Microcystin Concentrations, Partitioning, and Structural Composition during Active Growth and Decline: A Laboratory Study
Abstract
:1. Introduction
2. Results
2.1. Chlorophyll-a and Microcystin Concentrations
2.2. Dissolved Microcystin Concentrations
2.3. Microcystin Structural Profiles
2.4. Comparing MC Concentrations from ELISA and LC-MS
3. Discussion
3.1. Shifts in Microcystin Concentration and Partitioning
Study Type | Initial Amendment or Manipulation | Dominant Organism in Sample Community a | Method | n | Temperature (°C) | Light Conditions b | Congener | pMC Half-Life (Days) | dMC Half-Life (Days) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
In vitro | Nutrients | Microcystis | ELISA c | 15 | 33 | 75 μE m−2 s−1 | -RR, -LR, -YR, -LA | 5.8–17.3 | - | This study |
In vitro | - | Microcystis | HPLC | 2 | 25 | 260 μE m−2 s−1 | -LA | 44.9 ± 0.7 | 63.5 ± 5.3 | [24] |
2 | 25 | 45 μE m−2 s−1 | 42.8 ± 0.7 | 120.4 ± 1.0 | ||||||
2 | 25 | Dark | 23.8 ± 2.4 | 131.5 ± 7.5 | ||||||
2 | 4 | Dark | 54.6 ± 0.5 | 251.0 ± 35.9 | ||||||
In situ | - | Microcystis | HPLC | 5 | - | - | 6.5 ± 0.4 | 15.8 ± 1.0 | ||
In situ | - | Microcystis wesenbergii | HPLC | 1 | Ambient | Ambient | -LR | 4.7 | 10.0 | [30] |
Mesocosm | Uncovered | 2 | Ambient | Ambient | 4.3 | 10.2 | ||||
Covered | 2 | Ambient | Dark | 4.3 | 8.9 | |||||
Studies following algicide treatment | ||||||||||
In vitro | Copper | Microcystis | HPLC | 2 | 25 | 260 μE m−2 s−1 | -LA | 9.2 ± 0.7 | 10.9 ± 0.3 | [24] |
2 | 25 | 45 μE m−2 s−1 | 10.5 ± 0.9 | 26.5 ± 0.9 | ||||||
2 | 25 | Dark | 5.0 ± 0.1 | 33.8 ± 2.2 | ||||||
2 | 4 | Dark | 24.2 ± 1.3 | 31.3 ± 1.8 | ||||||
In situ | Copper | 5 | - | - | 1.5 ± 0.03 | 2.8 ± 0.3 | ||||
In vitro | Copper sulfate or lime | Microcystis aeruginosa | HPLC | 2 | 20 ± 2 | 900 lux | -LR | - | 3 | [45] |
In situ | Copper | Microcystis aeruginosa | HPLC | 2 | - | Ambient | -LR | - | 1–5 | [35] |
Studies following dMC amendment | ||||||||||
In vitro | MC from lysed algal material | - | HPLC | 1 | 20 ± 2 | Dark | -LR | - | <4 | [46] |
In vitro | MC from purified standard | - | HPLC | 2 | 17 ± 0.5 | Ambient | -LR | - | 3–4 | [47] |
In vitro Mesocosm | MC spike-in lysed algae or purified standard | Microcystis | ELISA c | 3 | 20 | Dark | -LR | - | 0.9 ± 0.07 | [43] |
9 | 20 | Dark | -LR, -RR | - | 1.16 ± 0.11 | |||||
2 | Ambient | Ambient | -LR | - | 0.66 ± 0.11 | |||||
2 | Ambient | Ambient | -RR | - | 1.1 ± 0.23 | |||||
In vitro | MC from purified standard | - | HPLC | 18 | 29 | - | -LR | - | 4–14 | [26] |
9 | 29 | - | -LF | - | 9–22 | |||||
In vitro | 15N-MC | Microcystis | LC-MS | 3 | Ambient | 300 μE m−2 s−1 | -LR | - | 0.08–6.3 | [32] |
3.2. Microcystin Congener Profile
4. Conclusions
5. Materials and Methods
5.1. Sample Collection and Experimental Setup
5.2. Chlorophyll-a Analysis
5.3. Total Microcystin Analysis
5.4. Microcystin Congener Analysis
5.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carmichael, W.W. The toxins of cyanobacteria. Sci. Am. 1994, 270, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Hisbergues, M.; Christiansen, G.; Rouhiainen, L.; Sivonen, K.; Börner, T. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch. Microbiol. 2003, 180, 402–410. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, D.R.; Azeiteiro, U.M.; Esteves, S.M.; Gonçalves, F.J.M.; Pereira, M.J. Microcystin-producing blooms—A serious global public health issue. Ecotoxicol. Environ. Saf. 2004, 59, 151–163. [Google Scholar] [CrossRef]
- Falconer, I.; Bartram, J.; Chorus, I.; Kuiper-Goodman, T.; Utkilen, H.; Burch, M.; Codd, G. Safe levels and safe practices. In Toxic Cyanobacteria in Water; E & FN Spon: London, UK, 1999; pp. 155–178. [Google Scholar]
- Loftin, K.A.; Graham, J.L.; Hilborn, E.D.; Lehmann, S.C.; Meyer, M.T.; Dietze, J.E.; Griffith, C.B. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae 2016, 56, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Gabyshev, V.A.; Sidelev, S.I.; Chernova, E.N.; Vilnet, A.A.; Davydov, D.A.; Barinova, S.; Gabysheva, O.I.; Zhakovskaya, Z.A.; Voronov, I.V. Year-round presence of microcystins and toxin-producing Microcystis in the water column and ice cover of a eutrophic lake located in the continuous permafrost zone (Yakutia, Russia). Toxins 2023, 15, 467. [Google Scholar] [CrossRef]
- Graham, J.L.; Loftin, K.A.; Kamman, N. Monitoring recreational freshwaters. Lakelines 2009, 29, 18–24. [Google Scholar]
- Carmichael, W.W.; Azevedo, S.M.; An, J.S.; Molica, R.J.; Jochimsen, E.M.; Lau, S.; Rinehart, K.L.; Shaw, G.R.; Eaglesham, G.K. Human fatalities from cyanobacteria: Chemical and biological evidence for cyanotoxins. Environ. Health Perspect. 2001, 109, 663–668. [Google Scholar] [CrossRef]
- Chorus, I.; Welker, M. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Taylor & Francis: New York, NY, USA, 2021. [Google Scholar]
- Cheung, M.Y.; Liang, S.; Lee, J. Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. J. Microbiol. 2013, 51, 1–10. [Google Scholar] [CrossRef]
- Humpage, A.R.; Hardy, S.J.; Moore, E.J.; Froscio, S.M.; Falconer, I.R. Microcsytins (cyanobacterial toxins) in drinking water enhance the growth of aberrant crypt foci in the mouse colon. J. Toxicol. Environ. Health 2000, 61, 155–165. [Google Scholar] [CrossRef]
- Hitzfeld, B.C.; Höger, S.J.; Dietrich, D.R. Cyanobacterial toxins: Removal during drinking water treatment, and human risk assessment. Environ. Health Perspect. 2000, 108, 113–122. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, G.; Gao, G.; Zhang, Y.; Li, W.; Paerl, H.W.; Carmichael, W.W. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environ. Manag. 2010, 45, 105–112. [Google Scholar] [CrossRef]
- Trainer, V.L.; Hardy, F.J. Integrative monitoring of marine and freshwater harmful algae in Washington State for public health protection. Toxins 2015, 7, 1206–1234. [Google Scholar] [CrossRef]
- Gobler, C.J. Climate change and harmful algal blooms: Insights and perspective. Harmful Algae 2020, 91, 101731. [Google Scholar] [CrossRef]
- Chorus, I.; Fastner, J.; Welker, M. Cyanobacteria and cyanotoxins in a changing environment: Concepts, controversies, challenges. Water 2021, 13, 2463. [Google Scholar] [CrossRef]
- World Health Organization. Background Documents for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments; World Health Organization: Geneva, Switzerland, 2020; Volume 1. [Google Scholar]
- Bláha, L.; Babica, P.; Maršálek, B. Toxins produced in cyanobacterial water blooms-toxicity and risks. Interdiscip. Toxicol. 2009, 2, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Catherine, A.; Bernard, C.; Spoof, L.; Bruno, M. Table of Microcystins and nodularins. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 109–126. [Google Scholar]
- Du, X.; Liu, H.; Yuan, L.; Wang, Y.; Ma, Y.; Wang, R.; Chen, X.; Losiewicz, M.D.; Guo, H.; Zhang, H. The diversity of cyanobacterial toxins on structural characterization, Distribution and identification: A systematic review. Toxins 2019, 11, 530. [Google Scholar] [CrossRef]
- Howard, M.D.A.; Nagoda, C.; Kudela, R.M.; Hayashi, K.; Tatters, A.; Caron, D.A.; Busse, L.; Brown, J.; Sutula, M.; Stein, E.D. Microcystin prevalence throughout lentic waterbodies in Coastal Southern California. Toxins 2017, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Monchamp, M.-E.; Pick, F.R.; Beisner, B.E.; Maranger, R. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PLoS ONE 2014, 9, e85573. [Google Scholar] [CrossRef]
- Srivastava, A.; Choi, G.G.; Ahn, C.Y.; Oh, H.M.; Ravi, A.K.; Asthana, R.K. Dynamics of microcystin production and quantification of potentially toxigenic Microcystis sp. using real-time PCR. Water Res. 2012, 46, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Zastepa, A.; Pick, F.; Blais, J. Fate and persistence of particulate and dissolved microcystin-LA from Microcystis blooms. Hum. Ecol. Risk Assess. 2014, 20, 1670–1686. [Google Scholar] [CrossRef]
- Gupta, N.; Pant, S.C.; Vijayaraghavan, R.; Rao, P.V.L. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 2003, 188, 285–296. [Google Scholar] [CrossRef]
- Edwards, C.; Graham, D.; Fowler, N.; Lawton, L.A. Biodegradation of microcystins and nodularin in freshwaters. Chemosphere 2008, 73, 1315–1321. [Google Scholar] [CrossRef]
- Berg, K.; Skulberg, O.; Skulberg, R. Effects of decaying toxic blue-green algae on water quality, a laboratory study. Arch. Hydrobiol. 1987, 108, 549–563. [Google Scholar] [CrossRef]
- Park, H.-D.; Iwami, C.; Watanabe, M.F.; Harada, K.-I.; Okino, T.; Hayashi, H. Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ. Toxicol. Water Qual. 1998, 13, 61–72. [Google Scholar] [CrossRef]
- Oh, H.M.; Lee, S.J.; Kim, J.H.; Kim, H.S.; Yoon, B.D. Seasonal variation and indirect monitoring of microcystin concentrations in Daechung reservoir, Korea. Appl. Environ. Microbiol. 2001, 67, 1484–1489. [Google Scholar] [CrossRef]
- Lahti, K.; Rapala, J.; Färdig, M.; Niemelä, M.; Sivonen, K. Persistence of cyanobacterial hepatotoxin, microcystin-LR in particulate material and dissolved in lake water. Water Res. 1997, 31, 1005–1012. [Google Scholar] [CrossRef]
- Stauffer, B.A.; Bowers, H.A.; Buckley, E.; Davis, T.W.; Johengen, T.H.; Kudela, R.; McManus, M.A.; Purcell, H.; Smith, G.J.; Vander Woude, A.; et al. Considerations in harmful algal bloom research and monitoring: Perspectives from a consensus-building workshop and technology testing. Front. Mar. Sci. 2019, 6, 399. [Google Scholar] [CrossRef]
- Chaffin, J.D.; Westrick, J.A.; Furr, E.; Birbeck, J.A.; Reitz, L.A.; Stanislawczyk, K.; Li, W.; Weber, P.K.; Bridgeman, T.B.; Davis, T.W.; et al. Quantification of microcystin production and biodegradation rates in the western basin of Lake Erie. Limnol. Oceanogr. 2022, 67, 1470–1483. [Google Scholar] [CrossRef]
- Walls, J.T.; Wyatt, K.H.; Doll, J.C.; Rubenstein, E.M.; Rober, A.R. Hot and toxic: Temperature regulates microcystin release from cyanobacteria. Sci. Total Environ. 2018, 610–611, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.L.; Ziegler, A.C.; Loving, B.L.; Loftin, K.A. Fate and Transport of Cyanobacteria and Associated Toxins and Taste-and-Odor Compounds from Upstream Reservoir Releases in the Kansas River, Kansas, September and October 2011; US Department of the Interior, US Geological Survey: Sunrise Valley Drive Reston, VA, USA, 2012; Volume 2012. [Google Scholar]
- Jones, G.J.; Orr, P.T. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res. 1994, 28, 871–876. [Google Scholar] [CrossRef]
- Giaramida, L.; Manage, P.M.; Edwards, C.; Singh, B.K.; Lawton, L.A. Bacterial communities’ response to microcystins exposure and nutrient availability: Linking degradation capacity to community structure. Int. Biodeterior. Biodegrad. 2013, 84, 111–117. [Google Scholar] [CrossRef]
- Pierce, E.; Schnetzer, A.; Valera, M.; Paxson, J.; Vander Borgh, M.; Wiltsie, D.; Godwin, C.; Putnam, G.; Schaeffer, B. Unprecedented toxic Microcystis blooms in 2019 in the Chowan River, in North Carolina: Microcystin dynamics, toxin producers and monitoring recommendations. in preparation 2023.
- Ibelings, B.W.; Chorus, I. Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: A review. Environ. Pollut. 2007, 150, 177–192. [Google Scholar] [CrossRef]
- Straquadine, N.R.W.; Kudela, R.M.; Gobler, C.J. Hepatotoxic shellfish poisoning: Accumulation of microcystins in Eastern oysters (Crassostrea virginica) and Asian clams (Corbicula fluminea) exposed to wild and cultured populations of the harmful cyanobacteria, Microcystis. Harmful Algae 2022, 115, 102236. [Google Scholar] [CrossRef]
- McKindles, K.M.; Manes, M.A.; DeMarco, J.R.; McClure, A.; McKay, R.M.; Davis, T.W.; Bullerjahn, G.S. Dissolved microcystin release coincident with lysis of a bloom dominated by Microcystis spp. in Western Lake Erie attributed to a novel cyanophage. Appl. Environ. Microbiol. 2020, 86, e01397-20. [Google Scholar] [CrossRef]
- Vilar, M.C.P.; da Costa Pena Rodrigues, T.F.; da Silva Ferrão-Filho, A.; de Oliveira e Azevedo, S.M.F. Grazer-Induced chemical defense in a microcystin-producing Microcystis aeruginosa (cyanobacteria) exposed to Daphnia gessneri infochemicals. J. Chem. Ecol. 2021, 47, 847–858. [Google Scholar] [CrossRef]
- Howard, M.D.A.; Smith, J.; Caron, D.A.; Kudela, R.M.; Loftin, K.; Hayashi, K.; Fadness, R.; Fricke, S.; Kann, J.; Roethler, M.; et al. Integrative monitoring strategy for marine and freshwater harmful algal blooms and toxins across the freshwater-to-marine continuum. Integr. Environ. Assess. Manag. 2022, 19, 586–604. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, K.; Lyck, S.; Winding, A. Microbial activity and bacterial community structure during degradation of microcystins. Aquat. Microb. Ecol. 2002, 27, 125–136. [Google Scholar] [CrossRef]
- Nielsen, M.C.; Jiang, S.C. Can cyanotoxins penetrate human skin during water recreation to cause negative health effects? Harmful Algae 2020, 98, 101872. [Google Scholar] [CrossRef] [PubMed]
- Kenefick, S.; Hrudey, S.; Peterson, H.; Prepas, E. Toxin release from Microcystis aeruginosa after chemical treatment. Water Sci. Technol. 1993, 27, 433–440. [Google Scholar] [CrossRef]
- Rapala, J.; Lahti, K.; Sivonen, K.; Niemelä, S. Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a. Lett. Appl. Microbiol. 1994, 19, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Cousins, I.; Bealing, D.; James, H.; Sutton, A. Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Res. 1996, 30, 481–485. [Google Scholar] [CrossRef]
- Chernoff, N.; Hill, D.; Lang, J.; Schmid, J.; Farthing, A.; Huang, H. Dose–Response study of microcystin congeners MCLA, MCLR, MCLY, MCRR, and MCYR administered orally to mice. Toxins 2021, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Chernoff, N.; Hill, D.; Lang, J.; Schmid, J.; Le, T.; Farthing, A.; Huang, H. The comparative toxicity of 10 microcystin congeners administered orally to mice: Clinical effects and organ toxicity. Toxins 2020, 12, 403. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.F.; Tsuji, K.; Watanabe, Y.; Harada, K.I.; Suzuki, M. Release of heptapeptide toxin (microcystin) during the decomposition process of Microcystis aeruginosa. Nat. Toxins 1992, 1, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ. Sci. Technol. 2010, 44, 7361–7368. [Google Scholar] [CrossRef]
- MacKeigan, P.W.; Zastepa, A.; Taranu, Z.E.; Westrick, J.A.; Liang, A.; Pick, F.R.; Beisner, B.E.; Gregory-Eaves, I. Microcystin concentrations and congener composition in relation to environmental variables across 440 north-temperate and boreal lakes. Sci. Total Environ. 2023, 884, 163811. [Google Scholar] [CrossRef]
- Taranu, Z.E.; Pick, F.R.; Creed, I.F.; Zastepa, A.; Watson, S.B. Meteorological and nutrient conditions influence microcystin congeners in freshwaters. Toxins 2019, 11, 620. [Google Scholar] [CrossRef]
- Kudela, R.M. Characterization and deployment of Solid Phase Adsorption Toxin Tracking (SPATT) resin for monitoring of microcystins in fresh and saltwater. Harmful Algae 2011, 11, 117–125. [Google Scholar] [CrossRef]
- Chaffin, J.D.; Westrick, J.A.; Reitz, L.A.; Bridgeman, T.B. Microcystin congeners in Lake Erie follow the seasonal pattern of nitrogen availability. Harmful Algae 2023, 127, 102466. [Google Scholar] [CrossRef]
- Palagama, D.S.; Baliu-Rodriguez, D.; Snyder, B.K.; Thornburg, J.A.; Bridgeman, T.B.; Isailovic, D. Identification and quantification of microcystins in western Lake Erie during 2016 and 2017 harmful algal blooms. J. Great Lakes Res. 2020, 46, 289–301. [Google Scholar] [CrossRef]
- Schmidt, J.R.; Wilhelm, S.W.; Boyer, G.L. The fate of microcystins in the environment and challenges for monitoring. Toxins 2014, 6, 3354–3387. [Google Scholar] [CrossRef]
- Merder, J.; Harris, T.; Zhao, G.; Stasinopoulos, D.M.; Rigby, R.A.; Michalak, A.M. Geographic redistribution of microcystin hotspots in response to climate warming. Nat. Water 2023, 1, 844–854. [Google Scholar] [CrossRef]
- Birbeck, J.A.; Westrick, J.A.; O’Neill, G.M.; Spies, B.; Szlag, D.C. Comparative analysis of microcystin prevalence in Michigan lakes by online concentration LC/MS/MS and ELISA. Toxins 2019, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Gaget, V.; Lau, M.; Sendall, B.; Froscio, S.; Humpage, A.R. Cyanotoxins: Which detection technique for an optimum risk assessment? Water Res. 2017, 118, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.C.; Lee, A.K.; Yates, R.S.; Liang, S.; Rochelle, P.A. Analysis of microcystins in drinking water by ELISA and LC/MS/MS. J. Am. Water Work. Assoc. 2017, 109, 13–25. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport; Smith, W.L., Chanley, M.H., Eds.; Springer: Boston, MA, USA, 1975; pp. 29–60. [Google Scholar]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972. [Google Scholar]
- Welschmeyer, N.A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 1994, 39, 1985–1992. [Google Scholar] [CrossRef]
- Greenstein, K.E.; Zamyadi, A.; Wert, E.C. Comparative assessment of physical and chemical cyanobacteria cell lysis methods for total microcystin-LR analysis. Toxins 2021, 13, 596. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R; Rstudio, PBC: Boston, MA, USA, 2020. [Google Scholar]
- Wickham, H. ggplot2. In Interdisciplinary Reviews Computational Statistics; Wiley: Hoboken, NJ, USA, 2011; Volume 3, pp. 180–185. [Google Scholar]
- Mazerolle, M.J. Model selection and multimodel inference using the AICcmodavg package. R Vignette 2020, 2020, 22. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
Half-Life | a | b | R2 | |
---|---|---|---|---|
Arrowhead (AH) | 11.6 | 54.8 | 0.06 | 0.8 |
Colerain (CR) | 8.7 | 1120.0 | 0.08 | 0.9 |
Indian Creek (IC) | 17.3 | 65.4 | 0.04 | 0.5 |
Leary’s Landing (LL) | 5.8 | 43.8 | 0.12 | 0.8 |
Modoc Canal (MC) | 7.7 | 720.0 | 0.09 | 0.5 |
Charlton’s Pier (CP) | - | - | - | 0.1 |
MC-RR | MC-LR | MC-YR | MC-LA | |
---|---|---|---|---|
AH (n = 1) | 35.98 | 29.69 | 3.49 | 0.60 |
CR (n = 3) | 430.50 ± 23.90 | 1139.77 ± 96.50 | 175.50 ± 16.00 | 1.48 ± 0.170 |
IC (n = 3) | 70.30 ± 21.50 | 62.90 ± 31.40 | 8.30 ± 3.30 | 0.20 ± 0.06 |
LL (n = 3) | 51.00 ± 12.50 | 24.3 ± 5.90 | 8.10 ± 2.30 | 0.05 ± 0.00 |
MC (n = 3) | 347.00 ± 83.20 | 236.50 ± 67.40 | 30.10 ± 11.80 | 0.83 ± 0.28 |
CP (n = 3) | 0.20 ± 0.06 | 0.13 ± 0.03 | 0.02 ± 0.03 | 0.01 ± 0.01 |
CR | ||||
---|---|---|---|---|
Congener | ANOVA p-Value | Pairwise Relationship | Difference (%) | Tukey’s Test p-Value |
LA | ns | - | - | - |
LR | 0.02 | SPATT-dMC | 16.6 | 0.03 |
RR | 0.01 | SPATT-dMC | −20.9 | 0.01 |
YR | 0.01 | SPATT-dMC | 5.8 | 0.02 |
SPATT-pMC | 6.1 | 0.02 | ||
LL | ||||
LA | ns | - | - | - |
LR | 0.02 | SPATT-dMC | 45.0 | 0.004 |
SPATT-pMC | 35.7 | 0.02 | ||
RR | 0.01 | SPATT-pMC | −34.3 | 0.02 |
YR | 0.01 | pMC-dMC | −26.6 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierce, E.F.; Schnetzer, A. Microcystin Concentrations, Partitioning, and Structural Composition during Active Growth and Decline: A Laboratory Study. Toxins 2023, 15, 684. https://doi.org/10.3390/toxins15120684
Pierce EF, Schnetzer A. Microcystin Concentrations, Partitioning, and Structural Composition during Active Growth and Decline: A Laboratory Study. Toxins. 2023; 15(12):684. https://doi.org/10.3390/toxins15120684
Chicago/Turabian StylePierce, Emily F., and Astrid Schnetzer. 2023. "Microcystin Concentrations, Partitioning, and Structural Composition during Active Growth and Decline: A Laboratory Study" Toxins 15, no. 12: 684. https://doi.org/10.3390/toxins15120684
APA StylePierce, E. F., & Schnetzer, A. (2023). Microcystin Concentrations, Partitioning, and Structural Composition during Active Growth and Decline: A Laboratory Study. Toxins, 15(12), 684. https://doi.org/10.3390/toxins15120684