A Promising Biomolecule Able to Degrade Neutrophil Extracellular Traps: CdcPDE, a Rattlesnake Phosphodiesterase
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Papayannopoulos, V.; Zychlinsky, A. NETs: A New Strategy for Using Old Weapons. Trends Immunol. 2009, 30, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, M.J.; Radic, M. Neutrophil Extracellular Traps: Double-Edged Swords of Innate Immunity. J. Immunol. 2012, 189, 2689–2695. [Google Scholar] [CrossRef] [Green Version]
- Jorch, S.K.; Kubes, P. An Emerging Role for Neutrophil Extracellular Traps in Noninfectious Disease. Nat. Med. 2017, 23, 279–287. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil Extracellular Traps in Immunity and Disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
- Chapman, E.A.; Lyon, M.; Simpson, D.; Mason, D.; Beynon, R.J.; Moots, R.J.; Wright, H.L. Caught in a Trap? Proteomic Analysis of Neutrophil Extracellular Traps in Rheumatoid Arthritis and Systemic Lupus Erythematosus. Front. Immunol. 2019, 10, 423. [Google Scholar] [CrossRef] [PubMed]
- Dömer, D.; Walther, T.; Möller, S.; Behnen, M.; Laskay, T. Neutrophil Extracellular Traps Activate Proinflammatory Functions of Human Neutrophils. Front. Immunol. 2021, 12, 636954. [Google Scholar] [CrossRef]
- Giaglis, S.; Hahn, S.; Hasler, P. “The NET Outcome”: Are Neutrophil Extracellular Traps of Any Relevance to the Pathophysiology of Autoimmune Disorders in Childhood? Front. Pediatr. 2016, 4, 97. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Fang, H.; Dang, E.; Xue, K.; Zhang, J.; Li, B.; Qiao, H.; Cao, T.; Zhuang, Y.; Shen, S.; et al. Neutrophil Extracellular Traps Promote Inflammatory Responses in Psoriasis via Activating Epidermal TLR4/IL-36R Crosstalk. Front. Immunol. 2019, 10, 746. [Google Scholar] [CrossRef] [Green Version]
- Khandpur, R.; Carmona-Rivera, C.; Vivekanandan-Giri, A.; Gizinski, A.; Yalavarthi, S.; Knight, J.S.; Friday, S.; Li, S.; Patel, R.M.; Subramanian, V.; et al. NETs Are a Source of Citrullinated Autoantigens and Stimulate Inflammatory Responses in Rheumatoid Arthritis. Sci. Transl. Med. 2013, 5, 178ra40. [Google Scholar] [CrossRef]
- Garcia-Romo, G.S.; Caielli, S.; Vega, B.; Connolly, J.; Allantaz, F.; Xu, Z.; Punaro, M.; Baisch, J.; Guiducci, C.; Coffman, R.L.; et al. Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus. Sci. Transl. Med. 2011, 3, 73ra20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veras, F.P.; Pontelli, M.C.; Silva, C.M.; Toller-Kawahisa, J.E.; de Lima, M.; Nascimento, D.C.; Schneider, A.H.; Caetité, D.; Tavares, L.A.; Paiva, I.M.; et al. SARS-CoV-2–Triggered Neutrophil Extracellular Traps Mediate COVID-19 PathologySARS-CoV-2 Directly Triggers ACE-Dependent NETs. J. Exp. Med. 2020, 217, e20201129. [Google Scholar] [CrossRef] [PubMed]
- Li, R.H.L.; Tablin, F. A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Front. Vet. Sci. 2018, 5, 291. [Google Scholar] [CrossRef] [Green Version]
- Bordon, K.d.C.F.; Cologna, C.T.; Fornari-Baldo, E.C.; Pinheiro-Júnior, E.L.; Cerni, F.A.; Amorim, F.G.; Anjolette, F.A.P.; Cordeiro, F.A.; Wiezel, G.A.; Cardoso, I.A.; et al. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Front. Pharmacol. 2020, 11, 1132. [Google Scholar] [CrossRef] [PubMed]
- Calixto, J.B. The Role of Natural Products in Modern Drug Discovery. An. Acad. Bras. Ciênc. 2019, 91, e20190105. [Google Scholar] [CrossRef] [PubMed]
- Angeletti, A.; Volpi, S.; Bruschi, M.; Lugani, F.; Vaglio, A.; Prunotto, M.; Gattorno, M.; Schena, F.; Verrina, E.; Ravelli, A.; et al. Neutrophil Extracellular Traps-DNase Balance and Autoimmunity. Cells 2021, 10, 2667. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, I.S.; Pucca, M.B.; Wiezel, G.A.; Cardoso, I.A.; Bordon, K.d.C.F.; Sartim, M.A.; Kalogeropoulos, K.; Ahmadi, S.; Baiwir, D.; Nonato, M.C.; et al. Unraveling the Structure and Function of CdcPDE: A Novel Phosphodiesterase from Crotalus Durissus Collilineatus Snake Venom. Int. J. Biol. Macromol. 2021, 178, 180–192. [Google Scholar] [CrossRef]
- Dhananjaya, B.L.; D’Souza, C.J.M. An Overview on Nucleases (DNase, RNase, and Phosphodiesterase) in Snake Venoms. Biochem. Mosc. 2010, 75, 1–6. [Google Scholar] [CrossRef]
- de Oliveira, I.S.; Pucca, M.B.; Ferreira, I.G.; Cerni, F.A.; da Silva Jacob, B.d.C.; Wiezel, G.A.; Pinheiro-Júnior, E.L.; Cordeiro, F.A.; Bordon, K.d.C.F.; Arantes, E.C. State-of-the-Art Review of Snake Venom Phosphodiesterases (SvPDEs). Toxicon 2022, 217, 121–130. [Google Scholar] [CrossRef]
- Mitra, J.; Bhattacharyya, D. Phosphodiesterase from Daboia Russelli Russelli Venom: Purification, Partial Characterization and Inhibition of Platelet Aggregation. Toxicon 2014, 88, 1–10. [Google Scholar] [CrossRef]
- Ibrahim, N.M.; Salama, W.H.; Hakim, A.E.E. Phosphodiesitrase Activity of Some Egyptian Snake Venoms: Biochemical and Immunological Characteristics and Effect on Blood Coagulation of Phosphodiesterase Enzyme from Naja Nigricollis Venom. J. Chem. Pharm. Res. 2016, 8, 11. [Google Scholar]
- Peng, L.; Xu, X.; Shen, D.; Zhang, Y.; Song, J.; Yan, X.; Guo, M. Purification and Partial Characterization of a Novel Phosphodiesterase from the Venom of Trimeresurus Stejnegeri: Inhibition of Platelet Aggregation. Biochimie 2011, 93, 1601–1609. [Google Scholar] [CrossRef]
- Sittenfeld, A.; Raventós, H.; Cruz, R.; Gutiérrez, J.M. DNase Activity in Costa Rican Crotaline Snake Venoms: Quantification of Activity and Identification of Electrophoretic Variants. Toxicon 1991, 29, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Sales, P.B.V.; Santoro, M.L. Nucleotidase and DNase Activities in Brazilian Snake Venoms. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 147, 85–95. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Gravallese, E.M. Immune-Mediated Inflammatory Disease Therapeutics: Past, Present and Future. Nat. Rev. Immunol. 2021, 21, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Yang, S.; Zhang, L. Neutrophil Extracellular Traps and Endothelial Dysfunction in Atherosclerosis and Thrombosis. Front. Immunol. 2017, 8, 928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakkim, A.; Fürnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A. Impairment of Neutrophil Extracellular Trap Degradation Is Associated with Lupus Nephritis. Proc. Natl. Acad. Sci. USA 2010, 107, 9813–9818. [Google Scholar] [CrossRef] [Green Version]
- Czaikoski, P.G.; Mota, J.M.S.C.; Nascimento, D.C.; Sônego, F.; Castanheira, F.V.e.S.; Melo, P.H.; Scortegagna, G.T.; Silva, R.L.; Barroso-Sousa, R.; Souto, F.O.; et al. Neutrophil Extracellular Traps Induce Organ Damage during Experimental and Clinical Sepsis. PLoS ONE 2016, 11, e0148142. [Google Scholar] [CrossRef] [Green Version]
- Colón, D.F.; Wanderley, C.W.; Franchin, M.; Silva, C.M.; Hiroki, C.H.; Castanheira, F.V.S.; Donate, P.B.; Lopes, A.H.; Volpon, L.C.; Kavaguti, S.K.; et al. Neutrophil Extracellular Traps (NETs) Exacerbate Severity of Infant Sepsis. Crit. Care 2019, 23, 113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, I.; Costa, V.; Veras, F.; Ferreira, I.; Cunha, F.; Cunha, T.; Monteiro, W.; Arantes, E.; Pucca, M. A Promising Biomolecule Able to Degrade Neutrophil Extracellular Traps: CdcPDE, a Rattlesnake Phosphodiesterase. Toxins 2023, 15, 44. https://doi.org/10.3390/toxins15010044
Oliveira I, Costa V, Veras F, Ferreira I, Cunha F, Cunha T, Monteiro W, Arantes E, Pucca M. A Promising Biomolecule Able to Degrade Neutrophil Extracellular Traps: CdcPDE, a Rattlesnake Phosphodiesterase. Toxins. 2023; 15(1):44. https://doi.org/10.3390/toxins15010044
Chicago/Turabian StyleOliveira, Isadora, Victor Costa, Flávio Veras, Isabela Ferreira, Fernando Cunha, Thiago Cunha, Wuelton Monteiro, Eliane Arantes, and Manuela Pucca. 2023. "A Promising Biomolecule Able to Degrade Neutrophil Extracellular Traps: CdcPDE, a Rattlesnake Phosphodiesterase" Toxins 15, no. 1: 44. https://doi.org/10.3390/toxins15010044
APA StyleOliveira, I., Costa, V., Veras, F., Ferreira, I., Cunha, F., Cunha, T., Monteiro, W., Arantes, E., & Pucca, M. (2023). A Promising Biomolecule Able to Degrade Neutrophil Extracellular Traps: CdcPDE, a Rattlesnake Phosphodiesterase. Toxins, 15(1), 44. https://doi.org/10.3390/toxins15010044