Effects of Harmful Cyanobacteria on Drinking Water Source Quality and Ecosystems
Abstract
:1. Introduction
- -
- to evaluate the impact of massive point cyanobacterial bloom pollution on phytoplankton biodiversity;
- -
- to obtain an indication of the dominant cyanobacterial species causing blooms in Obrzyca River at points, Uście, and Rudno Lake, thereby presenting a potential cyanotoxic threat;
- -
- to present relationships between physical, chemical, and microbiological water quality indicators and cyanobacterial biovolume or cyanotoxin concentrations;
- -
- to demonstrate, besides cyanotoxins, the presence of other bioactive cyanobacterial compounds, i.e., anabaenopeptins and aeruginosins (real threat discovered during these tests);
- -
- to assess the toxicity of cyanobacterial blooms using a bioassay with Dugesia tigrina.
2. Results
2.1. Phytoplankton Community Composition
2.2. Cyanobacteria Community Composition
2.3. Physical–Chemical and Microbiological Water Quality Indicators
2.4. Cyanotoxins and Cyanopeptides
2.5. Bioassays
3. Discussion
3.1. Phytoplankton Community Composition
3.2. Cyanobacteria Community Composition
3.3. Physical–Chemical and Microbiological Water Quality Indicators
3.4. Cyanotoxins and Cyanopeptides
3.5. Bioassays
4. Conclusions
- Hydrobiological and physicochemical analysis revealed:
- the Rudno Lake is highly eutrophic and contains the most dangerous cyanotoxic point of pollution in the Obrzyca River, which is a primary source of drinking water for the inhabitants of Zielona Góra;
- in the collected samples with cyanobacterial blooms, a predominance of Aphanizomenon gracile was observed to be correlated with higher water temperature;
- the highest cyanobacterial biovolume and chl-a concentration were noted in August samples in Rudno Lake and equaled 1662 mm3/L and 190 μg/L, respectively;
- significant correlations were observed between chl-a concentration and color, temperature, total suspended solids, and total nitrogen;
- the water suitability indicators, i.e., total nitrogen, phosphorus, total suspended solids, and temperature, were strongly related to cyanobacterial biovolume and total microcystin concentration;
- statistical analysis revealed the impact of cyanobacterial pollution in Rudno Lake on the quality of the Obrzyca River.
- Chromatographic analysis has shown that:
- in analyzed samples, cyanopeptides (aeruginosins and anabaenopeptins) were detected for the first time;
- the highest total microcystin concentration was noted in the sample with the maximal chl-a concentration (190 μg/L) and equaled 57.3 μg/L.
- Bioassays have shown:
- The most toxic sample for D. tigrina was extracted from the lake where the maximal cyanotoxin concentration was determined. LC 50 equaled about 3 µg/L MCs;
- the planarian proved to be a sensitive cyanotoxin bioindicator and can be used in the toxicological analysis of cyanobacterial blooms.
5. Materials and Methods
5.1. Study Area and Sampling Sites
5.2. Phytoplankton Qualitative and Quantitative Methods
5.3. Physical and Chemical Water Quality Indicators
5.4. Microbiological and Biological Water Quality Indicators
5.5. Cyanotoxin Analysis
5.6. Bioassay Tests
5.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maliaka, V.; Faassen, E.J.; Smolders, A.J.P.; Lürling, M. The impact of warming and nutrients on algae production and microcystins in seston from the iconic Lake Lesser, Greece. Toxins 2018, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Walls, J.T.; Wyatt, K.H.; Doll, J.C.; Rubenstein, E.M.; Rober, A.R. Hot and toxic: Temperature regulates microcystin release from cyanobacteria. Sci. Total Environ. 2018, 610–611, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Burford, M.A.; Carey, C.C.; Hamilton, D.P.; Huisman, J.; Paerl, H.W.; Wood, S.A.; Wulff, A. Perspective: Advancing the research agenda for improving of cyanobacteria in a future of global change. Harmful Algae 2020, 91, 101601. [Google Scholar] [CrossRef] [PubMed]
- Szlag, D.C.; Sinclair, J.L.; Southwell, B.; Westrick, J.A. Cyanobacteria and cyaonotoxins occurrence and removal from five high risk conventional drinking water plants. Toxins 2015, 7, 2198–2220. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.M.; Salim, E.H.; Azab, Y.A.; Ismail, A.-H.M. Monitoring removal of cyanobacterial toxins from drinking water by algal-activated carbon. Toxicol. Ind. Health 2015, 32, 1752–1762. [Google Scholar] [CrossRef] [PubMed]
- Trung, B.; Dao, T.-S.; Fassen, E.; Lürling, M. Cyanobacterial blooms and microcystins in Southern Vietnam. Toxins 2018, 10, 471. [Google Scholar] [CrossRef] [PubMed]
- Hoeger, S.J.; Shaw, G.; Hitzfeld, B.C.; Dietrich, D.R. Occurrence and elimination of cyanobacterial toxins in two Australian drinking water treatment plants. Toxicon 2004, 43, 639–649. [Google Scholar] [CrossRef]
- Teneva, I.; Mladenov, R.; Belkinova, D.; Dimitrova-Dyulgerova, I.; Dzhambazov, B. Phytoplankton community of the drinking water supply reservoir Borovitsa (South Bulgaria) with emphasis on cyatoxins and water quality. Cent. Eur. J. Biol. 2010, 5, 231–239. [Google Scholar]
- Piontek, M.; Czyżewska, W.; Mankiewicz-Boczek, J. The occurrence of cyanobacteria blooms in the Obrzyca River catchment area (Poland), a source of drinking water. Pol. J. Environ. Stud. 2017, 26, 1191–1201. [Google Scholar] [CrossRef]
- Chatziefthimiou, A.D.; Metcalf, J.S.; Glover, W.B.; Banack, S.A.; Dargham, S.R.; Richer, R.A. Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments. Toxicon 2016, 114, 75–84. [Google Scholar] [CrossRef]
- Zamyadi, A.; MacLeod, S.L.; Fan, Y.; McQuiad, N.; Dorner, S.; Sauvé, S.; Prévost, M. Toxic cyanobacterial breakthrough and accumulation in drinking water plant: A monitoring and treatment challenge. Water Res. 2012, 46, 1511–1523. [Google Scholar] [CrossRef] [PubMed]
- Bartram, J.; Burch, M.; Falconer, I.R.; Jones, G.; Kuiper-Goodman, T. Situation assessment, planning and management. In Toxic Cyanobacteria in Water. A Guide to the Their Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; Taylor & Francis: London, UK; New York, NY, USA, 1999; pp. 179–209. [Google Scholar]
- Czyżewska, W.; Piontek, M.; Łuszczyńska, K. The occurrence of Potential Harmful Cyanobacteria and Cyanotoxins in the Obrzyca River (Poland), a Source of Drinking Water. Toxins 2020, 12, 284. [Google Scholar] [CrossRef] [PubMed]
- Wejnerowski, Ł.; Rzymski, P.; Kokocińśki, M.; Meriluoto, J. The structure and toxicity of winter cyanobacterial bloom in eutrophic lake of the temperate zone. Ecotoxicology 2018, 27, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Grochowiecka, W.; Swiderska-Broz, M.; Wolska, M. Efficiency of the Micro-Sieve Process Towards the Removal of Phytoplankton Organisms and Some Chemical Pollutants from Surface Water. Ochr. Srodowiska 2009, 31, 25–30. [Google Scholar]
- Piontek, M.; Czyżewska, W. Efiiciency of Drinking Water Treatment Processes. Removal of phytoplankton with special Consideration for Cyanobacteria and Improving Physical and Chemical Parameters. Pol. J. Environ. Stud. 2012, 21, 1797–1805. [Google Scholar]
- Czyżewska, W.; Piontek, M. The Efficiency of Microstrainers Filtration in the Process of Removing Plankton with Special Consideration of Cyanobacteria. Toxins 2019, 11, 285. [Google Scholar] [CrossRef]
- Svirčev, Z.; Lalić, D.; Savić, G.B.; Tokodi, N.; Backović, D.D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
- Huang, J.-S.; Zimba, P.V. Cyanobacterial bioactive metabolites—A review of the chemistry and biology. Harmful Algae 2019, 86, 139–209. [Google Scholar] [CrossRef]
- Hilborn, E.D.; Beasly, V.R. One Health and Cyanobacteria in Freshwater Systems: Animal Illness and Death are Sentinel Events for Human Health Risks. Toxins 2015, 7, 1374. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Boyer, G.L. Health impacts from cyanobacterial harmful algae bloom: Implications for the North American Great Lakes. Harmful Algae 2016, 54, 194–212. [Google Scholar] [CrossRef]
- Metcalf, J.S.; Codd, G.A. Co-Occurrence of Cyanobacteria and Cyanotoxins with Other Environmental Health Hazards: Impacts and Implications. Toxins 2020, 12, 629. [Google Scholar] [CrossRef] [PubMed]
- Burch, M.D. Effective doses, guidelines & regulations. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs; Hudnel, l.K.H., Ed.; Springer Sience & Business Media: Cham, Switzerland, 2008; Volume 619, pp. 606–636. [Google Scholar]
- World Health Organization. Guidelines for Drinking Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Polish Provincial Inspectorate of Environmental Protection. The State of Purity of Rudno Lake Based on Studies Conducted in 1991-2015 (Stan czystości jeziora Rudno na podstawie badań WIOŚ w Zielonej Górze zrealizowanych w latach 1991-2015 (in Polish)); Polish Provincial Inspectorate of Environmental Protection: Warsaw, Poland, 2017; pp. 1–29. [Google Scholar]
- Bednarska, A. Cyanobacteria and their influence on herbivore zooplankton. Wiadomości Ekol. 2006, 2, 57–69. [Google Scholar]
- Piontek, M.; Czyżewska, W. Influence of cyanobacterial bloom on freshwater biocoenosis. Use of bioassay for cyanobacterial microcystins toxicity assessment. Civ. Environ. Eng. Rep. 2017, 24, 47–68. [Google Scholar] [CrossRef]
- Błaszczyk, A.; Toruńska, A.; Kobos, J.; Browarczyk-Matusiak, G.; Mazur-Marzec, H. Ecology of toxic cyanobacteria. Kosmos 2010, 59, 173–198. [Google Scholar]
- Pitois, F.; Fastner, J.; Pagotto, C.; Dechesne, M. Multi-Toxin Occurrences in Ten French Water Resources Reservoirs. Toxins 2018, 10, 283. [Google Scholar] [CrossRef]
- Turner, A.D.; Dhanji-Rapkova, M.; O’Neill, A.; Coates, L.; Lewis, A.; Lewis, K. Analysis of Microcystins in Cyanobacterial Blooms from Freshwater Bodies in England. Toxins 2018, 10, 39. [Google Scholar] [CrossRef]
- Sivonen, K.; Niemelä, S.I.; Niemi, R.M.; Lepistö, L.; Luoma, T.H.; Räsänen, L.A. Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters. Hydrobiologia 1990, 190, 267–275. [Google Scholar] [CrossRef]
- Funari, E.; Manganelli, M.; Buratti, F.M.; Testai, E. Cyanobacteria blooms in water: Italian guidelines to assess and manage the risk associated to bathing and recreational activities. Sci. Total Environ. 2017, 598, 867–880. [Google Scholar] [CrossRef]
- Gkelis, S.; Harjunpää, V.; Lanaras, T.; Sivonen, K. Diversity of Hepatotoxic Microcystins and Bioactive Anabaenopeptines in Cyanobacterial Blooms from Greek Freshwaters. Environ. Toxicol. 2005, 20, 249–256. [Google Scholar] [CrossRef]
- Kobos, J.; Błaszczyk, A.; Hohlfeld, N.; Toruńska-Sitarz, A.; Krakowiak, A.; Hebel, A.; Grabowska, K.S.M.; Toporowska, M.; Kokociński, M.; Messyasz, B.; et al. Cyanobacteria and cyanotoxins in Polish freshwater bodies. Oceanol. Hydrobiol. Stud. 2013, 42, 358–378. [Google Scholar] [CrossRef]
- Kokociński, M.; Mankiewicz-Boczek, J.; Jurczak, T.; Spoof, T.L.; Meriluoto, J.; Rejmonczyk, E.; Hautala, H.; Vehniäinen, M.; Pawełczyk, J.; Soininen, J. Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environ. Sci. Pollut. Res. 2013, 20, 5243–5264. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, D.R.; Lopes, A.R.; Pereira, M.J.; Polónia, A.R.M.; Castro, B.B.; Gonçalves, F.; Gomes, N.C.M.; Cleary, D.F.R. Bacterioplankton Community Shifts during a Spring Bloom of Aphanizomenon gracile and Sphaerospermopsis aphanizomenoides at a Temperate Shallow Lake. Hydrobiology 2022, 1, 499–517. [Google Scholar] [CrossRef]
- Vu, H.P.; Nguyen, L.N.; Zdarta, J.; Nga, T.T.V.; Nghiem, L.D. Blue-Green Algae in Surface Water: Problems and Opportunities. Curr. Pollut. Rep. 2020, 6, 105–122. [Google Scholar] [CrossRef]
- Napiórkowska-Krzebietke, K.; Kalinowska, K.; Bogacka-Kapusta, E.; Stawecki, K.; Traczuk, P. Persistent blooms of filamentous cyanobacteria in a cormorant-affected aquatic ecosystem: Ecological indicators and consequences. Ecol. Indic. 2021, 124, 107421. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, K.H.; Hwang, S.J.; Lee, T.K. Role of algal community in Harmful Algal Blooms in River-Connected Lakes. Microb. Ecol. 2021, 82, 309–318. [Google Scholar] [CrossRef]
- Sivonen, K.; Jones, G. Cyanobacterial toxins. In Toxic Cyanobacteria in Water. A Guide to the Their Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; Taylor & Francis: London, UK; New York, NY, USA, 1999; pp. 41–113. [Google Scholar]
- Minasyan, A.; Christophoridios, C.; Wilson, A.E.; Kaloudis, T.; Hiskia, A. Diversity of cyanobacteria and the presence of cyanotoxins in the epilimnion of Lake Yerevan (Armenia). Toxicon 2018, 150, 28–38. [Google Scholar] [CrossRef]
- Grabowska, M.; Kobos, J.; Toruńska-Sitarz, A.; Mazur-Marzec, H. Non-ribosomal peptides produced Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Arch. Microbiol. 2014, 196, 697–707. [Google Scholar] [CrossRef]
- Bownik, A.; Adamczuk, M.; Pawlik-Skowrońska, B. Behavioral disturbances induced by cyanobacterial oligopeptides microginin-FR1, anabaenopeptin-A and microcystin-LR are associated with neuromotoric and cytotoxic changes in Brachionus calyciflorus. J. Hazard. Mater. 2022, 438. [Google Scholar] [CrossRef]
- Nandini, S.; Sánchez-Zamora, C.; Sarm, S.S.S. Seasonal Response of Daphnia pulex to Cyanobacterial Extracts at Different Temperatures in Valle de Bravo Reservoir (Mexico). Water 2021, 13, 526. [Google Scholar] [CrossRef]
- Freitas, E.C.; Pinheiro, C.; Rocha, O.; Loureiro, S. Can mixtures of cyanotoxins represent a risk to the zooplankton? The case study of Daphnia magna Straus exposed to hepatoxic and neurotoxic cyanobacterial extracts. Harmful Algae 2014, 31, 143–152. [Google Scholar] [CrossRef]
- Herrera, N.; Palacio, J.; Echeverri, F.; Ferrão-Filho, A.S. Effects of a cyanobacterial bloom sample containing microcystin-LR on the ecophysiology of Daphnia similis. Toxicol. Rep. 2014, 1, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Cheng, C.; Gu, Y.; Shu, X.; Xie, L.; Zhao, Y. Acute and chronic toxicity of microcystin-LR and phenanthrene alone or in combination to the cladoceran (Daphnia magna). Ecotoxicol. Environ. Saf. 2021, 220, 112405. [Google Scholar] [CrossRef] [PubMed]
- Ferrão-Filho, A.S.; Soares, M.C.S.; Magalhães, V.F.; Azevedo, S.M.F.O. Biomonitoring of cyanotoxins in two tropical resevoirs by cladoceran toxicity bioassay. Ecotoxicol. Environ. Saf. 2009, 72, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Pawlik-Skowrońska, B.; Toporowska, M.; Mazur-Marzec, H. Toxic oligopeptides in the cyanobacterium Planktothrix agardhii-dominated blooms and their effects on duckweed (Lemnaceae) development. Knowl. Manag. Aquat. Ecosyst. 2018, 419, 41–50. [Google Scholar] [CrossRef]
- Pawlik-Skowrońska, B.; Bownik, A. Cyanobacterial anabaenopeptin-B, microcystins and their mixture cause toxic effects on the behavior of the freshwater crustacean Daphnia magna (Cladocera). Toxicon 2021, 198, 1–11. [Google Scholar] [CrossRef]
- Napiórkowska-Krzebietke, A.; Łuczyński, M. Can the elimination of cyanobacteria by micro-sieving be an innovative lake purity improvement method? Fish Aquat. Life 2022, 30, 184–191. [Google Scholar] [CrossRef]
- Method 8038; Ammonia Measurement Interferences, Water Analysis Hach, Handbook. Hach Company: Loveland, CO, USA, 2003.
- ISO 7887; Water Quality. Examination and Determination of Colour. International Standards Organization: Geneva, Switzerland, 2011.
- ISO 5814; Water Quality. Determination of Dissolved Oxygen Electrochemical Probe Method. International Standards Organization: Geneva, Switzerland, 2012.
- ISO 10304-1; Water Quality. Determination of Dissolved Anions by Liquid Chromatography of Ions—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate. International Standards Organization: Geneva, Switzerland, 2007.
- Method 8048; Phosphorus Reactive, Water Analysis Hach, Handbook. Hach Company: Loveland, CO, USA, 2003.
- ISO 10523; Water quality. Determination of pH. International Standards Organization: Geneva, Switzerland, 2008.
- Hach Lange test kit no. 138. DOC312.53.94004. In Water Analysis Handbook; Hach Lange GMBH: Düsseldorf, Germany, 2017.
- Hach Lange test kit no. 349. DOC312.53.94021. In Water Analysis Handbook; Hach Lange GMBH: Düsseldorf, Germany, 2020.
- ISO 872; Water Quality. Determination of Suspended Solids. Method by Filtration through Glass Fibre Filters. International Standards Organization: Geneva, Switzerland, 2005.
- ISO 9308-1; Water Quality. Enumeration of Escherichia coli and Coliform Bacteria. Part 1: Membrane Filtration Method for Waters with Low Bacterial Background Flora. International Standards Organization: Geneva, Switzerland, 2014.
- ISO 7899; Water Quality. Detection and Enumeration of Intestinal Enterococci. Part 2: Membrane Filtration Method. International Standards Organization: Geneva, Switzerland, 2000.
- ISO 14189; Water Quality. Enumeration of Clostridium perfringens. Method Using Membrane Filtration. International Standards Organization: Geneva, Switzerland, 2013.
- PN-C-05560-02; (Polish Act Standard) Water and Wastewater. Determination of Chlorophyll in Surface Water. Determination of Chlorophyll Alpha in Plankton Algae by Monochromatic Spectrophotometric Method with Correction for Alpha Feopigments. The Polish Committee for Standardization: Warsaw, Poland, 1986.
- Fastner, J.; Flieger, I.; Neumann, U. Optimised extraction of microcystins from field samples—A comparison of different solvents and procedures. Water Res. 1998, 32, 3177–3181. [Google Scholar] [CrossRef]
- Meriluoto, J.; Spoof, L.; Codd, G.A. Handbook of Cyanobacterial Monitoring and Cyanotoxins Analysis, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 350–353. [Google Scholar]
- Weber, E. Grundriss der biologischen Statistik für Naturwissenschaftler, Landwirte and Mediziner; G. Fischer Verlag: Jena, Germany, 1972. [Google Scholar]
Sampling Month | UŚCIE | RUDNO | ||||
---|---|---|---|---|---|---|
Chl-a [μg/L] | Biovolume [mm3/L] | Dominant Species | Chl-a [μg/L] | Biovolume [mm3/L] | Dominant Species | |
05/2020 | 23.5 | 4.81 | L. redekei | - | - | - |
06/2020 | 46.7 | 7.23 | L. redekei | - | - | - |
07/2020 | 69.9 | 26.1 | A. gracile | 129 | 177 | D. flos-aquae A. gracile |
08/2020 | 21.4 | 22.9 | A. gracile | 190 | 1662 | A. gracile |
09/2020 | 9.60 | 5.32 | A. gracile | 37.4 | 37.2 | A. gracile |
Average | 34.2 | 13.3 | - | 118.8 | 625.4 | - |
Water Quality Indicator | Chl-a | CYA | ∑MCs |
---|---|---|---|
pH | 0.69 | 0.56 | 0.53 |
Color | 0.72 * | 0.73 * | 0.57 |
Temperature | 0.71 * | 0.74 * | 0.72 * |
Turbidity | 0.11 | −0.29 | −0.25 |
Total suspended solids | 0.85 * | 0.99 * | 0.99 * |
Dissolved oxygen | 0.47 | 0.09 | 0.06 |
N-tot | 0.71 * | 0.91 * | 0.89 * |
NH4 | −0.58 | −0.50 | −0.43 |
P-tot | 0.35 | 0.71 * | 0.71 * |
PO4 | −0.15 | 0.15 | 0.18 |
Microbiological indicators | |||
Escherichia coli | −0.27 | −0.27 | −0.25 |
Enteroccus faecalis | −0.42 | −0.30 | −0.15 |
Clostridium perfringens | −0.17 | −0.03 | −0.28 |
Sampling Months | CYANOTOXINS [μg/L] | CYANOPEPTIDES [pg/L] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ANT | CYN | dm MCRR | MCRR | MCLA | dm MCLR | MCLF | MCLR | MCLY | MCLW | MCYR | ∑MCs | ANAB | AER | |
UŚCIE | ||||||||||||||
05/2020 | n.d. | n.d. | 0.53 | 0.01 | n.d. | 0.16 | n.d. | 0.02 | n.d. | n.d. | 0.08 | 0.80 | n.d. | n.d. |
06/2020 | n.d. | n.d. | 0.32 | 0.01 | n.d. | 0.26 | n.d. | 0.02 | n.d. | n.d. | 0.19 | 0.80 | n.d. | n.d. |
07/2020 | n.d. | n.d. | 1.11 | 0.02 | n.d. | 0.92 | n.d. | n.d. | n.d. | n.d. | 0.64 | 2.75 | n.d. | n.d. |
08/2020 | n.d. | n.d. | 0.003 | 0.003 | n.d. | n.d. | n.d. | 0.02 | n.d. | n.d. | 0.003 | 0.21 | 11.2 | 0.60 |
09/2020 | n.d. | n.d. | n.d. | 0.003 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | <0.01 | n.d. | n.d. |
Average | - | - | 0.39 | 0.04 | - | 0.27 | - | 0.01 | - | - | 0.18 | 0.91 | 2.24 | 0.12 |
RUDNO | ||||||||||||||
07/2020 | n.d. | n.d. | 1.53 | 0.02 | n.d. | 1.43 | n.d. | n.d. | n.d. | n.d. | 1.22 | 4.23 | n.d. | 0.60 |
08/2020 | n.d. | n.d. | 29.8 | 0.28 | n.d. | 13.2 | 0.02 | n.d. | 0.02 | n.d. | 12.1 | 57.3 | 1.53 | 9.05 |
09/2020 | n.d. | n.d. | 1.68 | 0.03 | n.d. | 1.02 | n.d. | n.d. | n.d. | n.d. | 0.54 | 3.34 | 9.0 | 6.82 |
Average | - | - | 11.0 | 0.11 | - | 5.23 | - | - | - | - | 4.62 | 21.6 | 3.51 | 5.49 |
Sampling Months | UŚCIE | RUDNO |
---|---|---|
05/2020 | n.t. | n.a. |
06/2020 | n.t. | n.a. |
07/2020 | 60.3 * | 15.5 * |
08/2020 | 42.7 * | 5.4 * |
09/2020 | n.t. | 21.4 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piontek, M.; Czyżewska, W.; Mazur-Marzec, H. Effects of Harmful Cyanobacteria on Drinking Water Source Quality and Ecosystems. Toxins 2023, 15, 703. https://doi.org/10.3390/toxins15120703
Piontek M, Czyżewska W, Mazur-Marzec H. Effects of Harmful Cyanobacteria on Drinking Water Source Quality and Ecosystems. Toxins. 2023; 15(12):703. https://doi.org/10.3390/toxins15120703
Chicago/Turabian StylePiontek, Marlena, Wanda Czyżewska, and Hanna Mazur-Marzec. 2023. "Effects of Harmful Cyanobacteria on Drinking Water Source Quality and Ecosystems" Toxins 15, no. 12: 703. https://doi.org/10.3390/toxins15120703
APA StylePiontek, M., Czyżewska, W., & Mazur-Marzec, H. (2023). Effects of Harmful Cyanobacteria on Drinking Water Source Quality and Ecosystems. Toxins, 15(12), 703. https://doi.org/10.3390/toxins15120703