤ 100 |
Good | 51 < WQI ≤ 79 |
Regular | 36 < WQI ≤ 51 |
Poor | 19 < WQI ≤ 36 |
Very Poor | WQI ≤ 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro Menescal, M.T.A.; Almeida, E.d.S.; Sales, E.A.; Méjean, A.; Yéprémian, C. Identification of Cyanobacteria and Its Potential Toxins in the Joanes I Reservoir, Bahia, Brazil. Toxins 2023, 15, 51. https://doi.org/10.3390/toxins15010051
Pinheiro Menescal MTA, Almeida EdS, Sales EA, Méjean A, Yéprémian C. Identification of Cyanobacteria and Its Potential Toxins in the Joanes I Reservoir, Bahia, Brazil. Toxins. 2023; 15(1):51. https://doi.org/10.3390/toxins15010051
Chicago/Turabian StylePinheiro Menescal, Maria Teresa Araujo, Edna dos Santos Almeida, Emerson Andrade Sales, Annick Méjean, and Claude Yéprémian. 2023. "Identification of Cyanobacteria and Its Potential Toxins in the Joanes I Reservoir, Bahia, Brazil" Toxins 15, no. 1: 51. https://doi.org/10.3390/toxins15010051
APA StylePinheiro Menescal, M. T. A., Almeida, E. d. S., Sales, E. A., Méjean, A., & Yéprémian, C. (2023). Identification of Cyanobacteria and Its Potential Toxins in the Joanes I Reservoir, Bahia, Brazil. Toxins, 15(1), 51. https://doi.org/10.3390/toxins15010051