E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology?
Abstract
:1. Introduction
2. Mycotoxin Contamination
3. Mycotoxin Analysis
4. Electronic Nose
5. Volatilome: VOCs Associated with Fungal Metabolism
6. E-Nose for Mycotoxin Detection
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on human and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef] [PubMed]
- Wu, F. Measuring the economic impacts of Fusarium toxins in animal feeds. Anim. Feed Sci. Technol. 2007, 137, 363–374. [Google Scholar] [CrossRef]
- Wu, F. Global impacts of aflatoxin in maize: Trade and human health. World Mycotoxin J. 2015, 8, 137–142. [Google Scholar] [CrossRef]
- Wild, C.P.; Gong, Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis 2010, 31, 71–82. [Google Scholar] [CrossRef]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Pinotti, F.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45–69. [Google Scholar] [CrossRef]
- Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in Food and Feed: Present Status and Future Concerns. Compr. Rev. Food Sci. Food Saf. 2010, 1, 57–81. [Google Scholar] [CrossRef]
- Luo, S.; Du, H.; Kebede, H.; Liu, Y.; Xing, F. Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control 2021, 127, 108120. [Google Scholar] [CrossRef]
- Fumagalli, F.; Ottoboni, M.; Pinotti, L.; Cheli, F. Integrated mycotoxin management system in the feed supply chain: Innovative approaches. Toxins 2021, 13, 572–607. [Google Scholar] [CrossRef]
- Van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations relating to mycotoxins in food. Perspectives in a global and European context. Anal. Bioanal. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Cheli, F.; Battaglia, D.; Gallo, R.; Dell’Orto, V. EU legislation on cereal safety: An update with a focus on mycotoxins. Food Control 2014, 37, 315–325. [Google Scholar] [CrossRef]
- European Commission. Consolidated Text: Commission Directive 2003/100/EC of 31 October 2003 Amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council on Undesirable Substances in Animal Feed. Available online: https://eur-lex.europa.eu/eli/dir/2003/100/oj (accessed on 15 November 2022).
- European Commission. Consolidated Text: Commission Recommendation 2006/576/EC of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding. Available online: https://eur-lex.europa.eu/eli/reco/2006/576/oj (accessed on 15 November 2022).
- European Commission. Commission Recommendation No 2013/165/EU of 27 March 2013 on the Presence of T-2 and HT-2 Toxin in Cereals and Cereal Products. Available online: https://eur-lex.europa.eu/eli/reco/2013/165/oj (accessed on 15 November 2022).
- Suman, M.; Poms, R. Foreword: Rapid methods for mycotoxin detection. World Mycotoxin J. 2014, 7, 401–405. [Google Scholar] [CrossRef]
- Székács, A. Mycotoxins as Emerging Contaminants. Introduction to the Special Issue “Rapid Detection of Mycotoxin Contamination”. Toxins 2021, 13, 475–479. [Google Scholar] [CrossRef]
- Cheli, F.; Campagnoli, A.; Dell’Orto, V. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim. Feed Sci. Technol. 2013, 183, 1–16. [Google Scholar] [CrossRef]
- Fink-Gremmels, J. Mycotoxins in cattle feeds and carryover to dairy milk: A review. Food Addit. Contam. 2008, 25, 172–180. [Google Scholar] [CrossRef]
- Völkel, I.; Schröer-Merker, E.; Czerny, C. The Carry-Over of Mycotoxins in Products of Animal Origin with Special Regard to Its Implications for the European Food Safety Legislation. Food Nutr. Sci. 2011, 2, 852–867. [Google Scholar] [CrossRef]
- Pulina, G.; Battacone, G.; Brambilla, G.; Cheli, F.; Danieli, P.P.; Masoero, F.; Pietri, A.; Ronchi, B. An update on the safety of foods of animal origin and feeds. Ital. J. Anim. Sci. 2014, 13, 845–856. [Google Scholar] [CrossRef]
- Tolosa, J.; Rodríguez-Carrasco, Y.; Ruiz, M.J.; Vila-Donat, P. Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. Food Chem. Toxicol. 2021, 158, 112661. [Google Scholar] [CrossRef]
- Binder, E.M.; Tan, L.M.; Chin, L.J.; Handl, J.; Richard, J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed Sci. Technol. 2007, 137, 265–282. [Google Scholar] [CrossRef]
- Borutova, R.; Acosta Aragon, Y.; Nährer, K.; Berthiller, F. Co-occurrence and statistical correlations between mycotoxins in feedstuffs collected in the Asia–Oceania Region in 2010. Anim. Feed Sci. Technol. 2012, 178, 190–197. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, I.; Naehrer, K. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins 2012, 4, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current Situation of Mycotoxin Contamination and Co-occurrence in Animal Feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [PubMed]
- Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Krska, R.; Schatzmayr, G. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 2013, 5, 504–523. [Google Scholar] [CrossRef]
- Streit, E.; Naehrer, K.; Rodrigues, I.; Schatzmayr, G. Mycotoxin occurrence in feed and feed raw materials worldwide: Long-term analysis with special focus on Europe and Asia. J. Sci. Food Agric. 2013, 93, 2892–2899. [Google Scholar] [CrossRef]
- Zachariasova, M.; Dzuman, Z.; Veprikova, Z.; Hajkova, K.; Jiru, M.; Vaclavikov, M.; Zachariasova, A.; Pospichalova, M.; Florian, M.; Hajslova, J. Occurrence of multiple mycotoxins in European feedingstuffs, assessment of dietary intake by farm animals. Anim. Feed Sci. Technol. 2014, 193, 124–140. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Anim. Feed Sci. Technol. 2016, 215, 165–180. [Google Scholar] [CrossRef]
- Kosicki, R.; Błajet-Kosicka, A.; Grajewski, J.; Twaruzek, M. Multiannual mycotoxin survey in feed materials and feedingstuffs. Anim. Feed Sci. Technol. 2016, 215, 165–180. [Google Scholar] [CrossRef]
- Kovalsky, P.; Kos, G.; Nährer, K.; Schwab, C.; Jenkins, T.; Schatzmayr, G.; Sulyok, M.; Krska, R. Co-Occurrence of Regulated, Masked and Emerging Mycotoxins and Secondary Metabolites in Finished Feed and Maize—An Extensive Survey. Toxins 2016, 8, 363–392. [Google Scholar] [CrossRef]
- Santos Pereira, C.; Cunha, S.C.; Fernandes, J.O. Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins 2019, 11, 290–352. [Google Scholar] [CrossRef] [Green Version]
- Twaruzek, M.; Skrzydlewski, K.R.; Grajewski, J. Mycotoxins survey in feed materials and feedingstuffs in years 2015–2020. Toxicon 2021, 202, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, L.; Fumagalli, F.; Rizzi, N.; Grandi, E.; Vailati, S.; Manoni, M.; Ottoboni, M.; Cheli, F.; Pinotti, L. An Eight-Year Survey on Aflatoxin B1 Indicates High Feed Safety in Animal Feed and Forages in Northern Italy. Toxins 2022, 14, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Munkvold, G.P. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 2003, 109, 705–713. [Google Scholar] [CrossRef]
- Teller, R.S.; Schmidt, R.J.; Whitlow, L.W.; Kung, L., Jr. Effect of physical damage to ears of corn before harvest and treatment with various additives on the concentration of mycotoxins, silage fermentation, and aerobic stability of corn silage. J. Dairy Sci. 2012, 95, 1428–1436. [Google Scholar] [CrossRef]
- Reyneri, A. The role of climatic condition on mycotoxin production in cereal. Vet. Res. Comm. 2006, 30 (Suppl. 1), 87–92. [Google Scholar] [CrossRef]
- Medina, A.; Rodriguez, A.; Magan, N. Changes in environmental factors driven by climate change: Effects on the ecophysiology of mycotoxigenic fungi. In Climate Change and Mycotoxins; Botana, L.M., Sainz, M.J., Eds.; Walter de Gruiter, Gmbh, Berkin: Boston, MA, USA, 2015; Volume 4, pp. 71–92. [Google Scholar]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef]
- Zingales, V.; Taroncher, M.; Martino, P.A.; Ruiz, M.J.; Caloni, F. Climate Change and Effects on Molds and Mycotoxins. Toxins 2022, 14, 445–458. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms 2020, 8, 1496–1516. [Google Scholar] [CrossRef]
- Di Mavungu, J.D.; De Saeger, S. Masked mycotoxins in food and feed: Challenges and analytical ap-proaches. In Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed; Woodhead Publishing: Sawston, UK, 2011; pp. 385–400. [Google Scholar] [CrossRef]
- Berthiller, F.; Crews, C.; Dall’Asta, C.; Saeger, S.D.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked mycotoxins: A review. Mol. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA J. 2014, 12, 3916. [Google Scholar] [CrossRef]
- Eskola, M.; Altieri, A.; Galobart, J. Overview of the activities of the European Food Safety Authority on mycotoxins in food and feed. World Mycotoxin J. 2018, 11, 277–289. [Google Scholar] [CrossRef]
- Cheli, F.; Campagnoli, A.; Pinotti, L.; Fusi, E.; Dell’Orto, V. Sampling feed for mycotoxins: Acquiring knowledge from food. Ital. J. Anim. Sci. 2009, 8, 5–22. [Google Scholar] [CrossRef]
- Focker, M.; van der Fels-Klerx, H.J.; Oude Lansink, A.G.J.M. Cost-Effective Sampling and Analysis for Mycotoxins in a Cereal Batch. Risk Anal. 2019, 39, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Herrman, T.J.; Dai, S.Y. Application and validation of a statistically derived risk-based sampling plan to improve efficiency of inspection and enforcement. Food Control 2016, 64, 135–141. [Google Scholar] [CrossRef]
- Chavez, R.A.; Cheng, X.; Herrman, T.J.; Stasiewicz, M.J. Single kernel aflatoxin and fumonisin contamination distribution and spectral classification in commercial corn. Food Control 2022, 131, 108393. [Google Scholar] [CrossRef]
- Yi, Y.; Fan, K.; Wang, J.; Fu, Q.; Zhou, X.; Zhang, Y.; Zhang, H. Primary research on sampling scheme for analyzing mycotoxin distribution in wheat and rice fields. J. Sci. Food Agric. 2021, 101, 4980–4986. [Google Scholar] [CrossRef]
- Kumphanda, J.; Matumba, L.; Monjerezi, M.; Whitaker, T.B.; De Saeger, S.; Makun, H.A. Are sample size and sample preparation for mycotoxin quantitation in grain products getting trivialized? Food Control 2021, 130, 108400. [Google Scholar] [CrossRef]
- Limay-Rios, V.; Schaafsma, A.W. Relationship between mycotoxin content in winter wheat grain and aspirated dust collected during harvest and after storage. ACS Omega 2021, 6, 1857–1871. [Google Scholar] [CrossRef]
- Cheng, X.; Chavez, R.A.; Stasiewicz, M.J. When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening. PLoS ONE 2020, 15, e0236668. [Google Scholar] [CrossRef]
- European Commission. Consolidated Text: Regulation (EU) 2017/625 on Official Controls and Other Official Activities Performed to Ensure the Application of Food and Feed Law, Rules on Animal Health and Welfare, Plant Health and Plant Protection Products, Amending Regulations (EC) No 999/2001, (EC) No 396/2005, (EC) No 1069/2009, (EC) No 1107/2009, (EU) No 1151/2012, (EU) No 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament and of the Council, Council Regulations (EC) No 1/2005 and (EC) No 1099/2009 and Council Directives 98/58/EC, 1999/74/EC, 2007/43/EC, 2008/119/EC and 2008/120/EC, and repealing Regulations (EC) No 854/2004 and (EC) No 882/2004 of the European Parliament and of the Council, Council Directives 89/608/EEC, 89/662/EEC, 90/425/EEC, 91/496/EEC, 96/23/EC, 96/93/EC and 97/78/EC and Council Decision 92/438/EEC (Official Controls Regulation). Available online: https://eur-lex.europa.eu/eli/reg/2017/625/2022-01-28 (accessed on 15 November 2022).
- European Commission. Consolidated Text: Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying down the Methods of Sampling and Analysis for the Official Control of Feed. Available online: https://eur-lex.europa.eu/eli/reg/2009/152/2022-06-28 (accessed on 15 November 2022).
- European Commission. Consolidated Text: Commission Regulation (EC) No 401/2006 of 23 February 2006 Laying down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs. Available online: https://eur-lex.europa.eu/eli/reg/2006/401/2014-07-01 (accessed on 15 November 2022).
- Wenzl, T.; Johannes, H.; Schaechtele, A.; Robouch, P.; Stroka, J. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food, EUR 28099 EN; Publications Office of the European Union: Luxembourg, 2016; pp. 1–58. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Brunkhorst, J.; Cramer, B.; DeRosa, M.C.; Lattanzio, V.M.T.; Malone, R.; Maragos, C.; Stranska, M.; Sumarah, M.W. Developments in mycotoxin analysis: An update for 2019–2020. World Mycotoxin J. 2021, 14, 3–26. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Cramer, B.; Dall’Asta, C.; DeRosa, M.C.; Lattanzio, V.M.T.; Malone, R.; Maragos, C.; Stranska, M.; Sumarah, M.W. Developments in mycotoxin analysis: An update for 2020-2021. World Mycotoxin J. 2022, 15, 3–25. [Google Scholar] [CrossRef]
- Maragos, C.M.; Busman, M. Rapid and advanced tools for mycotoxin analysis: A review. Food Addit. Contam. A 2010, 27, 688–700. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef] [PubMed]
- Caputo, D.; de Cesare, G.; Nascetti, A.; Scipinotti, R.; Pavanello, F.; Arrigoni, R. DEMOCHEM: Integrated system for mycotoxinsdetection. Procedia Eng. 2014, 87, 1354–1357. [Google Scholar] [CrossRef]
- Ong, J.Y.; Pike, A.; Tan, L.L. Recent Advances in Conventional Methods and Electrochemical Aptasensors for Mycotoxin Detection. Foods 2021, 10, 1437. [Google Scholar] [CrossRef]
- Keshri, G.; Magan, N.; Voysey, P. Use of an electronic nose for the early detection and differentiation between spoilage fungi. Lett. Appl. Microbiol. 1998, 27, 261–264. [Google Scholar] [CrossRef]
- Magan, N.; Evans, P. Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for the early detection of grain spoilage. J. Stored Prod. Res. 2000, 36, 319–340. [Google Scholar] [CrossRef]
- Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 210–211. [Google Scholar] [CrossRef]
- Scott, S.M.; James, D.; Zulfiqur, A. Data analysis for electronic nose systems. Microchim. Acta 2006, 156, 183–207. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment A review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- James, D.; Scott, S.M.; Ali, Z.; O’Har, W.T. Chemical Sensors for Electronic Nose Systems. Microchim. Acta 2005, 149, 1–17. [Google Scholar] [CrossRef]
- Banerjee, R.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, R. A review on combined odor and taste sensor systems. J. Food Eng. 2016, 190, 10–21. [Google Scholar] [CrossRef]
- Sanaeifar, A.; ZakiDizaji, H.; Jafari, A.; de la Guardia, M. Early detection of contamination and defect in foodstuffs by electronic nose: A review. Trends Anal. Chem. 2017, 97, 257–271. [Google Scholar] [CrossRef]
- Ali, M.M.; Hashim, M.; Abd Aziz, S.; Lasekan, O. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends Food Sci. Technol. 2020, 99, 1–10. [Google Scholar] [CrossRef]
- Yimenu, S.M.; Kim, J.Y.; Kim, B.S. Prediction of egg freshness during storage using electronic nose. Poult. Sci. 2017, 96, 3733–3746. [Google Scholar] [CrossRef]
- Ravi, R.; Taheri, A.; Khandekar, D.; Millas, R. Rapid Profiling of Soybean Aromatic Compounds Using Electronic Nose. Biosensors 2019, 9, 66–79. [Google Scholar] [CrossRef]
- Roy, M.; Yadav, B.K. Electronic nose for detection of food adulteration: A review. J. Food Sci. Technol. 2022, 59, 846–858. [Google Scholar] [CrossRef]
- Cevoli, C.; Casadei, E.; Valli, E.; Fabbri, A.; Gallina Toschi, T.; Bendini, A. Storage time of nut spreads using flash gas chromatography E-nose combined with multivariate data analysis. LWT 2022, 159, 113217. [Google Scholar] [CrossRef]
- Fu, J.; Li, G.; Qin, Y.; Freeman, W.J. A pattern recognition method for electronic noses based on an olfactory neural network. Sens. Actuators B Chem. 2007, 125, 489–497. [Google Scholar] [CrossRef]
- Kaushal, S.; Nayi, P.; Rahadian, D.; Ho-Hsien, C. Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review. Agriculture 2022, 12, 1359. [Google Scholar] [CrossRef]
- Cheli, F.; Bontempo, V.; Pinotti, L.; Ottoboni, M.; Tretola, M.; Baldi, A.; Dell’Orto, V. Feed Analysis and Animal Nutrition: Electronic Nose as a Diagnostic Tool. Chem. Eng. Trans. 2018, 68, 223–228. [Google Scholar]
- Wilson, A.D. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, D.; Ulucan, O.; Türkan, M. Electronic Nose and Its Applications: A Survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef]
- Mota, I.; Teixeira-Santos, R.; Cavaleiro Rufo, J. Detection and identification of fungal species by electronic nose technology: A systematic review. Fungal Biol. Rev. 2021, 37, 59–70. [Google Scholar] [CrossRef]
- Winquist, F.; Hornsten, E.G.; Sundgren, H.; Lundstrom, I. Performance of an electronic nose for quality estimation of ground meat. Meas. Sci. Technol. 1993, 4, 1493–1500. [Google Scholar] [CrossRef]
- Ólafsson, R.; Martinsdottir, E.; Ólafsdottir, G.; Sigfusson, P.I.; Gardner, J.W. Monitoring of Fish Freshness Using Tin Oxide Sensors. In Sensors and Sensory Systems for an Electronic Nose; Gardner, J.W., Bartlett, P.N., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1992; pp. 257–272. [Google Scholar] [CrossRef]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.; Harrington Aheto, J.; Osae, R. Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: A review. J. Food Sci. Technol. 2020, 57, 1977–1990. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, K.; Zhao, B.; Zhang, M.; Gong, C.; Wan, H.; Wang, Y.; Yang, Z. A novel electronic nose for the detection and classification of pesticide residue on apples. RSC Adv. 2021, 11, 20874–20883. [Google Scholar] [CrossRef]
- Tang, X.; Xiao, W.; Shang, T.; Zhang, S.; Han, X.; Wang, Y.; Sun, H. An electronic nose technology to quantify pyrethroid pesticide contamination in tea. Chemosensors 2020, 8, 30. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23–88. [Google Scholar] [CrossRef]
- Bennett, J.W.; Inamdar, A.A. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins? Toxins 2015, 7, 3785–3804. [Google Scholar] [CrossRef] [PubMed]
- Lemfack, M.-C.; Gohlke, B.O.; Toguem, S.M.T.; Preissner, S.; Piechulla, B.; Preissner, R. mVOC 2.0: A database of microbial volatiles. Nucleic Acids Res. 2017, 42, D744–D748. [Google Scholar] [CrossRef] [PubMed]
- Buśko, M.; Jeleń, H.; Góral, T.; Chmielewski, J.; Stuper, K.; Szwajkowska-Michałek, L.; Tyrakowska, B.; Perkowski, J. Volatile metabolites in various cereal grains. Food Addit. Contam. A 2010, 27, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Buśko, M.; Stuper, K.; Jeleń, H.; Góral, T.; Chmielewski, J.; Tyrakowska, B.; Perkowski, J. Comparison of Volatiles Profile and Contents of Trichothecenes Group B, Ergosterol, and ATP of Bread Wheat, Durum Wheat, and Triticale Grain Naturally Contaminated by Mycobiota. Front. Plant Sci. 2016, 7, 1243. [Google Scholar] [CrossRef]
- Schnürer, J.; Olsson, J.; Börjesson, T. Fungal Volatiles as Indicators of Food and Feeds Spoilage. Fungal Genet. Biol 1999, 27, 209–217. [Google Scholar] [CrossRef]
- Sahgal, N.; Needham, R.; Cabañes, F.J.; Magan, N. Potential for detection and discrimination between mycotoxigenic and non-toxigenic spoilage moulds using volatile production patterns: A review. Food Addit. Contam. 2007, 24, 1161–1168. [Google Scholar] [CrossRef]
- Börjesson, T.; Stöllman, U.; Schnürer, J. Adsorption of volatile fungal metabolites to wheat grains and subsequent desorption. Cereal Chem. 1994, 71, 16–20. [Google Scholar]
- Jeleń, H.H.; Majcher, M.; Zawirska-Wojtasiak, R.; Rowska, M.-W.; Wasowicz, E. Determination of Geosmin, 2-Methylisoborneol, and a Musty-Earthy Odor in Wheat Grain by SPME-GC-MS, Profiling Volatiles, and Sensory Analysis. J. Agric. Food Chem. 2003, 51, 7079–7085. [Google Scholar] [CrossRef]
- Barkat, E.H.; Du, B.; Ren, Y.; Hardy, G.E.; St, J.; Bayliss, K.L. Volatile organic compounds associated with postharvest fungi detected in stored wheat grain. Australas. Plant Pathol. 2017, 46, 483–492. [Google Scholar] [CrossRef]
- Perkowski, J.; Stuper, K.; Buśko, M.; Góral, T.; Kaczmarek, A.; Jeleń, H. Differences in metabolomic profiles of the naturally contaminated grain of barley, oats and rye. J. Cereal Sci. 2012, 56, 544–551. [Google Scholar] [CrossRef]
- Hung, R.; Lee, S.; Bennett, J.W. Fungal volatile organic compounds and their role in ecosystems. Appl. Microbiol. Biotechnol. 2015, 99, 3395–3405. [Google Scholar] [CrossRef] [PubMed]
- Capuano, R.; Paba, E.; Mansi, A.; Marcelloni, A.M.; Chiominto, A.; Proietto, A.R.; Zampetti, E.; Macagnano, A.; Lvova, L.; Catini, A.; et al. Aspergillus Species Discrimination Using a Gas Sensor Array. Sensors 2020, 20, 4004–4016. [Google Scholar] [CrossRef] [PubMed]
- Busman, M.; Roberts, E.; Proctor, R.H.; Maragos, C.M. Volatile Organic Compound Profile Fingerprints Using DART–MS Shows Species-Specific Patterns in Fusarium Mycotoxin Producing Fungi. J. Fungi 2022, 8, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Josselin, L.; De Clerck, C.; De Boevre, M.; Moretti, A.; Jijakli, M.H.; Soyeurt, H.; Fauconnier, M.L. Volatile Organic Compounds Emitted by Aspergillus flavus Strains Producing or Not Aflatoxin B1. Toxins 2021, 13, 705–724. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kang, X.; Wang, S.; Mo, H.; Xu, D.; Zhou, W.; Hu, L. Early detection and monitoring for Aspergillus flavus contamination in maize kernels. Food Control 2021, 121, 107636. [Google Scholar] [CrossRef]
- Jiarpinijnun, A.; Osako, K.; Siripatrawan, U. Visualization of volatomic profiles for early detection of fungal infection on storage Jasmine brown rice using electronic nose coupled with chemometrics. Measurement 2020, 157, 107561. [Google Scholar] [CrossRef]
- Gu, S.; Wang, J.; Wang, Y. Early discrimination and growth tracking of Aspergillus spp. Contamination in rice kernels using electronic nose. Food Chem. 2019, 292, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Sherif, M.; Becker, E.M.; Herrfurth, C.; Feussner, I.; Karlovsky, P.; Splivallo, R. Volatiles Emitted from Maize Ears Simultaneously Infected with Two Fusarium Species Mirror the Most Competitive Fungal Pathogen. Front. Plant Sci. 2016, 7, 1460. [Google Scholar] [CrossRef]
- Dong, L.; Liu, R.; Dong, H.; Piao, Y.; Hu, X.; Li, C.; Cong, L.; Zhao, C. Volatile metabolite profiling of malt contaminated by Fusarium poae during malting. J. Cereal Sci. 2015, 66, 37–45. [Google Scholar] [CrossRef]
- Becker, E.M.; Herrfurth, C.; Irmisch, S.; Köllner, T.G.; Feussner, I.; Karlovsky, P.; Splivallo, R. Infection of Corn Ears by Fusarium spp. Induces the Emission of Volatile Sesquiterpenes. J. Agric. Food Chem. 2014, 62, 5226–5236. [Google Scholar] [CrossRef]
- Laddomada, B.; Del Coco, L.; Durante, M.; Presicce, D.S.; Siciliano, P.A.; Fanizzi, F.P.; Logrieco, A.F. Volatile Metabolite Profiling of Durum Wheat Kernels Contaminated by Fusarium poae. Metabolites 2014, 4, 932–9454. [Google Scholar] [CrossRef]
- Lippolis, V.; Pascale, M.; Cervellieri, S.; Damascelli, A.; Visconti, A. Screening of deoxynivalenol contamination in durum wheat by MOS-based electronic nose and identification of the relevant pattern of volatile compounds. Food Control 2014, 37, 263–271. [Google Scholar] [CrossRef]
- Eifler, J.; Martinelli, E.; Santonico, M.; Capuano, R.; Schild, D.; Di Natale, C. Differential Detection of Potentially Hazardous Fusarium Species in Wheat Grains by an Electronic Nose. PLoS ONE 2011, 6, e21026. [Google Scholar] [CrossRef] [PubMed]
- Olsson, J.; Borjesson, T.; Lundstedt, T.; Schnurer, J. Volatiles for mycological quality grading of barley grains: Determinations using gas chromatography–mass spectrometry and electronic nose. Int. J. Food Microbiol. 2000, 59, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Keshri, G.; Magan, N. Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of two Fusarium spp. using volatile production profiles and hydrolytic enzymes. J. Appl. Microbiol. 2000, 89, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.; Persaud, K.C.; McNeish, A.S.; Sneath, R.W.; Hobson, N.; Magan, N. Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data. Sens. Actuators B 2000, 69, 348–358. [Google Scholar] [CrossRef]
- Falasconi, M.; Gobbi, E.; Pardo, M.; Della Torre, M.; Bresciani, A.; Sberveglieri, G. Detection of toxigenic strains of Fusarium verticillioides in corn by electronic olfactory system. Sens. Actuators B 2005, 108, 250–257. [Google Scholar] [CrossRef]
- Paolesse, R.; Alimelli, A.; Martinelli, E.; Di Natale, C.; D’Amico, A.; D’Egidio, M.G.; Aureli, G.; Ricelli, A.; Fanelli, C. Detection of fungal contamination of cereal grain samples by an electronic nose. Sens. Actuators B 2006, 119, 425–430. [Google Scholar] [CrossRef]
- Presicce, D.S.; Forleo, A.; Taurino, A.M.; Zuppa, M.; Siciliano, P.; Laddomada, B.; Logrieco, A.; Visconti, A. Response evaluation of an E-nose towards contaminated wheat by Fusarium poae fungi. Sens. Actuators B 2006, 118, 433–438. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Panigrahi, S.; Kottapalli, B.; Wolf-Hall, C.E. Evaluation of an artificial olfactory system for grain quality discrimination. LWT 2007, 40, 1815–1825. [Google Scholar] [CrossRef]
- Karlshøj, K.; Nielsen, P.V.; Larsen, T.O. Prediction of Penicillium expansum Spoilage and Patulin Concentration in Apples Used for Apple Juice Production by Electronic Nose Analysis. J. Agric. Food Chem. 2007, 55, 4289–4298. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Mishra, G.; Mishra, H.N. Fuzzy controller-based E-nose classification of Sitophilus oryzae infestation in stored rice grain. Food Chem. 2019, 283, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Chen, W.; Wang, W.; Wang, J.; Huo, Y. Rapid detection of Aspergillus spp. infection levels on milled rice by headspace-gas chromatography ion-mobility spectrometry (HS-GC-IMS) and E-nose. LWT 2020, 132, 109758. [Google Scholar] [CrossRef]
- Morath, S.U.; Hung, R.; Bennett, J.W. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biol. Rev. 2012, 26, 73–83. [Google Scholar] [CrossRef]
- Herrera, J.M.; Pizzolitto, R.P.; Zunino, M.P.; Dambolena, J.S.; Zygadlo, J.A. Effect of fungal volatile organic compounds on a fungus and an insect that damage stored maize. J. Stored Prod. Res. 2015, 62, 74–80. [Google Scholar] [CrossRef]
- Desjardins, A.E.; Hohn, T.M.; McCormick, S.P. Trichothecene biosynthesis in Fusarium species: Chemistry, genetics, and significance. Microbiol. Rev. 1993, 57, 595–604. [Google Scholar] [CrossRef]
- Zeringue, H.J., Jr.; Bhatnagar, D.; Cleveland, E. C15H24 Volatile Compounds Unique to Aflatoxigenic Strains of Aspergillus flavus. Appl. Environ. Microbiol. 1993, 59, 2264–2270. [Google Scholar] [CrossRef]
- Jeleń, H.H.; Mirocha, C.J.; Wasowicz, E.; Kamiński, E. Production of Volatile Sesquiterpenes by Fusarium sambucinum Strains with Different Abilities to Synthesize Trichothecenes. Appl. Environ. Microbiol. 1995, 61, 3815–3820. [Google Scholar] [CrossRef]
- Pasanen, A.L.; Lappalainen, S.; Pasanen, P. Volatile organic metabolites associated with some toxic fungi and their mycotoxins. Analyst 1996, 121, 1949–1953. [Google Scholar] [CrossRef]
- Jeleń, H.H. Volatile Sesquiterpene Hydrocarbons Characteristic for Penicillium roqueforti Strains Producing PR Toxin. J. Agric. Food Chem. 2002, 50, 6569–6574. [Google Scholar] [CrossRef]
- Jeleń, A.; Grabarkiewicz-Szczesna, J. Volatile Compounds of Aspergillus Strains with Different Abilities to Produce Ochratoxin. J. Agric. Food Chem. 2005, 53, 1678–1683. [Google Scholar] [CrossRef] [PubMed]
- Machungo, C.; Berna, A.Z.; McNevin, D.; Wang, R.; Trowell, S. Comparison of the performance of metal oxide and conducting polymer electronic noses for detection of aflatoxin using artificially contaminated maize. Sens. Actuators B Chem. 2022, 360, 13168. [Google Scholar] [CrossRef]
- Camardo Leggieri, M.; Mazzoni, M.; Bertuzzi, T.; Moschini, M.; Prandini, A.; Battilani, P. Electronic Nose for the Rapid Detection of Deoxynivalenol in Wheat Using Classification and Regression Trees. Toxins 2022, 14, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Camardo Leggieri, M.; Mazzoni, M.; Fodil, S.; Moschini, M.; Bertuzzi, T.; Prandini, A.; Battilani, P. An electronic nose supported by an artificial neural network for the rapid detection of aflatoxin B1 and fumonisins in maize. Food Control 2021, 123, 107722. [Google Scholar] [CrossRef]
- Ottoboni, M.; Pinotti, L.; Tretola, M.; Giromini, C.; Fusi, E.; Rebucci, R.; Grillo, M.; Tassoni, L.; Foresta, S.; Gastaldello, S.; et al. Combining E-Nose and Lateral Flow Immunoassays (LFIAs) for Rapid Occurrence/Co-Occurrence Aflatoxin and Fumonisin Detection in Maize. Toxins 2018, 10, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Lippolis, V.; Cervellieri, S.; Damascelli, A.; Pascale, M.; Di Gioia, A.; Longobardi, F.; De Girolamo, A. Rapid prediction of deoxynivalenol contamination in wheat bran by MOS-based electronic nose and characterization of the relevant pattern of volatile compounds. J. Sci. Food Agric. 2018, 98, 4955–4962. [Google Scholar] [CrossRef]
- Campagnoli, A.; Cheli, F.; Polidori, C.; Zaninelli, M.; Zecca, O.; Savoini, G.; Pinotti, L.; Dell’Orto, V. Use of the Electronic Nose as a Screening Tool for the Recognition of Durum Wheat Naturally Contaminated by Deoxynivalenol: A Preliminary Approach. Sensors 2011, 11, 4899–4916. [Google Scholar] [CrossRef]
- Gobbi, E.; Falasconi, M.; Torelli, E.; Sberveglieri, G. Electronic nose predicts high and low fumonisin contamination in maize cultures. Food Res. Int. 2011, 44, 992–999. [Google Scholar] [CrossRef]
- Cheli, F.; Campagnoli, A.; Pinotti, L.; Savoini, G.; Dell’Orto, V. Electronic nose for determination of aflatoxins in maize. Biotechnol. Agron. Soc. Environ. 2009, 13, 39–43. [Google Scholar]
- Abramsona, D.; Hulasare, R.; York, R.K.; White, N.D.G.; Jayas, D.S. Mycotoxins, ergosterol, and odor volatiles in durum wheat during granary storage at 16% and 20% moisture content. J. Stored Prod. Res. 2005, 41, 67–76. [Google Scholar] [CrossRef]
- Tognon, G.; Campagnoli, A.; Pinotti, L.; Dell’Orto, V.; Cheli, F. Implementation of the Electronic Nose for the Identification of Mycotoxins in Durum Wheat (Triticum durum). Vet. Res. Commun. 2005, 29 (Suppl. 2), 391–393. [Google Scholar] [CrossRef] [PubMed]
- Olsson, J.; Borjesson, T.; Lundstedt, T.; Schnuerer, J. Detection and quantification of ochratoxin and deoxynivalenol in barley grain by GC-MS and electronic nose. Int. J. Food Microbiol. 2002, 72, 203–214. [Google Scholar] [CrossRef] [PubMed]
Samples | Fungal Contamination (*/**) | VOC Analysis | VOCs | References |
---|---|---|---|---|
Maize | Aspergillus flavus (*) | GC-IMS | A total of 55 VOCs were identified. Ethyl acetate-D and 3-hydroxybutan-2-one-D are potential biomarkers specific to A. flavus contamination. Aflatoxin B1 is positively correlated with the level of (E)-2-octenal-M, benzene acetaldehyde, (E)-hept-2-enal-M, 2- heptanone-D, and 2-pentyl furan. | [105] |
Jasmine brown rice | Aspergillus oryzae (*) | SPME/GC-MSD | A total of 11 VOCs were identified. Octane, 2,2,4,6,6-pentamethylheptane, decane, dodecane, toluene, ethanol, 1-pentanol, 1-hexanol, 1-octen-3-ol, 2-heptanone, and 2-pentylfuran could be used as volatile markers for A. oryzae contamination. | [106] |
Rice | Aspergillus strains (A. candidus, A. fumigatus, and A. clavatus) (*) | HS-GC-MSD | A total of 25 VOCs were identified. Decanal, 1-octanol, 1-tridecanol, nonanal, diethyl phthalate, α-cedrene, cyclododecene, and cis-thujopsene can be considered as markers of infected rice samples, with changes during the storage period. | [107] |
Wheat | Ten fungal species, Alternaria (4), Cladosporium (3), Penicillium (2), Aureobasidium (1), and Fusarium graminearum (1) (*) | GC-FID, GC-MSD | A total of 57 VOCs were identified. Cyclooctasiloxane and hexadecamethyl combination and pentadecane can be considered as markers of early detection of postharvest fungi in grain for A. alternata and A. infectori, respectively. Naphthalene was identified only in the headspace of C. herbarum | [100] |
Hybrid and dwarf maize | Fusarium graminearum and F. verticillioides (*) | SPME/GC-MSD | A total of 23 VOCs were identified (12 from dwarf and 15 from hybrid maize). Both varieties shared six common markers: (+)-longifolene, β-farnesene, β-macrocarpene, and trichodiene. Qualitative variability in VOCs was observed upon infection of different Fusarium species: trichodiene was detected only from F. graminearum. | [108] |
Barley (malting procedure) | Fusarium poae (*) | SPME/GC-MSD | A total of 46 VOCs. Volatile aldehyde fractions were influenced by F. poae contamination during malting. | [109] |
Maize | Fusarium graminearum, F. verticillioides, and F. subglutinans | SPME/GC-MSD OLS/GC-MSD | A total of 22 VOCs were identified. 3-hexen-1-ol, heptan-2-ol, 1-octen-3-ol, octan-3-one, octan-3-ol, β-selinene, α-selinene, β-macrocarpene, and β-bisabolene: markers for the early detection of Fusarium infection. | [110] |
Durum wheat | Fusarium poae (*) | SHS-SPME/GC-MSD | A total of 29 VOCs were identified. Levels of ethyl acetate, ethanol, 3-methylbutanol ethyl decanoate, ethyl decenoate, 2-phenylethyl acetate, 3-methylbutanal, hexanal, phenylethyl alcohol, 3-hydroxy-2-butanone, and acetic acid changed as a function of time after inoculation. | [111] |
Durum wheat | (**) DON < 1000 mg/kg; 1000 mg/kg ≤ DON ≤ 2500 mg/kg; DON > 2500 mg/kg. | HS-SPME/GC-MSD | A total of 70 VOCs were identified. Trichodiene, longifolene, 3-methyl butanal, tridecane, g-caprolactone, and 6,10,14-trimethyl-2-pentadecanone: positively associated with DON; Hexadecane, 2,3,7-trimethyl-decane, and 4,6-dimethyl-dodecane: negatively associated with DON | [112] |
Barley, Oats, and rye | (**) analysis for trichothecenes A and B | GC/MSD | A total of 46 VOCs were identified. The most significant VOCs to differentiate infected from non-infected cereals: [E, E]-3,5 octadien 2-one, 1-heptanol, naphthalene, p-xylene and dimethyl sulphone, and trichodiene. | [100] |
Soft wheat | Fusarium graminearum, F. culmorum, F. cerealis, and F. redolens (*) | SPME/GC-MSD | A total of 16 VOCs were identified. 2-methyl-1-propanol, 3-methylbutanol, 1-octen-3-ol, and 3-octanone were infection-specific. | [113] |
Mycotoxins | Sample (*/**) | E-Nose/Sensor Array | Data Analysis | Tested Hypothesis | References |
---|---|---|---|---|---|
AFs | Maize (*) | Fox 3000/(6 SnO2 and 6 CTO); Cyranose 320; and DiagNose/12 MOS | SVM, k-NN | Aflatoxins—two classes: below and above 10 µg/kg (ppb) | [132] |
DON | Wheat (**) | AIR PEN 3/10 MOS | CART | Discrimination among four DON contamination thresholds: 1750, 1250, 750, and 500 µg/kg | [133] |
AFB1, FUM | Maize (**) | AIR PEN 3/10 MOS | ANN, LR¸ DA | Discrimination at levels above or below the legal EU limits # | [134] |
Afs, FBs | Maize (**) | AIR PEN3/10 MOS | DFA | Three classes of contamination: below the EU regulatory limits ##, single-contaminated, and co-contaminated | [135] |
DON | Wheat bran (**) | AOS-ISE Nose 2000/12 MOS | DFA | Two contamination classes: A: DON ≤ 400 µg/kg and B: DON > 400 µg/kg | [136] |
DON | Durum wheat (**) | AOS- ISE Nose 2000/12 MOS | DFA | Three contamination classes: A: DON ≤ 1000 mg/kg; B: 1000 < DON ≤ 2500 mg/kg; and C: DON > 2500 mg/kg. | [112] |
DON | Durum wheat (**) | AIR-PEN2/10 MOS | PCA, CART | Three clusters based on the DON content proposed by the European legislation: A: non-contaminated; B: contaminated below the limit (DON ≤ 1750 μg/kg); and C: contaminated above the limit (DON > 1750 μg/kg) | [137] |
FBs | Maize (*) | EOS835/6 MOX | PCA, PLS | FBs: low content below 1.6 mg/kg (average 1.0 mg/kg) vs. high content above1000 mg/kg | [138] |
AFs | Maize (**) | AIRSENSE PEN2/10 MOS | PCA, LDA | Aflatoxin-containing samples and aflatoxin-free samples | [139] |
OTA, citrinin | Durum wheat (**) | FOX 3000, Alpha-MOS/12 sensors | CORR | OTA, citrinin time changing during storage (25 weeks) | [140] |
DON | Durum wheat (**) | PEN2/10 MOS | PCA, MR | DON-containing samples and DON-free samples | [141] |
DON, OTA | Barley (**) | VCM 422/10 MOSFET, 6 SnO2, and 1 Gascard CO2 | PCA, PLS | The OTA level varied between 0 and 934 mg/kg; the DON content varied between 0 and 857 mg/kg | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheli, F.; Ottoboni, M.; Fumagalli, F.; Mazzoleni, S.; Ferrari, L.; Pinotti, L. E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology? Toxins 2023, 15, 146. https://doi.org/10.3390/toxins15020146
Cheli F, Ottoboni M, Fumagalli F, Mazzoleni S, Ferrari L, Pinotti L. E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology? Toxins. 2023; 15(2):146. https://doi.org/10.3390/toxins15020146
Chicago/Turabian StyleCheli, Federica, Matteo Ottoboni, Francesca Fumagalli, Sharon Mazzoleni, Luca Ferrari, and Luciano Pinotti. 2023. "E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology?" Toxins 15, no. 2: 146. https://doi.org/10.3390/toxins15020146
APA StyleCheli, F., Ottoboni, M., Fumagalli, F., Mazzoleni, S., Ferrari, L., & Pinotti, L. (2023). E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology? Toxins, 15(2), 146. https://doi.org/10.3390/toxins15020146